Skip to main content
Log in

24-Epibrassinolide Mechanisms Regulating Blossom-End Rot Development in Tomato Fruit

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Blossom-end rot (BER) is a physiological disorder believed to be triggered by low Ca2+ content in the distal fruit tissue. However, many other factors can also determine fruit susceptibility to BER. It is possible that during fruit growth, Ca2+ imbalance can increase membrane leakiness, which may trigger the accumulation of reactive oxygen species, leading to cell death. Brassinosteroids are a class of plant hormones involved in stress defenses, specially increasing the activity of antioxidant enzymes and the accumulation of antioxidant compounds, such as ascorbic acid. The objective of this study was to understand the mechanisms by which 24-epibrassinolide (EBL) reduces fruit susceptibility to BER. Tomato plants ‘BRS Montese’ were cultivated in a greenhouse and were weekly sprayed with water (control) or EBL (0.01 µM) after full bloom. Plants and fruits were evaluated at 15 days after pollination (DAP). According to the results, EBL treatment inhibited BER development, increased fruit diameter, length, and fresh weight. EBL-treated fruit showed higher concentrations of soluble Ca2+ and lower concentrations of cell wall-bound Ca2+. EBL-treated fruit also had higher concentrations of ascorbic acid and lower concentrations of hydrogen peroxide, compared to water-treated fruit. EBL treatment increased the activity of the three main antioxidant enzymes known as ascorbate peroxidase, catalase, and superoxide dismutase. According to the results, EBL treatment maintained higher soluble Ca2+ and antioxidant capacity, reducing fruit susceptibility to BER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktas H, Karni L, Aloni B, Bar-Tal A (2003) Physiological and biochemical mechanisms leading to blossom-end rot in greenhouse-grown peppers, irrigated with saline solution. Acta Hortic 609:81–88

    Article  CAS  Google Scholar 

  • Aktas H, Karni L, Chang DC, Turhan E, Bar-Tal A, Aloni B (2005) The suppression of salinity-associated oxygen radicals production in pepper (Capsicum annuum) fruit by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiol Plant 123:67–74

    Article  CAS  Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344

    Article  CAS  Google Scholar 

  • Alves LR, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratão PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115

    Article  CAS  Google Scholar 

  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Bondada BR, Matthews MA, Shackel KA (2005) Functional xylem in the post-veraison grape berry. J Exp Bot 56:2949–2957

    Article  CAS  Google Scholar 

  • Borges KLR, Salvato F, Alcântara BK, Nalin RS, Piotto FA, Azevedo RA (2018) Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance. Ecotoxicology 27(3):245–258

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Campbell A, Huysamer M, Stotz HU, Greve LC, Labavitch JM (1990) Comparison of ripening processes in intact tomato fruit and excised pericarp discs. Plant Physiol 94:1582–1589

    Article  CAS  Google Scholar 

  • Carvalho CRL, Mantovani DMB, Carvalho PRN, Moraes RM (1990) Análises químicas de alimentos. Instituto de Tecnologia de Alimentos, Campinas, p 121

    Google Scholar 

  • Carvalho MEA, Piotto FA, Nogueira ML, Gomes-Junior FG, Chamma MCP, Pizzaia D, Azevedo RA (2018) Cadmium exposure triggers genotype-dependent changes in seed vigor and germination of tomato offspring. Protoplasma 255(4):989–999

    Article  CAS  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  Google Scholar 

  • Constantine GN, Ries SK (1977) Superoxide dismutases: I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  Google Scholar 

  • Cuypers A, Hendrix S, Amaral dos, Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470

    Article  Google Scholar 

  • De Freitas ST, Padda M, Wu Q, Park S, Mitcham E (2011a) Dynamic alterations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol 156:844–855

    Article  Google Scholar 

  • De Freitas ST, Shackel KA, Mitcham EJ (2011b) Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom-end rot development in tomato fruit. J Exp Bot 62:2645–2656

    Article  Google Scholar 

  • De Freitas ST, Handa AK, Wu Q, Park S, Mitcham EJ (2012) Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J 71:824–835

    Article  Google Scholar 

  • De Freitas ST, Martinelli F, Feng B, Reitz NF, Mitcham EJ (2017) Transcriptome approach to understand the potential mechanisms inhibiting or triggering blossom-end rot development in tomato fruit in response to plant growth regulators. J Plant Growth Regul 37(1):183–198

    Article  Google Scholar 

  • Dobrikova AG, Vladkova RS, Rashkov GD, Todinova SJ, Krumova SB, Apostolova EL (2014) Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions. Plant Physiol Biochem 80:75–82

    Article  CAS  Google Scholar 

  • Gallie DR (2013) L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica. https://doi.org/10.1155/2013/795964

    Article  PubMed  PubMed Central  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal- stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isoled chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:11

    Article  Google Scholar 

  • Hepler PK, Winship LJ (2010) Calcium at the cell wall-cytoplast interface. J Integr Plant Biol 52:147–160

    Article  CAS  Google Scholar 

  • Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot 95:571–581

    Article  CAS  Google Scholar 

  • Ho LC, Belda R, Brown M, Andrews J, Adams P (1993) Uptake and transport of calcium and the possible causes of blossom end rot in tomato. J Exp Bot 44:509–518

    Article  CAS  Google Scholar 

  • Ikeda H, Shibuya T, Nishiyama M, Nakata Y, Kanayama Y (2017) Physiological mechanisms accounting for the lower incidence of blossom-end rot in tomato introgression line IL8-3 fruit. Hortic J 86(3):327–333

    Article  CAS  Google Scholar 

  • Jiang W, Bai J, Yang X, Yu H, Liu Y (2012) Exogenous application of abscisic acid, putrescine, or 2,4-epibrassinolide at appropriate concentration effectively alleviate damage to tomato seedlings from suboptimal temperature stress. Horttechnology 22(1):137–144

    Article  CAS  Google Scholar 

  • Kraus TE, Fletcher RA, Evans RC, Pauls KP (1995) Paclobutrazol enhances tolerance to increased levels of UV-B radiation in soybean (Glycine max) seedlings. Can J Bot 73:797–806

    Article  CAS  Google Scholar 

  • Liu Y, Zhao Z, Si J, Di C, Han J, An L (2009) Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul 59:207–214

    Article  CAS  Google Scholar 

  • Maia CF, Silva BRS, Lobato AKS (2018) J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9802-2

    Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira AS (1997) Avaliação do estado nutricional das plantas- princípios e aplicações. 2 ed, POTAFOS, Piracicaba, p 309

    Google Scholar 

  • Mestre TC, Garcia-Sanchez F, Rubio F, Martinez V, Rivero RM (2012) Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. J Plant Physiol 169:1719–1727

    Article  CAS  Google Scholar 

  • Nagata N, Asami T, Yoshida S (2001) Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (Lepidium sativum). Plant Cell Physiol 42:1006–1011

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ogweno JO, Song XS, Shi K, HU WH, Mao WH, Zhou YH, YU JQ, Nogués S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Peaucelle A, Braybrook SA, Höfte H (2012) Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci 3:121

    Article  CAS  Google Scholar 

  • Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA (2017) Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254(2):771–783

    Article  CAS  Google Scholar 

  • Rached M, Pierre B, Yves G, Matsukura C, Ariizumi T, Ezura H, Fukuda N (2018) Differences in blossom-end rot resistance in tomato cultivars is associated with total ascorbate rather than calcium concentration in the distal end part of fruits per se. Hortic J. https://doi.org/10.2503/hortj.OKD-150

    Article  Google Scholar 

  • Riboldi LB, Araújo SHC, De Freitas ST, Castro PRC (2018a) Blossom-end rot incidence in elongated tomato fruit. Botany 96(10):663–673

    Article  CAS  Google Scholar 

  • Riboldi LB, Araújo SHC, De Freitas ST, Castro PRC (2018b) Fruit shape regulates susceptibility of tomato to blossom-end rot. Acta Sci Agron

  • Riboldi LB, Araújo SHC, Múrcia JAG, De Freitas ST, Castro PRC (2018c) Abscisic acid (ABA) and 24-epibrassinolide regulate blossom-end rot (BER) development in tomato fruit under Ca2+ deficiency’. Aust J Crop Sci 12(9):1440–1446

    Article  Google Scholar 

  • Saltveit ME (2002) The rate of ion leakage from chilling-sensitive tissue does not immediately increase upon exposure to chilling temperatures. Postharvest Biol Technol 26:295–304

    Article  CAS  Google Scholar 

  • Saure MC (2001) Blossom-end rot of tomato (Lycopersicon esculentum Mill.): a calcium or a stress-related disorder? Sci Hortic 90:193–208

    Article  CAS  Google Scholar 

  • Saure MC (2014) Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit–a reappraisal. Sci Hortic 174:151–154

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveera M, Cheb Z, Rehmanc A, Cheemac SA, Sharmad A, Songb H, Rehmane S, Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119

    Article  Google Scholar 

  • Soares C, De Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125

    Article  CAS  Google Scholar 

  • Turhan E, Karni L, Aktas H, Deventurero G, Chang DC, Bar-Tal A, Aloni B (2006) Apoplastic antioxidants in pepper (Capsicum annuum L.) fruit and their relationship to blossom-end rot. J Hortic Sci Biotechnol 81:661–667

    Article  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  Google Scholar 

  • Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci 8:1017

    Article  Google Scholar 

  • Xia X-J, Wang Y-J, Zhou Y-H, Tao Y, Mao W-H, Shi K, Asami T, Chen Z, Yu J-Q (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150(2):801–814

    Article  CAS  Google Scholar 

  • Yadav S, Hayat S, Wani AS, Irfan M, Ahmad A (2012) Comparison of the influence of 28-homobrassinolide and 24-epibrassinolide on nitrate reductase activity, proline content, and antioxidant enzymes of tomato. Int J Veg Sci 18(2):161–170

    Article  Google Scholar 

  • Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46:786–793

    Article  CAS  Google Scholar 

  • Zheng Q, Liu J, Liu R, Wu H, Jiang C, Wang C, Guan Y (2016) Temporal and spatial distributions of sodium and polyamines regulated by brassinoesteroids in enhancing tomato salt resistance. Plant Soil 400:147–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Coordination of Improvement of Higher Education Personnel (CAPES) and the Department of Biological Sciences of the University of São Paulo (ESALQ/USP) supported this study. We also thank the Laboratory of Plant Ecophysiology, Laboratory of Plant Genetics and Biochemistry (ESALQ/USP), and Laboratory of Plants Mineral Nutrition (CENA/USP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Baiochi Riboldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riboldi, L.B., Gaziola, S.A., Azevedo, R.A. et al. 24-Epibrassinolide Mechanisms Regulating Blossom-End Rot Development in Tomato Fruit. J Plant Growth Regul 38, 812–823 (2019). https://doi.org/10.1007/s00344-018-9892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9892-x

Keywords

Navigation