Skip to main content
Log in

Transcriptome Approach to Understand the Potential Mechanisms Inhibiting or Triggering Blossom-End Rot Development in Tomato Fruit in Response to Plant Growth Regulators

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The objectives of this study were to analyze changes in gene expression and identify candidate genes and gene networks potentially inhibiting or triggering blossom-end rot (BER) in tomatoes treated with plant growth regulators. ‘Ace 55 (Vf)’ tomato plants were grown in a greenhouse and sprayed with Apogee (300 mg L−1), abscisic acid (ABA) (500 mg L−1), water (control), or gibberellins 4 + 7 (GA4 + 7) (300 mg L−1) weekly after pollination. The BER incidence rate was zero in Apogee- and ABA-, medium in water-, and high in GA4 + 7-treated plants from 26 to 40 days after pollination (DAP). At 26 DAP, healthy blossom-end fruit tissue still not showing visible BER symptoms was used for transcriptome analysis. Candidate genes potentially inhibiting or triggering BER were identified through a correlation analysis between gene expression levels at 26 DAP and BER incidence rate from 26 to 40 DAP. Genes inhibiting BER should be up-regulated in Apogee- and/or ABA-treated fruit and down-regulated in GA4 + 7-treated fruit. Genes triggering BER should be down-regulated in Apogee- and/or ABA-treated fruit and up-regulated in GA4 + 7-treated fruit. Most of the candidate genes inhibiting BER have functions leading to higher resistance to oxidative stress and toxic compounds, whereas most of the candidate genes triggering BER have functions leading to higher levels of oxidative stress and cell death. The results suggest that Apogee and ABA inhibited BER possibly by increasing fruit tissue resistance to reactive oxygen species (ROS) and other toxic compounds, whereas GA4 + 7 triggered BER possibly by increasing the levels of fruit oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132:2248–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aktas H, Karni L, Chang DC, Turhan E, Bar-Tal A, Aloni B (2005) The suppression of salinity-associated oxygen radicals production in pepper (Capsicum annuum) fruit by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiol Plant 123:67–74

    Article  CAS  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8:279–293

    Article  Google Scholar 

  • Belles-Boix E, Babiychuk E, Van Montagu M, Inze D, Kushnir S (2000) CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett 482:19–24

    Article  CAS  PubMed  Google Scholar 

  • Bhomkar P, Upadhyay CP, Saxena M, Muthusamy A, Prakash NS, Pooggin M, Hohn T, Sarin NB (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breeding 22:169–181

    Article  CAS  Google Scholar 

  • Blaudez D, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15:2911–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boguta M (2013) Maf1, a general negative regulator of RNA polymerase III in yeast. BBA-Gene Regul Mech 1829:376–384

    CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer GJ (2010) Copper toxicity in the general population. Clin Neurophysiol 121:459–460

    Article  PubMed  Google Scholar 

  • Brown RGS, Kawaide K, Yang YY, Rademacher W, Kamiya Y (1997) Daminozide and prohexadione have similar modes of action as inhibitors of the late stages of gibberellin metabolism. Physiol Plant 101:309–313

    Article  CAS  Google Scholar 

  • Chepyshko H, Lai CP, Huang LM, Liu JH, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genomics 13:309–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claes B, Dekeyser R, Villarroel R, Van den Bulcke M, Bauw G, Van Montagu M, Caplan A (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze´ D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  CAS  PubMed  Google Scholar 

  • del Pozo JC, Estelle M (2000) F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol Biol 44:123–128

    Article  PubMed  Google Scholar 

  • Dinant S, Clark AM, Zhu Y, Vilaine F, Palauqui JC, Kusiak C, Thompson GA (2003) Diversity of the superfamily of phloem lectins (Phloem Proein 2) in Angiosperms. Plant Physiol 131:114–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Kereamy A, El-Sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. PLoS ONE 6:1–11

    Article  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Filho GAS, Ferreira BS, Dias JM, Queiroz KS, Branco AT, Bressan-Smith RE, Oliveira JG, Garcia AB (2003) Accumulation of SALT protein in rice plants as a response to environmental stress. Plant Sci 164:623–628

    Article  Google Scholar 

  • Freitas ST, Mitcham EJ (2012c) Factors involved in fruit calcium deficiency disorders. Hortic Rev 40:107–146

    Article  Google Scholar 

  • Freitas ST, Shackel KA, Mitcham EJ (2011a) Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J Exp Bot 62:2645–2656

    Article  PubMed  Google Scholar 

  • Freitas ST, Padda M, Wu Q, Park S, Mitcham EJ (2011b) Dynamic alterations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol 156:844–855

    Article  Google Scholar 

  • Freitas ST, Jiang CZ, Mitcham EJ (2012a) Mechanisms involved in calcium deficiency development in tomato fruit in response to gibberellins. J Plant Growth Regul 31:221–234

    Article  CAS  Google Scholar 

  • Freitas ST, Handa AK, Wu Q, Park S, Mitcham EJ (2012b) Role of pectin methylesterase in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J 71:824–835

    Article  PubMed  Google Scholar 

  • Freitas ST, McElrone AJ, Shackel KA, Mitcham EJ (2014) Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments. J Exp Bot 65:235–247

    Article  Google Scholar 

  • Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto KT (2004) A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol 134:275–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X, Zhang Y (2009) Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6:34–44

    Article  CAS  PubMed  Google Scholar 

  • Garcia AB, Engler JA, Claes B, Villarroel R, Van Montagu M, Gerats T, Caplan A (1998) The expression of the salt-responsive gene salT from rice is regulated by hormonal and developmental cues. Planta 207:172–180

    Article  CAS  PubMed  Google Scholar 

  • Godoy JA, Pardo JM, Pintor-Toro JA (1990) A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Biol 15:695–705

    CAS  Google Scholar 

  • Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    Article  CAS  PubMed  Google Scholar 

  • González-Aguilera KL, Saad CF, Montes RAC, Alves-Ferreira M, Folter S (2016) Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1. Front Plant Sci 7:1–8

    Article  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunewald W, Vanholme B, Pauwels L, Plovie E, Inzé D, Gheysen G, Goossens A (2009) Expression of the Arabidopsis jasmonate signaling repressor JAZ1/TIFY10A is stimulated by auxin. Eur Mol Biol Organ J 10:923–928

    CAS  Google Scholar 

  • Guo L, Yang H, Zhang X, Yang S (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Jha B, Agarwal K (2014) A dehydration-responsive element binding (BREB) transcription factor from the succulent Halophyte Salicornia brachiate enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol 16:657–673

    Article  CAS  PubMed  Google Scholar 

  • Ho LC, White PJ (2005) A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot 95:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holländer-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol 162:767–770

    Article  PubMed  Google Scholar 

  • Hörmann F, Küchler M, Sveshnikov D, Oppermann U, Li Y, Soll J (2004) Tic32, an essential component in chloroplast biogenesis. J Biol Chem 279:34756–34762

    Article  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers P, Blomster T, Brosché M, Salojärvi J, Ahlfors R, Vainonen JP, Reddy RA, Immink R, Angenent G, Turck F, Overmyer K, Kangasjärvi J (2009) Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. Plant J 60:268–279

    Article  CAS  PubMed  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kaschner LA, Sharma R, Shrestha OK, Meyer A, Craig EA (2015) A conserved domain important for association of eukaryotic J-protein co-chaperones Jjj1 and Zuo1 with ribosome. BBA-Mol Cell Res 1853:1035–1045

    CAS  Google Scholar 

  • Lagercrantz U, Axelsson T (2000) Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol 17:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yue J, Wu X, Xu C, Yu J (2014) An ABA-responsive DER-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65:5415–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YF, Aarts MG (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ding P, Sun T, Nitta Y, Dong O, Huang X, Yang W, Li X, Botella JR, Zhang Y (2013) Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol 161:2146–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorrain S, Vailleau F, Balagué C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  CAS  PubMed  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mestre TC, Garcia-Sanchez F, Rubio F, Martinez V, Rivero RM (2012) Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. J Plant Physiol 169:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  Google Scholar 

  • Mittler R, Rizhsky L (2000) Transgene-induced lesion mimic. Plant Mol Biol 44:335–344

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka S, Takano T (2003) Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot 54:2231–2237

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Kagiyama M, Shibata N, Hirano Y, Hakoshima T (2014) Mechanism of high-affinity abscisic acid binding to PYL9/RCAR1. Genes Cells 19:386–404

    Article  CAS  PubMed  Google Scholar 

  • Noriega TR, Tsai A, Elvekrog MM, Petrov A, Neher SB, Chen J, Bradshaw N, Puglisi JD, Walter P (2014) Signal recognition particle-ribosome binding is sensitive to nascent chain length. J Biol Chem 289:19294–19305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  CAS  PubMed  Google Scholar 

  • Parra MM, Pozo O, Luna R, Godoy JA, Pintor-Toro JA (1996) Structure of the dehydrin tas14 gene of tomato and its developmental and environmental regulation in transgenic tobacco. Plant Mol Biol 32:453–460

    Article  CAS  PubMed  Google Scholar 

  • Qureshi MK, Sujeeth N, Gechev TS, Hille J (2013) The zinc finger protein ZAT11 modulates paraquat-induced programmed cell death in Arabidopsis thaliana. Acta Physiol Plant 35:1863–1871

    Article  CAS  Google Scholar 

  • Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S, Jin X, Renou JP, Thibaud JB, Ljung K, Fischer U, Martinoia E, Boerjan W, Goffner D (2013) Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun 4:1–9

    Article  Google Scholar 

  • Riewe D, Koohi M, Lisec J, Pfeiffer M, Lippmann R, Schmeichel J, Willmitzer L, Altmann T (2012) A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis. Plant J 71:850–859

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Santos CV, Tarrago L, Rey P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89:247–262

    Article  CAS  PubMed  Google Scholar 

  • Safi H, Saibi W, Alaoui MM, Hmyene A, Masmoudi K, Hanin M, Brini F (2015) A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiol Biochem 89:64–75

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Davydov O, Orazova S, Yesbergenova Z, Ophir R, Stratmann JW, Fluhr R (2004) Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16:616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SAS Institute (2002) Statistical Analysis System, v.8.2. SAS Institute, Cary

    Google Scholar 

  • Saure MC (2001) Blossom-end rot of tomato (Lycopersicon esculentum Mill.)—a calcium or a stress-related disorder? Sci Hort 90:193–208

    Article  CAS  Google Scholar 

  • Saure MC (2005) Calcium translocation to fleshy fruit: its mechanism and endogenous control. Sci Hort 85:1–25

    Google Scholar 

  • Saure MC (2014) Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit—a reappraisal. Sci Hort 174:151–154

    Article  CAS  Google Scholar 

  • Schott A, Ravaud S, Keller S, Radzimanowski J, Viotti C, Hillmer S, Sinning I, Strahl S (2010) Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum. J Biol Chem 285:18113–18121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin LJ, Lo JC, Yeh KC (2012) Copper chaperone antioxidant protein 1 is essential for copper homeostasis. Plant Physiol 159:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defence and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. PNAS 100:14672–14677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Xu W, Xiang Y, Jia H, Zhang L, Ma Z (2014) Association of jacalin-related lectins with wheat responses to stress revealed by transcriptional profiling. Plant Mol Biol 84:95–110

    Article  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2007) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regul 49:77–83

    Google Scholar 

  • Subramanyam S, Sardesai N, Puthoff DP, Meyer JM, Nemacheck JA, Gonzalo M, Williams CE (2006) Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci 170:90–103

    Article  CAS  Google Scholar 

  • Suzuki K, Shono M, Egawa Y (2003) Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Protoplasma 222:149–156

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Turhan E, Karni L, Aktas H, Deventurero G, Chang DC, Bar-Tal A, Aloni B (2006) Apoplastic antioxidants in pepper (Capsicum annuum L.) fruit and their relationship to blossom-end rot. J Hortic Sci Biotechnol 81:661–667

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Veena VSR, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confers tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang L, Baldwin IT (2008) Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? Planta 227:1161–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Song M, Wei Z, Tong J, Zhang L, Xiao L, Ma L, Ma Z, Wang Y (2011) A jacalin-related lectin-like gene in wheat is a component of the plant defense system. J Exp Bot 62:1–13

    Article  Google Scholar 

  • Yamamoto A, Bhuiyan MN, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  CAS  PubMed  Google Scholar 

  • Yuasa T, Ishibashi Y, Iwaya-Inoue M (2012) A flower specific calcineurin B-like molecule (CBL)-interacting protein kinase (CIPK) homolog in tomato cultivar micro-tom (Solanum lycopersicum L.). Am J Plant Sci 3:753–763

    Article  CAS  Google Scholar 

  • Zhang W, Peumans WJ, Barre A, Astoul CH, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AA, Van Damme EJM (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Shu W, Zhang C, Zhang W, Ye Z (2011) Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol Biol Rep 29:638–645

    Article  CAS  Google Scholar 

  • Zheng H, Ji C, Gu S, Shi B, Wang J, Xie Y, Mao Y (2004) Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Biochem Biophys Res Commun 331:1401–1407

    Article  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Tonetto de Freitas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 392 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, S.T., Martinelli, F., Feng, B. et al. Transcriptome Approach to Understand the Potential Mechanisms Inhibiting or Triggering Blossom-End Rot Development in Tomato Fruit in Response to Plant Growth Regulators. J Plant Growth Regul 37, 183–198 (2018). https://doi.org/10.1007/s00344-017-9718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9718-2

Keywords

Navigation