Skip to main content
Log in

Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study examined brassinosteroids-induced enhancement of plant salt resistance of tomato.

Methods

Pot experiment was conducted in the whole-life-cycle of cherry tomato. The effects of 24-epibrassinolide (EBL) foliar spraying on temporal and spatial distributions of ions and PAs in the whole-life-cycle of salt-stressed plants were studied.

Results

EBL could well relieve salt-induced inhibitory effects on plant growth and development in different levels, especially in the late period of tomato. EBL inhibited Na+ upward transport in salt-stressed tomato, especially in their flowers and apiculus. Salt stress decreased PAs concentration in tomato: Put > Spd > Spm, however, Spm was also the most obvious one of PAs elevated by EBL in nutritoriums of salt-stressed tomato. Also, EBL-induced an obvious increase of PAs, mainly in young leaves. EBL increased fruit-PAs concentration in mid-anaphase, and promoted the (Spd + Spm)/Put ratio in premetaphase of fruit period, improving their salt resistance.

Conclusions

EBL alleviates salt stress on tomato through regulations of Na+-root-to-shoot translocation and PAs concentrations in the whole-life-cycle, which especially showed in young vegetative organs or fruit organs, improving its salt resistance. Also, the PAs increase caused by EBL is also likely to be related to the decline of Na+ and little change of K+ in the shoots of salt-stressed tomato that were sprayed with EBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BRs:

Brassinosteroids

BL:

Brassinolide

EBL:

24-epibrassinolide

HBL:

28-homobrassinolide

PAs:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

U-leaf:

The third leaf near the top

M-leaf:

The leaf right in the middle

L-leaf:

The third leaf near the base

References

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Ali AA, Abdel-Fattah RI (2006) Osmolytes-antioxidant behaviour in Phaseolus vulgaris and Hordeum vulgare with brassinosteroid under salt stress. J Agron 5:167–174

    Article  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant 30:833–839

    Article  CAS  Google Scholar 

  • Bassard JE, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71:1808–1824

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Zhang Q, Tian L, Li CL, Xing Y, Qin L, Shen YY (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69(1):63–69

    Article  CAS  Google Scholar 

  • Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Biondi S, Kanwar M (2010) Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiol Plant 140:280–296

    PubMed  CAS  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Kanwar M, Arora P (2009) Epibrassinolide regulated synthesis of polyamines and auxins in Raphanus sativus L. seedlings under Cu metal stress. Braz J Plant Physiol 21:25–32

    Article  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    Article  PubMed  CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LS (2012a) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7(3):e33210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LS (2012b) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63(15):5659–5675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012c) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17(10):594–605

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2008) Themolecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. Proc Natl Acad Sci U S A 105(21):7345–7346

    Article  PubMed Central  PubMed  Google Scholar 

  • Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q (2012) Arabidopsis Ubiquitin Conjugase UBC32 is an ERAD component that functions in brassinosteroid- mediated salt stress tolerance. Plant Cell 24:233–244

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    Article  PubMed  CAS  Google Scholar 

  • de Cantú LB, Kandeler R (1989) Significance of polyamines for flowering in Spirodela punctata. Plant Cell Physiol 30:455–458

    Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151–164

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eleiwa ME, Bafeel SO, Ibrahim SA (2011) Influence of brassinosteroids on wheat plant (Triticum aestivum L.) production under salinity stress conditions. I-Growth parameters and photosynthetic pigments. Aus J Basic Appl Sci 5(5):58–65

    CAS  Google Scholar 

  • El-Khallal SM, Hathout TA, Ashour AA, Kerrit AA (2009) Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under salt stress. Res J Agric Biol Sci 5:380–390

    CAS  Google Scholar 

  • El-Mashad AA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249:625–635

    Article  PubMed  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Fariduddin Q, Khalil RRAE, Mir BA, Yusuf M, Ahmad A (2013) 24-epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 185:7845–7856

    Article  PubMed  CAS  Google Scholar 

  • Friedrichsen D, Chory J (2001) Steroid signaling in plants: from the cell surface to the nucleus. Bioessays 23:1028–1036

    Article  PubMed  CAS  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59(9):2299–2308

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garufi A, Visconti S, Camoni L, Aducci P (2007) Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol 48:434–440

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo DP, Sun YZ, Chen ZJ (2003) Involvement of polyamines in cytoplasmic male sterility of stem mustard (Brassica juncea var. tsatsai). Plant Growth Regul 41(1):33–40

    Article  CAS  Google Scholar 

  • Haubrick LL, Torsethaugen G, Assmann SM (2006) Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Physiol Plant 128:134–143

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A, Mobin M, Hussain A, Fariduddin Q (2000) Photosynthetic rate, growth, and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38(3):469–471

    Article  CAS  Google Scholar 

  • Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A (2012) Comparative effect of 28-homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol Biochem 53:61–68

    Article  PubMed  CAS  Google Scholar 

  • Houimli SIM, Denden M, Hadj SBEI (2008) Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. EurAsian J BioSci 2:83–90

    Google Scholar 

  • Houimli SIM, Denden M, Mouhandes BD (2010) Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian J BioSci 4:96–104

    Article  CAS  Google Scholar 

  • Huang CK, Chang BS, Wang KC, Her SJ, Chen TW, Chen YA, Cho CL, Liao LJ, Huang KL, Chen WS, Liu ZH (2004) Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberosa. J Plant Physiol 161:709–713

    Article  PubMed  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  PubMed  CAS  Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5(15):159–163

    Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10(1):51–62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase In Vitro. PLoS ONE 5:e449

    Article  CAS  Google Scholar 

  • Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61(15):4221–4230

    Article  PubMed  CAS  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109–128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu J, Gao H, Wang X, Zheng Q, Wang C, Wang X, Wang Q (2014) Effects of 24-epibrassinolide on plant growth, osmotic regulation and ion homeostasis of salt- stressed canola. Plant Biol 16:440–450

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Honda C, Moriguchi T (2006) Involvement of polyamine in floral and fruit development. Jpn Agric Res Q 40:51–58

    Article  CAS  Google Scholar 

  • Liu JH, Moriguchi T (2007) Changes in free polyamines and gene expression during peach flower development. Biol Plant 51(3):530–532

    Article  CAS  Google Scholar 

  • Lorenzen I, Aberle T, Plieth C (2004) Salt stress-induced chloride flux: a study using transgenic Arabidopsis expressing a fluorescent anion probe. Plant J 38:539–544

    Article  PubMed  CAS  Google Scholar 

  • Malmberg RL, Mcindoo J (1983) Abnormal floral development of a tobacco mutant with elevated polyamine levels. Nature 305:623–625

    Article  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Movahed N, Eshghi S, Tafazoli E, Jamali B (2010) Effects of polyamines on vegetative characteristics, growth, flowering and yield of strawberry (‘Paros’ and ‘Selva’). Acta Hortic 926:287–293

    Google Scholar 

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434

    Article  PubMed  CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefèvre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rastogi R, Sawhney VK (1990a) Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum Mill.). I. Level of polyamines and their biosynthesis in normal and mutant flowers. Plant Physiol 93:439–445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rastogi R, Sawhney VK (1990b) Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopersicon esculentum Mill). II. Effects of polyamines and their biosynthetic inhibitors on the development of normal and mutant floral buds cultured in vitro. Plant Physiol 93:446–452

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rea G, de Pinto MC, Tavazza R, Biondi S, Gobbi V, Ferrante P, Gara LD, Federico R, Angelini R, Tavladoraki P (2004) Ectopic expression of maize polyamine oxidase and pea copper amine oxidase in the cell wall of tobacco plants. Plant Physiol 134(4):1414–1426

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sannazzaro AI, Echeverría M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    Article  PubMed  CAS  Google Scholar 

  • Sfakianaki M, Sfichi L, Kotzabasis K (2006) The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature. J Photochem Photobiol B Biol 84:181–188

    Article  CAS  Google Scholar 

  • Sfichi L, Ioannidis N, Kotzabasis K (2004) Thylakoid-associated polyamines adjust the UV-B sensitivity of the photosynthetic apparatus by means of light-harvesting complex II changes. Photochem Photobiol 80:499–506

    Article  PubMed  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Athar HUR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64

    Article  CAS  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Mattson NS, Rashid A, Ahmad R, Ayyub CM, Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Aust J Crop Sci 5(5):500–510

    CAS  Google Scholar 

  • Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    Article  PubMed  CAS  Google Scholar 

  • Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smith MA, Davies PJ (1985) Separation and quantitation of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol 78:89–91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sood S, Nagar PK (2004) Changes in endogenous polyamines during flower development in two diverse species of rose. Plant Growth Regul 44(2):117–123

    Article  CAS  Google Scholar 

  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958

    Article  PubMed  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140(1):150–158

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vardhini BV, Rao SSR (2002) Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry 16(7):843–847

    Article  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24(3):842–857

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y (2012) Effect of endophyte- infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89:743–750

    Article  PubMed  CAS  Google Scholar 

  • Yanelis RG, Lissy RA, Lisbel MG, Luis MMM, Miriam NV (2014) Effect of brassinosteroids and its biosynthesis inhibitor in two varieties of tomato´s seedlings under salt stress. Cultivos Tropicales 35:25–34

  • Yu X, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A 105(21):7618–7623

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaharah SS, Singh Z, Symons GM, Reid JB (2012) Role of brassinosteroids, ethylene, abscisic acid, and indole-3-acetic acid in mango fruit ripening. J Plant Growth Regul 31(3):365–372

    Article  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amorós A, Botella MÁ (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zhang Z, Ramirez J, Reboutier D, Brault M, Trouverie J, Pennarun AM, Amiar Z, Biligui B, Galagovsky L, Rona JP (2005) Brassinosteroids regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. Plant Cell Physiol 46:1494–1504

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng QS, Liu L, Liu ZP, Chen JM, Zhao GM (2009) Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and Salicornia europaea to saline stress. J Plant Nutr Soil Sci 172:875–883

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank for the support provided by “Jiangsu independent innovation program of agricultural science and technology [CX(15)1044-06]” and “The new project of agriculture of Jiangsu Province (SXGC[2015]291)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhai Wang or Yongxiang Guan.

Additional information

Responsible Editor: Frans J.M Maathuis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Liu, J., Liu, R. et al. Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant Soil 400, 147–164 (2016). https://doi.org/10.1007/s11104-015-2712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2712-1

Keywords

Navigation