Skip to main content

Advertisement

Log in

Climate change regulated abiotic stress mechanisms in plants: a comprehensive review

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Global climate change is identified as a major threat to survival of natural ecosystems. Climate change is a dynamic, multifaceted system of alterations in environmental conditions that affect abiotic and biotic components of the world. It results in alteration in environmental conditions such as heat waves, intensity of rainfall, CO2 concentration and temperature that lead to rise in new pests, weeds and pathogens. Climate change is one of the major constraints limiting plant growth and development worldwide. It impairs growth, disturbs photosynthesis, and reduces physiological responses in plants. The variations in global climate have gained the attention of researchers worldwide, as these changes negatively affect the agriculture by reducing crop productivity and food security. With this background, this review focuses on the effects of elevated atmospheric CO2 concentration, temperature, drought and salinity on the morphology, physiology and biochemistry of plants. Furthermore, this paper outlines an overview on the reactive oxygen species (ROS) production and their impact on the biochemical and molecular status of plants with increased climatic variations. Also additionally, different tolerance strategies adopted by plants to combat environmental adversities have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

RO· :

Alkoxy radical

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

ATP:

Adenosine triphosphate

BAP:

6-Benzyl aminopurine

BR:

Brassinosteroids

CAT:

Catalase

DNA:

Deoxyribonucleic acid

EBL/EBR:

24-Epibrassinolide

ET:

Ethylene

ET:

Evapotranspiration

FC:

Field capacity

GA:

Gibberellic acid

GB:

Glycine betaine

GHGs:

Green house gases

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GWAS:

Genome-wide association studies

OH· :

Hydroxyl radical

H2O2 :

Hydrogen peroxide

HSP:

Heat shock protein

IPCC:

Intergovernmental panel on climate change

JA:

Jasmonic acid

MAS:

Marker-assisted selection

MeJA:

Methyl jasmonate

MDA:

Malondialdehyde

MYB:

Myeloblastosis

NADPH:

Nicotinamide adenine dinucleotide phosphate

NAR:

Net assimilation rate

NPA:

Naphthylphthalamic acid

PGPR:

Plant growth promoting rhizobacteria

POX:

Peroxidase

PS II:

Photosystem II

QTL:

Quantitative trait loci

ROS:

Reactive oxygen species

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase oxygenase

SA:

Salicylic acid

1O2 :

Singlet oxygen

SOD:

Superoxide dismutase

O2 · :

Superoxide radical

TF:

Transcription factors

WHC:

Water holding capacity

References

  • Abdelaal KA (2015) Effect of salicylic acid and abscisic acid on morpho-physiological and anatomical characters of faba bean plants (Vicia faba L.) under drought stress. J Plant Prod 6(11):1771–1788

    Google Scholar 

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Abideen Z, Koyro HW, Huchzermeyer B, Ansari R, Zulfiqar F, Gul B (2020) Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol 22(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Article  Google Scholar 

  • Ahammed GJ, Xu W, Liu A, Chen S (2018) COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front Plant Sci 9:998

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahanger MA, Qin C, Maodong Q, Dong XX, Ahmad P, Abd-Allah EF, Zhang L (2019) Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiol Biochem 144:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abass Ahanger M, Nasser Alyemeni M, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72

    Article  CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2019) Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38(1):70–82

    Article  CAS  Google Scholar 

  • Ainsworth EA, Lemonnier P, Wedow JM (2020) The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biol 22:5–11

    Article  CAS  PubMed  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015) Biochar mitigates salinity stress in potato. J Agron Crop Sci 201(5):368–378

    Article  CAS  Google Scholar 

  • Akter N, Islam MR, Karim MA, Hossain T (2014) Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J Crop Sci Biotechnol 17(1):41–48

    Article  Google Scholar 

  • Al Hassan M, Fuertes MM, Sánchez FJR, Vicente O, Boscaiu M (2015) Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not Bot Horti Agrobo 43(1):1–11

    Article  CAS  Google Scholar 

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, van der Linden L (2011) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168(13):1550–1561

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

    Article  Google Scholar 

  • Ali AYA, Ibrahim MEH, Zhou G, Nimir NEA, Jiao X, Zhu G, Elsiddig AMI, Zhi W, Chen X, Lu H (2019) Ameliorative effects of jasmonic acid and humic acid on antioxidant enzymes and salt tolerance of forage sorghum under salinity conditions. Agron J 111(6):3099–3108

    Article  Google Scholar 

  • Almeselmani M, Abdullah F, Hareri F, Naaesan M, Ammar MA, ZuherKanbar O (2011) Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. J Agric Sci 3(3):127

    Google Scholar 

  • Amirjani MR (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5(6):350–360

    Article  CAS  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7(1):73–81

    Article  CAS  Google Scholar 

  • Andrews M, Condron LM, Kemp PD, Topping JF, Lindsey K, Hodge S, Raven JA (2020) Will rising atmospheric CO2 concentration inhibit nitrate assimilation in shoots but enhance it in roots of C3 plants? Physiol Plant 170(1):40–45

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I, Wang LC (2017a) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:1–12

    Article  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Zohaib A, Abbas F, Saleem MF, Wang L (2017b) Drought tolerance in three maize cultivars is related to differential osmolyte accumulation, antioxidant defense system and oxidative damage. Front Plant Sci 8:69

    PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Chaudhry S (2017) Dependency of rate of soil respiration on soil parameters and climatic factors in different tree plantations at Kurukshetra. India Trop Ecol 58(3):573–581

    CAS  Google Scholar 

  • Arroussi HE, Benhima R, Elbaouchi A, Sijilmassi B, Mernissi NE, Aafsar A, Meftah-Kadmiri I, Bendaou N, Smouni A (2018) Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J Appl Phycol 30(5):2929–2941

    Article  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27(2):197–205

    Article  CAS  Google Scholar 

  • Asgharipour MR, Rafiei M (2011) Effect of salinity on germination and seedling growth of lentils. Aust J Basic Appl Sci 5(11):2002–2004

    Google Scholar 

  • Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018) Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol Biochem 123:268–280

    Article  CAS  PubMed  Google Scholar 

  • Asrar AWA, Elhindi KM (2011) Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 18(1):93–98

    Article  PubMed  Google Scholar 

  • Asthir B (2015) Mechanisms of heat tolerance in crop plants. Biol Plant 59(4):620–628

    Article  CAS  Google Scholar 

  • Ayala-Astorga GI, Alcaraz-Meléndez L (2010) Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold and Zuccarini) and Paulownia fortunei (Seemann and Hemsley) grown in vitro. Electron J Biotechnol 13(5):13–14

    Article  Google Scholar 

  • Baghalian K, Abdoshah S, Khalighi-Sigaroodi F, Paknejad F (2011) Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Phys Biochem 49(2):201–207

    Article  CAS  Google Scholar 

  • Bahrami H, Razmjoo J, Jafari AO (2012) Effect of drought stress on germination and seedling growth of sesame cultivars (Sesamum indicum L.). Int J Agri Sci 2(5):423–428

    Google Scholar 

  • Bajwa AA, Wang H, Chauhan BS, Adkins SW (2019) Effect of elevated carbon dioxide concentration on growth, productivity and glyphosate response of parthenium weed (Parthenium hysterophorus L.). Pest Manage Sci 75(11):2934–2941

    Article  CAS  Google Scholar 

  • Balasooriya HN, Dassanayake KB, Seneweera S, Ajlouni S (2018) Interaction of elevated carbon dioxide and temperature on strawberry (Fragaria× ananassa) growth and fruit yield. Int J Biol Biomol Agric Food Biotechnol Eng World Acad Sci Eng Tech Int Sci Index 12(9):279–287

    Google Scholar 

  • Baloch MS, Shah ITH, Nadim MA, Khan MI, Khakwani AA (2010) Effect of seeding density and planting time on growth and yield attributes of wheat. J Animal Plant Sci 20(4):239–242

    Google Scholar 

  • Barlow KM, Christy BP, O’leary GJ, Riffkin PA, Nuttall JG  (2015) Simulating the impact of extreme heat and frost events on wheat crop production: a review. Field Crop Res 171:109–119

    Article  Google Scholar 

  • Belmehdi O, El Harsal A, Benmoussi M, Laghmouchi Y, Senhaji NS, Abrini J (2018) Effect of light, temperature, salt stress and pH on seed germination of medicinal plant Origanum elongatum (Bonnet) Emb. and Maire. Biocatal Agric Biotechnol 16:126–131

    Article  Google Scholar 

  • Bhuiyan TF, Ahamed KU, Nahar K, Al Mahmud J, Bhuyan MB, Anee TI, Fujita M, Hasanuzzaman M (2019) Mitigation of PEG-induced drought stress in rapeseed (Brassica rapa L.) by exogenous application of osmolytes. Biocatal Agric Biotechnol 20:101197

    Article  Google Scholar 

  • Bistgani ZE, Hashemi M, DaCosta M, Craker L, Maggi F, Morshedloo MR (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crops Prod 135:311–320

    Article  CAS  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum A (2018) Plant breeding for stress environments. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni AA, Bouzayen M, Zouine M (2018) Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One 13(2):e0193517

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchner O, Stoll M, Karadar M, Kranner I, Neuner G (2015) Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants. Plant Cell Environ 38(4):812–826

    Article  CAS  PubMed  Google Scholar 

  • Campobenedetto C, Mannino G, Beekwilder J, Contartese V, Karlova R, Bertea CM (2021) The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci Rep 11(1):1–15

    Article  Google Scholar 

  • Campos CN, Ávila RG, de Souza KRD, Azevedo LM, Alves JD (2019) Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agric Water Manag 211:37–47

    Article  Google Scholar 

  • Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernández JA, Díaz-Vivancos P (2017) Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115:484–496

    Article  CAS  PubMed  Google Scholar 

  • Carmody M, Waszczak C, Idänheimo N, Saarinen T, Kangasjärvi J (2016) ROS signalling in a destabilised world: a molecular understanding of climate change. J Plant Physiol 203:69–83

    Article  CAS  PubMed  Google Scholar 

  • Cassia R, Nocioni M, Correa-Aragunde N, Lamattina L (2018) Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front Plant Sci 9:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha S, Chae HM, Lee SH, Shim JK (2017) Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla. PloS One 12(2):e0171197

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalanika De Silva HC, Asaeda T (2017) Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J Plant Int 12(1):228–236

    Google Scholar 

  • Chang Z, Liu Y, Dong H, Teng K, Han L, Zhang X (2016) Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass. PloS One 11(4):e0154005

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Chen YE, Mao JJ, Sun LQ, Huang B, Ding CB, Gu Y, Liao JQ, Hu C, Zhang ZW, Yuan S, Yuan M (2018) Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol Plant 164(3):349–363

    Article  CAS  PubMed  Google Scholar 

  • Cheng YW, Kong XW, Wang N, Wang TT, Chen J, Shi ZQ (2020) Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root. Ecotoxicol Environ Safety 188:109894

    Article  CAS  PubMed  Google Scholar 

  • Choi TS, Kang EJ, Kim JH, Kim KY (2010) Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae 25(1):17–26

    Article  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behavior 8(4):e23681

    Article  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C (2014) Carbon and other biogeochemical cycles, In Climate change 2013: the physical science basis, contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, University Press, Cambridge, pp 465–570

  • Cingoz GS, Gurel E (2016) Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina. Plant Physiol Biochem 105:145–149

    Article  CAS  PubMed  Google Scholar 

  • Çoban Ö, Baydar NG (2016) Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind Crops Prod 86:251–258

    Article  Google Scholar 

  • Cohen I, Rapaport T, Berger RT, Rachmilevitch S (2018) The effects of elevated CO2 and nitrogen nutrition on root dynamics. Plant Sci 272:294–300

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang Y, Dong X, Qian T, Yin L, Dong S, Chu J, He M (2017) Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop J 5(6):541–552

    Article  Google Scholar 

  • Dar MI, Naikoo MI, Khan FA, Rehman F, Green ID, Naushin F, Ansari AA (2017) An introduction to reactive oxygen species metabolism under changing climate in plants. In: Khan MIR, Khan NA (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 25–52

    Google Scholar 

  • Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11(5):e0156362

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira VP, Lima MDR, da Silva BRS, Batista BL, da Silva Lobato AK (2019) Brassinosteroids confer tolerance to salt stress in Eucalyptus urophylla plants enhancing homeostasis, antioxidant metabolism and leaf anatomy. J Plant Growth Regul 38(2):557–573

    Article  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    Article  CAS  PubMed  Google Scholar 

  • Deligios PA, Chergia AP, Sanna G, Solinas S, Todde G, Narvarte L, Ledda L (2019) Climate change adaptation and water saving by innovative irrigation management applied on open field globe artichoke. Sci Total Environ 649:461–472

    Article  CAS  PubMed  Google Scholar 

  • Desoky ESM, Merwad ARM, Rady MM (2018) Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance. Commun Soil Sci Plant Anal 49(8):967–983

    Article  CAS  Google Scholar 

  • Dianat M, Saharkhiz MJ, Tavassolian I (2016) Salicylic acid mitigates drought stress in Lippia citriodora L.: effects on biochemical traits and essential oil yield. Biocatal Agric Biotechnol 8:286–293

    Article  Google Scholar 

  • Din J, Khan SU, Ali I, Gurmani AR (2011) Physiological and agronomic response of canola varieties to drought stress. J Animal Plant Sci 21(1):78–82

    Google Scholar 

  • Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 101:88–95

    Article  CAS  Google Scholar 

  • Ding X, Jiang Y, He L, Zhou Q, Yu J, Hui D, Huang D (2016) Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci Rep 6:35424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X (2017) micro RNA s involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J 91(6):977–994

    Article  CAS  PubMed  Google Scholar 

  • Ditmarová Ľ, Kurjak D, Palmroth S, Kmeť J, Střelcová K (2010) Physiological responses of Norway spruce (Picea abies) seedlings to drought stress. Tree Physiol 30(2):205–213

    Article  PubMed  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F (2011) Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not Sci Biol 3(1):41–45

    Article  Google Scholar 

  • Dong H, Bai L, Chang J, Song CP (2018a) Chloroplast protein PLGG1 is involved in abscisic acid-regulated lateral root development and stomatal movement in Arabidopsis. Biochem Biophys Res Commun 495(1):280–285

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Gruda N, Lam SK, Li X, Duan Z (2018b) Effects of elevated CO2 on nutritional quality of vegetables: a review. Front Plant Sci 9:924

    Article  PubMed  PubMed Central  Google Scholar 

  • Duku C, Zwart SJ, Hein L (2018) Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS One 13(3):e0192642

    Article  PubMed  PubMed Central  Google Scholar 

  • Dürr C, Brunel-Muguet S, Girousse C, Larmure A, Larré C, Rolland-Sabaté A, Wagner MH (2018) Changes in seed composition and germination of wheat (Triticum aestivum) and pea (Pisum sativum) when exposed to high temperatures during grain filling and maturation. Crop Pasture Sci 69(4):374–386

    Article  Google Scholar 

  • Dusenge ME, Duarte AG, Way DA (2019) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221(1):32–49

    Article  CAS  PubMed  Google Scholar 

  • Dutta P, Chakraborti S, Chaudhuri KM, Mondal S (2020) Physiological responses and resilience of plants to climate change. In: Rakshit A, Singh HB, Singh AK, Singh US, Fraceto L (eds) New frontiers in stress management for durable agriculture. Springer, Singapore, pp 3–20

    Chapter  Google Scholar 

  • El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AM, Ali HM, Elshikh MS (2017) Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front Physiol 8:716

    Article  PubMed  PubMed Central  Google Scholar 

  • Elkelish AA, Alnusaire TS, Soliman MH, Gowayed S, Senousy HH, Fahad S (2019) Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings. J Appl Bot Food Q 92:258–266

    CAS  Google Scholar 

  • Elkelish A, Qari SH, Mazrou YS, Abdelaal KA, Hafez YM, Abu-Elsaoud AM, Batiha GES, El-Esawi MA, El Nahhas N (2020) Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants 9(4):431

    Article  CAS  PubMed Central  Google Scholar 

  • Ellouzi H, Ben Hamed K, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142(2):128–143

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Nasim W, Arif M, Wang F, Huang J (2016) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202(2):139–150

    Article  CAS  Google Scholar 

  • Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, Fang S, Chu J, Li S, Xin H (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67(9):2829–2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 1–33

    Google Scholar 

  • Farooq M, Nadeem F, Gogoi N, Ullah A, Alghamdi SS, Nayyar H, Siddique KH (2017) Heat stress in grain legumes during reproductive and grain-filling phases. Crop Pasture Sci 68(11):985–1005

    Article  Google Scholar 

  • Feng XH, Zhang HX, Ali M, Gai WX, Cheng GX, Yu QH, Yang SB, Li XX, Gong ZH (2019a) A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiol Biochem 142:151–162

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Liu J, Zhai L, Gan Z, Zhang G, Yang S, Wang Y, Wu T, Zhang X, Xu X, Han Z (2019b) Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant Cell Environ 42(2):424–436

    Article  CAS  PubMed  Google Scholar 

  • Filippou P, Antoniou C, Fotopoulos V (2011) Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants. Plant Signal Behav 6(2):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorillo A, Mattei M, Aducci P, Visconti S, Camoni L (2020) The salt tolerance related protein (STRP) mediates cold stress responses and abscisic acid signalling in Arabidopsis thaliana. Front Plant Sci 11:1251

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:85–98

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francesca S, Arena C, Hay Mele B, Schettini C, Ambrosino P, Barone A, Rigano MM (2020) The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 10(3):363

    Article  CAS  Google Scholar 

  • Fu Y, Shao L, Liu H, Li H, Zhao Z, Ye P, Chen P, Liu H (2015) Unexpected decrease in yield and antioxidants in vegetable at very high CO2 levels. Environ Chem Lett 13(4):473–479

    Article  CAS  Google Scholar 

  • Fugate KK, Lafta AM, Eide JD, Li G, Lulai EC, Olson LL, Deckard EL, Khan MF, Finger FL (2018) Methyl jasmonate alleviates drought stress in young sugar beet (Beta vulgaris L.) plants. J Agro Crop Sci 204(6):566–576

    Article  CAS  Google Scholar 

  • Gai Z, Wang Y, Ding Y, Qian W, Qiu C, Xie H, Sun L, Jiang Z, Ma Q, Wang L, Ding Z (2020) Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Gaion LA, Monteiro CC, Cruz FJR, Rossatto DR, López-Díaz I, Carrera E, Lima JE, Peres LEP, Carvalho RF (2018) Constitutive gibberellin response in grafted tomato modulates root-to-shoot signaling under drought stress. J Plant Physiol 221:11–21

    Article  CAS  PubMed  Google Scholar 

  • Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S (2018) New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ 41(6):1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari H, Tadayon MR, Nadeem M, Cheema M, Razmjoo J (2019) Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol Plant 41(2):23

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Giri A, Armstrong B, Rajashekar CB (2016) Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. Am J Plant Sci 7(01):246

    Article  CAS  Google Scholar 

  • Golan Y, Shirron N, Avni A, Shmoish M, Gepstein S (2016) Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions. Front Environ Sci 4:63

    Article  Google Scholar 

  • Goñi O, Quille P, O’Connell S (2018) Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem 126:63–73

    Article  PubMed  Google Scholar 

  • González-Villagra J, Cohen JD, Reyes-Díaz MM (2019) Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of Aristotelia chilensis plants (Mol) subjected to drought stress. Physiol Plantarum 165(4):855–866

    Article  Google Scholar 

  • Goufo P, Pereira J, Moutinho-Pereira J, Correia CM, Figueiredo N, Carranca C, Rosa EA, Trindade H (2014) Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ Exp Bot 99:28–37

    Article  CAS  Google Scholar 

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419(1):64–77

    Article  CAS  PubMed  Google Scholar 

  • Gujjar RS, Banyen P, Chuekong W, Worakan P, Roytrakul S, Supaibulwatana K (2020) A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and RuBisCo activity. Plants 9(9):1106

    Article  CAS  PubMed Central  Google Scholar 

  • Haddadi BS, Hassanpour H, Niknam V (2016) Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiol Plant 38(5):119

    Article  Google Scholar 

  • Hamayun M, Khan SA, Shinwari ZK, Khan AL, Ahmad N, Lee IJ (2010) Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak J Bot 42(2):977–986

    CAS  Google Scholar 

  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M (2017) Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci 8:785

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Khan MIR, Fujita M (2018) Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S Afr J Bot 115:50–57

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    Article  CAS  PubMed Central  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  • Hay WT, Bihmidine S, Mutlu N, Le Hoang K, Awada T, Weeks DP, Clemente TE, Long SP (2017) Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB. J Plant Physiol 212:58–68

    Article  CAS  PubMed  Google Scholar 

  • He B, Guo T, Huang H, Xi W, Chen X (2017) Physiological responses of Scaevola aemula seedlings under high temperature stress. S Afr J Bot 112:203–209

    Article  Google Scholar 

  • Henderson B, Cacho O, Thornton P, van Wijk M, Herrero M (2018) The economic potential of residue management and fertilizer use to address climate change impacts on mixed smallholder farmers in Burkina Faso. Agric Syst 167:195–205

    Article  Google Scholar 

  • Hlaváčková I, Vítámvás P, Šantrůček J, Kosová K, Zelenková S, Prášil IT, Ovesná J, Hynek R, Kodíček M (2013) Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. Int J Mol Sci 14(4):8000–8024

    Article  PubMed  PubMed Central  Google Scholar 

  • Hmidi D, Abdelly C, Ashraf M, Messedi D (2018) Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiol Mol Biol Plants 24(6):1017–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini MS, Samsampour D, Ebrahimi M, Abadía J, Khanahmadi M (2018) Effect of drought stress on growth parameters, osmolyte contents, antioxidant enzymes and glycyrrhizin synthesis in licorice (Glycyrrhiza glabra L.) grown in the field. Phytochemistry 156:124–134

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169(2):146–156

    Article  CAS  PubMed  Google Scholar 

  • Huang LJ, Cheng GX, Khan A, Wei AM, Yu QH, Yang SB, Luo DX, Gong ZH (2019) CaHSP16. 4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. Protoplasma 256(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Khalid MF, Saqib M, Ahmad S, Zafar W, Rao MJ, Morillon R, Anjum MA (2018) Drought tolerance in citrus rootstocks is associated with better antioxidant defense mechanism. Acta Physiol Plant 40(8):135

    Article  Google Scholar 

  • Hussin S, Geissler N, El-Far MM, Koyro HW (2017) Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni. Plant Physiol Biochem 118:178–186

    Article  CAS  PubMed  Google Scholar 

  • Ilyas N, Gull R, Mazhar R, Saeed M, Kanwal S, Shabir S, Bibi F (2017) Influence of salicylic acid and jasmonic acid on wheat under drought stress. Commun Soil Sci Plant Anal 48(22):2715–2723

    CAS  Google Scholar 

  • Impa SM, Nadaradjan S, Jagadish SVK (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, NY, pp 131–147

    Chapter  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, In: Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds), IPCC, Geneva, Switzerland, pp 151

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Jagadish SV, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PV, Craufurd PQ (2016) Implications of high temperature and elevated CO2 on flowering time in plants. Front Plant Sci 7:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Jajoo A, Allakhverdiev SI (2017) High-temperature stress in plants: consequences and strategies for protecting photosynthetic machinery. Plant Stress Physiol 2017:138–154

    Article  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Jan AU, Hadi F, Nawaz MA, Rahman K (2017) Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol Biochem 116:139–149

    Article  CAS  PubMed  Google Scholar 

  • Jangid KK, Dwivedi P (2017) Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum Mill.) under drought stress. Acta Physiol Plant 39(3):73

    Article  Google Scholar 

  • Jeon J, Cho C, Lee MR, Van Binh N, Kim J (2016) CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development in response to cold stress in Arabidopsis. Plant Cell 28(8):1828–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162

    Chapter  Google Scholar 

  • Jiang JL, Tian Y, Li L, Yu M, Hou RP, Ren XM (2019) H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front Plant Sci 10:678

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Zhang C, Yang H, Yang Y, Huang C, Tian Y, Lu X (2011) Proteomic analysis of cold stress responses in tobacco seedlings. Afr J Biotech 10(82):18991–19004

    CAS  Google Scholar 

  • Jones AM (2016) A new look at stress: abscisic acid patterns and dynamics at high- resolution. New Phytol 210(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Zhou D, Heuvelink E, Harbinson J, Morales A, Marcelis LF (2017) Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state. J Exp Bot 68(20):5629–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kałużewicz A, Krzesiński W, Spiżewski T, Zaworska A (2017) Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Not Bot Horti Agrobo 45(1):197–202

    Article  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interactions 9(1):673–682

    Article  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32(1):122–130

    Article  CAS  Google Scholar 

  • Katul G, Manzoni S, Palmroth S, Oren R (2010) A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann Bot 105(3):431–442

    Article  PubMed  Google Scholar 

  • Kaushal N, Bhandari K, Siddique KH, Nayyar H (2016) Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food Agric 2(1):1134380

    Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5(15):159–163

    Google Scholar 

  • Khan Z, Shahwar D (2020) Role of heat shock proteins (HSPs) and heat stress tolerance in crop plants. In: Roychowdhury R, Choudhury S, Hasanuzzaman M, Srivastava S (eds) Sustainable agriculture in the era of climate change. Springer, Cham, pp 211–234

    Chapter  Google Scholar 

  • Khan MB, Hussain M, Raza A, Farooq S, Jabran K (2015a) Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turk J Agric for 39(2):193–203

    Article  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015b) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Akther T, Ali DM, Hemalatha S (2019) An investigation on the role of salicylic acid alleviate the saline stress in rice crop (Oryza sativa (L)). Biocatal Agric Biotechnol 18:101027

    Article  Google Scholar 

  • Khator K, Shekhawat GS (2019) Nitric oxide improved salt stress tolerance by osmolyte accumulation and activation of antioxidant defense system in seedling of Brassica juncea (L) Czern. Vegetos 32(4):583–592

    Article  Google Scholar 

  • Khodarahmpour Z (2011) Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. Afr J Biotechnol 10(79):18222–18227

    CAS  Google Scholar 

  • Khorasaninejad S, Mousavi A, Soltanloo H, Hemmati K, Khalighi A (2011) The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). J Med Plants Res 5(22):5360–5365

    CAS  Google Scholar 

  • Kosová K, Vítámvás P, Planchon S, Renaut J, Vanková R, Prášil IT (2013) Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J Proteome Res 12(11):4830–4845

    Article  PubMed  Google Scholar 

  • Kumar RR, Sharma SK, Goswami S, Verma P, Singh K, Dixit N, Pathak H, Viswanathan C, Rai RD (2015) Salicylic acid alleviates the heat stress-induced oxidative damage of starch biosynthesis pathway by modulating the expression of heat-stable genes and proteins in wheat (Triticum aestivum). Acta Physiol Plant 37(8):143

    Article  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23(6):513–522

    Article  CAS  PubMed  Google Scholar 

  • Laghmouchi Y, Belmehdi O, Bouyahya A, Senhaji NS, Abrini J (2017) Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum. Biocatal Agric Biotechnol 10:156–160

    Article  CAS  Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8(4):94

    Article  CAS  PubMed Central  Google Scholar 

  • Lee BR, Zhang Q, Park SH, Islam MT, Kim TH (2019) Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hortic Environ Biotechnol 60(1):31–40

    Article  Google Scholar 

  • Li W, Wei Z, Qiao Z, Wu Z, Cheng L, Wang Y (2013) Proteomics analysis of alfalfa response to heat stress. PLoS One 8(12):e82725

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Ng CKY, Fan LM (2015) MYB transcription factors, active players in abiotic stress signaling. Environ Exp Bot 114:80–91

    Article  CAS  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J (2018) Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J 16(1):86–99

    Article  CAS  PubMed  Google Scholar 

  • Li P, Li B, Seneweera S, Zong Y, Li FY, Han Y, Hao X (2019a) Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species. Plant Sci 285:239–247

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cao XL, Zhu Y, Yang XM, Zhang KN, Xiao ZY, Wang H, Zhao JH, Zhang LL, Li GB, Zheng YP (2019b) Osa-miR398b boosts H2O2 production and rice blast disease-resistance via multiple superoxide dismutases. New Phytol 222(3):1507–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima JV, Lobato AKS (2017) Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol Mol Biol Plants 23(1):59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259(4):698–709

    Article  Google Scholar 

  • Liu H, Wang X, Wang D, Zou Z, Liang Z (2011a) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33(1):84–88

    Article  CAS  Google Scholar 

  • Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z (2011b) Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics 11(3):431–443

    Article  CAS  PubMed  Google Scholar 

  • Llanes A, Andrade A, Alemano S, Luna V (2016) Alterations of endogenous hormonal levels in plants under drought and salinity. Am J Plant Sci 7(09):1357

    Article  CAS  Google Scholar 

  • Lou D, Wang H, Liang G, Yu D (2017) OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci 8:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lum MS, Hanafi MM, Rafii YM, Akmar ASN (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Animal Plant Sci 24(5):1487–1493

    Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Mafakheri A, Siosemardeh AF, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580

    CAS  Google Scholar 

  • Marcinkowski P, Piniewski M (2018) Effect of climate change on sowing and harvest dates of spring barley and maize in Poland. Int Agrophys 32(2):265–271

    Article  Google Scholar 

  • Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae 3(4):52

    Article  Google Scholar 

  • Marsic NK, Vodnik D, Mikulic-Petkovsek M, Veberic R, Sircelj H (2018) Photosynthetic traits of plants and the biochemical profile of tomato fruits are influenced by grafting, salinity stress, and growing season. J Agric Food Chem 66(22):5439–5450

    Article  CAS  PubMed  Google Scholar 

  • Masand S, Yadav SK (2016) Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 43(2):53–64

    Article  CAS  PubMed  Google Scholar 

  • Masondo NA, Kulkarni MG, Finnie JF, Van Staden J (2018) Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress. Ecotoxicol Environ Saf 147:43–48

    Article  CAS  PubMed  Google Scholar 

  • Mehrabad Pour-Benab S, Fabriki-Ourang S, Mehrabi AA (2019) Expression of dehydrin and antioxidant genes and enzymatic antioxidant defense under drought stress in wild relatives of wheat. Biotechnol Biotechnol Equip 33(1):1063–1073

    Article  Google Scholar 

  • Meng X, Liu S, Dong T, Xu T, Ma D, Pan S, Li Z, Zhu M (2020) Comparative transcriptome and proteome analysis of salt-tolerant and salt-sensitive sweet potato and overexpression of IbNAC7 confers salt tolerance in Arabidopsis. Front Plant Sci 11:1342

    Article  Google Scholar 

  • Merchuk-Ovnat L, Barak V, Fahima T, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Aouani ME, Polidoros AN (2013) Alternative oxidase 1 (Aox1) gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance. J Plant Physiol 170(1):111–114

    Article  CAS  PubMed  Google Scholar 

  • Miliauskienė J, Sakalauskienė S, Lazauskas S, Povilaitis V, Brazaitytė A, Duchovskis P (2016) The competition between winter rape (C3) and maize (C4) plants in response to elevated carbon dioxide and temperature, and drought stress. Zemdirbyste-Agric 103(1):21–28

    Article  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh A, Vandoorne B, Lutts S, Ahmed HB (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics 20(3):180–190

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Cherkauer KA (2010) Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agric For Meteorol 150(7–8):1030–1045

    Article  Google Scholar 

  • Mishra RC, Grover A (2016) Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants. Plant Sci 250:69–78

    Article  CAS  PubMed  Google Scholar 

  • Mishra D, Shekhar S, Singh D, Chakraborty S, Chakraborty N (2018) Heat shock proteins and abiotic stress tolerance in plants. In: Asea AAA, Kaur P (eds) Regulation of heat shock protein responses. Springer, Cham, pp 41–69

    Chapter  Google Scholar 

  • Misra V, Shrivastava AK, Mall AK, Solomon S, Singh AK, Ansari MI (2019) Can sugarcane cope with increasing atmospheric CO2 concentration? Aust J Crop Sci 13(5):780

    Article  CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi MHS, Etemadi N, Arab MM, Aalifar M, Arab M, Pessarakli M (2017) Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiol Biochem 111:129–143

    Article  Google Scholar 

  • Mondal S, Joshi AK, Huerta-Espino J, Singh RP (2015) Early maturity in wheat for adaptation to high temperature stress. In: Ogihara Y, Takumi S, Handa H (eds) Advances in wheat genetics: from genome to field. Springer, Tokyo, pp 239–245

    Chapter  Google Scholar 

  • Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15(12):21803–21824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mylonas I, Stavrakoudis D, Katsantonis D, Korpetis E (2020) Better farming practices to combat climate change. In: Ozturk M, Gul A (eds) Climate change and food security with emphasis on wheat. Academic Press, pp 1–29

    Google Scholar 

  • Nasri N, Kaddour R, Rabhi M, Plassard C, Lachaal M (2011) Effect of salinity on germination, phytase activity and phytate content in lettuce seedling. Acta Physiol Plant 33(3):935–942

    Article  CAS  Google Scholar 

  • Nawaz M, Wang Z (2020) Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: A new insight. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9(34):5475–5480

    CAS  Google Scholar 

  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168(8):807–815

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Umar S (2017) Heat stress tolerance in plants: action of salicylic acid. In: Nazar R, Iqbal N, Khan NA (eds) Salicylic acid: a multifaceted hormone. Springer, Singapore, pp 145–161

    Chapter  Google Scholar 

  • Ndiso JB, Chemining’wa GN, Olubayo FM, Saha HM (2016) Effect of drought stress on canopy temperature, growth and yield performance of cowpea varieties. Int J Of Plant Soil Sci 9:1–12

    Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  PubMed  Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J 2013:1–12

    Article  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164(4):1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nxele X, Klein A, Ndimba BK (2017) Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. S Afr J Bot 108:261–266

    Article  CAS  Google Scholar 

  • Ortiz D, Hu J, Salas Fernandez MG (2017) Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions. J Exp Bot 68(16):4545–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan T, Wang Y, Wang L, Ding J, Cao Y, Qin G, Yan L, Xi L, Zhang J, Zou Z (2020) Increased CO2 and light intensity regulate growth and leaf gas exchange in tomato. Physiol Plant 168(3):694–708

    Article  CAS  PubMed  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Parvin S, Uddin S, Tausz-Posch S, Armstrong R, Fitzgerald G, Tausz M (2019) Grain mineral quality of dryland legumes as affected by elevated CO2 and drought: a FACE study on lentil (Lens culinaris) and faba bean (Vicia faba). Crop Pasture Sci 70(3):244–253

    Article  CAS  Google Scholar 

  • Paudel I, Halpern M, Wagner Y, Raveh E, Yermiyahu U, Hoch G, Klein T (2018) Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environ Exp Bot 148:117–127

    Article  CAS  Google Scholar 

  • Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA (2017) Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem 115:126–140

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-López U, Miranda-Apodaca J, Muñoz-Rueda A, Mena-Petite A (2013) Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J Plant Physiol 170(17):1517–1525

    Article  PubMed  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sust Dev 32(1):181–200

    Article  CAS  Google Scholar 

  • Qados AMA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10(1):7–15

    Google Scholar 

  • Qureshi MK, Munir S, Shahzad AN, Rasul S, Nouman W, Aslam K (2018) Role of reactive oxygen species and contribution of new players in defense mechanism under drought stress in rice. Int J Agric Biol 20:1339–1352

    CAS  Google Scholar 

  • Rahdari P, Hosseini SM, Tavakoli S (2012) The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L) leaves. J Med Plants Res 6(9):1539–1547

    CAS  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interactions 13(1):73–82

    Article  CAS  Google Scholar 

  • Rai A, Kumar RG, Dubey RS (2018) Heat stress and its effects on plant growth and metabolism. In: Rai GK, Kumar RR, Bagati S (eds) Abitic stress tolerance mechanisms in plants. CRC Press, pp 203–235

    Google Scholar 

  • Rajasheker G, Jawahar G, Jalaja N, Kumar SA, Kumari PH, Punita DL, Karumanchi AR, Reddy PS, Rathnagiri P, Sreenivasulu N, Kishor PBK (2019) Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In: Khan MIR, Ferrante A, Reddy PS, Khan NA (eds) Plant signaling molecules. Woodhead Publishing, pp 417–436

    Chapter  Google Scholar 

  • Raza A, Shaukat H, Ali Q, Habib M (2018) Assessment of RAPD markers to analyse the genetic diversity among sunflower (Helianthus annuus L.) genotypes. Turk J Agric-Food Sci Technol 6(1):107–111

    Google Scholar 

  • Raza A, Mehmood SS, Ashraf F, Khan RSA (2019a) Genetic diversity analysis of Brassica species using PCR-based SSR markers. Gesunde Pflanzen 71(1):1–7

    Article  Google Scholar 

  • Raza A, Mehmood SS, Tabassum J, Batool R (2019b) Targeting plant hormones to develop abiotic stress resistance in wheat. In: Hasanuzzaman M, Nahar K, Hossain MA (eds) Wheat production in changing environments. Springer, Singapore, pp 557–577

    Chapter  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019c) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  CAS  PubMed Central  Google Scholar 

  • Rebey IB, Jabri-Karoui I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B (2012) Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Ind Crops Prod 36(1):238–245

    Article  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99:46–57

    CAS  Google Scholar 

  • Reddy PS, Kishor PBK, Seiler C, Kuhlmann M, Eschen-Lippold L, Lee J, Reddy MK, Sreenivasulu N (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PLoS One 9(3):e89125

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy PS, Chakradhar T, Reddy RA, Nitnavare RB, Mahanty S, Reddy MK (2016) Role of heat shock proteins in improving heat stress tolerance in crop plants. In: Asea AAA, Kaur P, Calderwood SK (eds) Heat shock proteins and plants. Springer, Cham, pp 283–307

    Chapter  Google Scholar 

  • Ren CG, Kong CC, Xie ZH (2018) Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol 18(1):1–10

    Article  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37(7):613–620

    Article  Google Scholar 

  • Rezaul IM, Baohua F, Tingting C, Weimeng F, Caixia Z, Longxing T, Guanfu F (2019) Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets. Physiol Plant 165(3):644–663

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotecnol Aplicada 22(1):1–10

    Google Scholar 

  • Rosa BL, Souza JP, Pereira EG (2019) Increased atmospheric CO2 changes the photosynthetic responses of Acrocomia aculeata (Arecaceae) to drought. Acta Botanica Brasilica 33(3):486–497

    Article  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14(3):232–239

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S (2012) Ascorbate-glutathione and plant tolerance to various abiotic stresses. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance IK International Publishing House Pvt. Ltd., pp. 177–258

  • Ruibal C, Castro A, Carballo V, Szabados L, Vidal S (2013) Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16 4. BMC Plant Biol 13(1):174

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadak MS, El-Bassiouny HMS, Dawood MG (2019) Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bull Nat Res Centre 43(1):1–11

    Article  Google Scholar 

  • Saeidi M, Abdoli M (2015) Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. J Agric Sci Technol 17(4):885–898

    Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehi A, Tasdighi H, Gholamhoseini M (2016) Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pacific J Trop Biomed 6(10):886–891

    Article  CAS  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran LSP (eds) Drought stress tolerance in plants, vol 1. Springer, Cham, pp 1–16

    Google Scholar 

  • Sandhya VSKZ, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    Article  CAS  Google Scholar 

  • Sapeta H, Costa JM, Lourenco T, Maroco J, Van der Linde P, Oliveira MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Sehar Z, Masood A, Khan NA (2019) Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ Exp Bot 161:277–289

    Article  CAS  Google Scholar 

  • Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, HanumanthaRao B, Nair RM, Prasad PV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. Plant Stress Physiol 1(1):59–93

    Article  Google Scholar 

  • Shafi A, Pal AK, Sharma V, Kalia S, Kumar S, Ahuja PS, Singh AK (2017) Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Mol Biol Rep 35(5):504–518

    Article  CAS  Google Scholar 

  • Shah SH, Ali S, Hussain Z, Jan SA, Ali GM (2016) Genetic improvement of tomato (Solanum lycopersicum) with AtDREB1A gene for cold stress tolerance using optimized agrobacterium-mediated transformation system. Int J Agric Biol 18(3):471–482

    Article  CAS  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Kang SM, Lee IJ (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77

    Article  CAS  Google Scholar 

  • Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V (2017) Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 163:28–51

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V (2018) Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress. Plant Physiol Biochem 130:529–541

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    Article  CAS  PubMed Central  Google Scholar 

  • Shekari F, Abbasi A, Mustafavi SH (2017) Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J Saudi Soc Agric Sci 16(4):367–374

    Google Scholar 

  • Sheyhakinia S, Bamary Z, Einali A, Valizadeh J (2020) The induction of salt stress tolerance by jasmonic acid treatment in roselle (Hibiscus sabdariffa L.) seedlings through enhancing antioxidant enzymes activity and metabolic changes. Biologia 75:681–692

    Article  CAS  Google Scholar 

  • Shi JB, Wang N, Zhou H, Xu QH, Yan GT (2019) The role of gibberellin synthase gene GhGA2ox1 in upland cotton (Gossypium hirsutum L) responses to drought and salt stress. Biotechnol Appl Biochem 66(3):298–308

    Article  CAS  PubMed  Google Scholar 

  • Shivakrishna P, Reddy KA, Rao DM (2018) Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J Biol Sci 25(2):285–289

    Article  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Jong Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2016) Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem 105:290–296

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf 135:209–215

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2018) Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere 205:234–243

    Article  CAS  PubMed  Google Scholar 

  • Sidhu GPS, Bali AS, Bhardwaj R (2019) Role of organic acids in mitigating cadmium toxicity in plants. In: Hasanuzzaman M, Prasad MNV, Nahar K (eds) Cadmium tolerance in plants. Academic Press, pp 255–279

    Google Scholar 

  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2020) Insights into the tolerance and phytoremediation potential of Coronopus didymus L. (Sm) grown under zinc stress. Chemosphere 244:125350

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Sastry ED, Singh V (2012) Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. Physiol Mol Biol Plants 18(1):45–50

    Article  PubMed  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14(3):407–426

    Article  CAS  Google Scholar 

  • Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M (2016) Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 6(1):1–14

    Article  Google Scholar 

  • Singh A, Kumar A, Yadav S, Singh IK (2019) Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene 18:100173

    Article  CAS  Google Scholar 

  • Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KH, Nayyar H (2017) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci 8:744

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohrabi Y, Heidari G, Weisany W, Golezani KG, Mohammadi K (2012) Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress. Symbiosis 56(1):5–18

    Article  CAS  Google Scholar 

  • Soleymani A, Shahrajabian MH (2018) Changes in germination and seedling growth of different cultivars of cumin to drought stress. Cercetari Agronomice Moldova 51(1):91–100

    Article  Google Scholar 

  • Song Z, Fan N, Jiao G, Liu M, Wang X, Jia H (2019) Overexpression of OsPT8 increases auxin content and enhances tolerance to high-temperature stress in Nicotiana tabacum. Genes 10(10):809

    Article  CAS  PubMed Central  Google Scholar 

  • Sreeharsha RV, Sekhar KM, Reddy AR (2015) Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2. Plant Sci 231:82–93

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Pathak AD, Gupta PS, Shrivastava AK, Srivastava AK (2012) Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J Environ Biol 33(3):657

    CAS  PubMed  Google Scholar 

  • Stratópoulos LMF, Zhang C, Häberle KH, Pauleit S, Duthweiler S, Pretzsch H, Rötzer T (2019) Effects of drought on the phenology, growth, and morphological development of three urban tree species and cultivars. Sustainability 11(18):5117

    Article  Google Scholar 

  • Sun X, Zhao T, Gan S, Ren X, Fang L, Karungo SK, Wang Y, Chen L, Li S, Xin H (2016) Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ethylene response factor 057. Sci Rep 6(1):1–14

    Google Scholar 

  • Taha RS, Alharby HF, Bamagoos AA, Medani RA, Rady MM (2020) Elevating tolerance of drought stress in Ocimum basilicum using pollen grains extract; a natural biostimulant by regulation of plant performance and antioxidant defense system. S Afr J Bot 128:42–53

    Article  CAS  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437

    Article  PubMed  Google Scholar 

  • Tao MQ, Jahan MS, Hou K, Shu S, Wang Y, Sun J, Guo SR (2020) Bitter Melon (Momordica charantia L.) Rootstock improves the heat tolerance of cucumber by regulating photosynthetic and antioxidant defense pathways. Plants 9(6):692

    Article  CAS  PubMed Central  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L.‘Badami’) seedlings. Turk J Agric For 34(4):349–359

    CAS  Google Scholar 

  • Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S (2017) Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front Physiol 8:578

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tom-Dery D, Eller F, Jensen K, Reisdorff C (2018) Effects of elevated carbon dioxide and climate change on biomass and nutritive value of Kyasuwa (Cenchrus pedicellatus Trin.). J Appl Bot Food Q 91:88–95

    CAS  Google Scholar 

  • Tsegay BA, Gebreslassie B (2014) The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var abyssinicum. Afr J Plant Sci 8(5):225–231

    Article  Google Scholar 

  • Turan MA, Elkarim AHA, Taban S (2010) Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. Afr J Agric Res 5(7):584–588

    Google Scholar 

  • Tutar O, Marín-Guirao L, Ruiz JM, Procaccini G (2017) Antioxidant response to heat stress in seagrasses. A gene expression study. Mar Environ Res 132:94–102

    Article  CAS  PubMed  Google Scholar 

  • Uddling J, Broberg MC, Feng Z, Pleijel H (2018) Crop quality under rising atmospheric CO2. Curr Opin Plant Biol 45:262–267

    Article  CAS  PubMed  Google Scholar 

  • Usman MG, Rafii MY, Martini MY, Yusuff OA, Ismail MR, Miah G (2017) Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnol Genet Eng Rev 33(1):26–39

    Article  CAS  PubMed  Google Scholar 

  • Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya HC (2012) Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Sci 182:59–70

    Article  CAS  PubMed  Google Scholar 

  • van der Kooi CJ, Reich M, Löw M, De Kok LJ, Tausz M (2016) Growth and yield stimulation under elevated CO2 and drought: a meta-analysis on crops. Environ Exp Bot 122:150–157

    Article  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemi Biol Tech Agric 4(1):1–12

    Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wagner D, Przybyla D, op den Camp R, Kim C, Landgraf F, Lee KP, Würsch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen–induced stress responses of Arabidopsis thaliana. Science 306(5699):1183–1185

    Article  Google Scholar 

  • Wang SY, Bunce JA (2004) Elevated carbon dioxide affects fruit flavor in field-grown strawberries (Fragaria× ananassa Duch). J Sci Food Agric 84(12):1464–1468

    Article  CAS  Google Scholar 

  • Wang L, Feng Z, Schjoerring JK (2013) Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): a meta-analytic test of current hypotheses. Agr Ecosyst Environ 178:57–63

    Article  CAS  Google Scholar 

  • Wang A, Yu X, Mao Y, Liu Y, Liu G, Liu Y, Niu X (2015) Overexpression of a small heat shock protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134(4):384–393

    Article  CAS  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7(1):1–11

    Google Scholar 

  • Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7(11):1–9

    Google Scholar 

  • Wang X, Liu H, Yu F, Hu B, Jia Y, Sha H, Zhao H (2019) Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci Rep 9(1):1–11

    Google Scholar 

  • Wang J, Fang R, Yuan L, Yuan G, Zhao M, Zhu S, Hou J, Chen G, Wang C (2020a) Response of photosynthetic capacity and antioxidative system of chloroplast in two wucai (Brassica campestris L.) genotypes against chilling stress. Phys Mol Biol Plants 26(2):219–232

    Article  CAS  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020b) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  PubMed Central  Google Scholar 

  • Wang W, Wang X, Huang M, Cal J, Zhou Q, Dai T, Jiang D (2020c) Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid. J Plant Growth Regul 40:811–823

    Article  Google Scholar 

  • Wang Y, Gong X, Liu W, Kong L, Si X, Guo S, Sun J (2020d) Gibberellin mediates spermidine-induced salt tolerance and the expression of GT-3b in cucumber. Plant Physiol Biochem 152:147–156

    Article  PubMed  Google Scholar 

  • Weng Y, Ge L, Jia S, Mao P, Ma X (2020) Cyclophilin AtROC1S58F confers Arabidopsis cold tolerance by modulating jasmonic acid signaling and antioxidant metabolism. Plant Physiol Biochem 152:81–89

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D (2014) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36(2):251–261

    Article  CAS  Google Scholar 

  • Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Mohapatra PK, Peng S (2017) Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice. Front Plant Sci 8:1–15

    Google Scholar 

  • Xu S, Hu B, He Z, Ma F, Feng J, Shen W, Yang J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12(4):2488–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue M, Guo T, Ren M, Wang Z, Tang K, Zhang W, Wang M (2019) Constitutive expression of chloroplast glycerol-3-phosphate acyltransferase from Ammopiptanthus mongolicus enhances unsaturation of chloroplast lipids and tolerance to chilling, freezing and oxidative stress in transgenic Arabidopsis. Plant Physiol Biochem 143:375–387

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Singh J, Ranjan K, Kumar P, Khanna S, Gupta M, Kumar V, Wani SH, Sirohi A (2020) Heat shock proteins: master players for heat stress tolerance in plants during climate change. In: Wani SH, Kumar V (eds) Heat stress tolerance in plants: physiological, molecular and genetic perspectives. Wiley, pp 189–211

    Chapter  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JJ, Ma YF, Yin Y, Shen SD (2019a) Antioxidative defense response of Ulva prolifera under high or low-temperature stimulus. Algal Res 44:101703

    Article  Google Scholar 

  • Yang P, Wang Y, Li J, Bian Z (2019b) Effects of brassinosteroids on photosynthetic performance and nitrogen metabolism in pepper seedlings under chilling stress. Agronomy 9(12):839

    Article  CAS  Google Scholar 

  • Yao C, Zhang F, Sun X, Shang D, He F, Li X, Zhang J, Jiang X (2019) Effects of S-Abscisic Acid (S-ABA) on seed germination, seedling growth, and Asr1 gene expression under drought stress in maize. J Plant Growth Regul 38(4):1300–1313

    Article  CAS  Google Scholar 

  • Yousif BS, Nguyen NT, Fukuda Y, Hakata H, Okamoto Y, Masaoka Y, Saneoka H (2010) Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (Tetragonia tetragonioides) and water spinach (Ipomoea aquatica). Int J Agric Biol 12(2):211–216

    CAS  Google Scholar 

  • Zadehbagheri M, Mojtaba M, Javanmardi S, Sharafzadeh S (2012) Effect of drought stress on yield and yield components, relative leaf water content, proline and potassium ion accumulation in different white bean (Phaseolus vulgaris L) genotype. Afr J Agric Res 7(42):5661–5670

    Article  Google Scholar 

  • Zargar SM, Gupta N, Nazir M, Mahajan R, Malik FA, Sofi NR, Shikari AB, Salgotra RK (2017) Impact of drought on photosynthesis: molecular perspective. Plant Gene 11:154–159

    Article  CAS  Google Scholar 

  • Zhang Q, Li J, Zhang W, Yan S, Wang R, Zhao J, Li Y, Qi Z, Sun Z, Zhu Z (2012) The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J 72(5):805–816

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yu H, Zhang Y, Wang Y, Li M, Zhang J, Duan L, Zhang M, Li Z (2016) Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress. J Exp Bot 67(5):1339–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pan J, Huang X, Guo D, Lou H, Hou Z, Su M, Liang R, Xie C, You M, Li B (2017b) Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Sci Rep 7(1):1–11

    Google Scholar 

  • Zhang H, Zhang Q, Zhai H, Li Y, Wang X, Liu Q, He S (2017a) Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress. Sci Rep 7(1):1–12

    Google Scholar 

  • Zhang T, Shi Z, Zhang X, Zheng S, Wang J, Mo J (2020) Alleviating effects of exogenous melatonin on salt stress in cucumber. Sci Hortic 262:109070

    Article  CAS  Google Scholar 

  • Zhao Y, Song C, Brummell DA, Qi S, Lin Q, Duan Y (2020) Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism. Food Chem 338:128005

    Article  PubMed  Google Scholar 

  • Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Zeng N (2016) Greening of the Earth and its drivers. Nat Clim Chang 6(8):791–795

    Article  CAS  Google Scholar 

  • Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, Xu X, Liu G, Seneweera S, Ebi KL, Drewnowski A, Fukagawa NK, Ziska LH (2018) Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv 4(5):1–8

    Article  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Gagan Preet Singh Sidhu acknowledges Centre for Applied Biology in Environment Sciences (CABES), RUSA-2.0 for providing funding for research.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Smita Chaudhry and Dr. Gagan Preet Singh Sidhu designed and wrote the review. The authors contributed equally and approved the review article.

Corresponding author

Correspondence to Gagan Preet Singh Sidhu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhry, S., Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41, 1–31 (2022). https://doi.org/10.1007/s00299-021-02759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02759-5

Keywords

Navigation