Skip to main content
Log in

Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Abiotic stresses collectively are responsible for crop losses worldwide. Among various abiotic stresses, drought and salinity are the most destructive. Different strategies have been adopted for the management of these stresses. Being complex traits, conventional breeding approaches have shown less success in improving salinity and drought stress tolerance. Roles of compatible solutes in salinity and drought stress tolerance have been studied extensively. At physiological level, osmotic adjustment is an adaptive mechanism involved in drought and/or salinity tolerance and permits the maintenance of turgor pressure under stress conditions. Increasing evidences from series of in vivo and in vitro studies involving physiological, biochemical, genetic, and molecular approaches strongly suggest that osmolytes such as ammonium compounds (polyamines, glycinebetaine, b-alanine betaine, dimethyl-sulfonio propionate and choline-O-sulfate), sugars and sugar alcohols (fructan, trehalose, mannitol, d-ononitol and sorbitol) and amino acids (proline and ectoine) perform important function in adjustment of plants against salinity and drought stresses. Thus, aim of this review is to expose how to osmoprotectants detoxify adverse effect of reactive oxygen species and alleviate drought and salinity stresses. An understanding of the relationship between these two sets of parameters is needed to develop measures for mitigating the damaging impacts of salinity and drought stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phytobiochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad R, Lim CJ, Kwon SY (2013) Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol Rep 7:49–57

    Google Scholar 

  • Ahn C, Park U, Park PB (2011) Increased salt and drought tolerance by d-ononitol production in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 415:669–674

    CAS  Google Scholar 

  • Ajithkumar IP, Panneerselvam R (2013) Osmolyte accumulation, photosynthetic pigment and growth of Setaria italica (L.) P. Beauv. under drought stress. Asian Pac J Reprod 3:220–224

    Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Google Scholar 

  • Aldesuquy H, Baka Z, Mickky B (2014) Kinetin and spermine mediated induction of salt tolerance in wheat plants: leaf area, photosynthesis and chloroplast ultrastructure of flag leaf at ear emergence. Egypt J Bas Appl Sci 1:77–87

    Google Scholar 

  • Andrés Z, Pérez-Hormaeche J, Leidi EO, Schlücking K, Steinhorst L, McLachlan DH, Schumacher K, Hetherington AM, Kudla J, Cubero B, Pardo JM (2014) Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc Natl Acad Sci USA 111:1806–1814

    Google Scholar 

  • Anjum SA, Xie X, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Attipali RR, Kolluru VC, Munusamy V (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Google Scholar 

  • Baea H, Herman E, Bailey B, Bae HJ, Sicher R (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant 125:114–126

    Google Scholar 

  • Bernard T, Jebbar M, Rassouli Y, Himdi-Kabbab S, Hamelin J, Blanco C (1993) Ectoine accumulation and osmotic regulation in Brevibacterium linens. J Gen Microbiol 139:129–138

    CAS  Google Scholar 

  • Blumwald E (1987) Tonoplast vesicles as a tool in the study of ion-transport at the plant vacuole. Physiol Plant 69:731–734

    CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G (2005) Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnol J 3:459–474

    CAS  Google Scholar 

  • Chen WP, Li PH, Chen THH (2000) Glycine betaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays. L.. Plant Cell Environ 23:609–618

    CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress, mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Google Scholar 

  • Chen W, Hou Z, Wu L, Liang Y, Wei C (2010) Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 326:61–73

    CAS  Google Scholar 

  • Cheng LL, Zhou R, Reidel EJ, Sharkey TD, Dandekar AM (2005) Antisense inhibition of sorbitol synthesis leads to up-regulation of starch synthesis without altering CO2 assimilation in apple leaves. Planta 220:767–776

    CAS  Google Scholar 

  • Conde A, Silva P, Agasee A, Conde C, Gerós H (2011) Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea japonica under salt and osmotic stress. Plant Cell Physiol 52:1766–1775

    CAS  Google Scholar 

  • Deeba F, Pandey AK, Ranjan S, Mishra A, Singh R, Sharma YK, Shirke PA, Pandey V (2012) Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol Biochem 53:6–18

    CAS  Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot 58:3025–3036

    CAS  Google Scholar 

  • Duan JJ, Li J, Guo SR, Kang YY (2008) Exogenous spermidine affects polyamine metabolism in salinity stressed Cucumis sativus roots and enhances short term salinity tolerance. J Plant Physiol 165:1620–1635

    CAS  Google Scholar 

  • Eller MH, Warner AL, Knap HT (2006) Genomic organization and expression analyses of putrescine pathway genes in soybean. Plant Physiol Biochem 44:49–57

    CAS  Google Scholar 

  • Faical B, Imen A, Kaouther F, Moez H, Habib K, Khaled M (2009) Physiological and molecular analyses of seedlings of two Tunisian durum wheat (Triticum turgidum L.) varieties showing contrasting tolerance to salt stress. Acta Physiol Plant 31:145–154

    Google Scholar 

  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V (2014) Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot 97:1–10

    CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1992) Solute transport in plants. Blackie, Glasgow, p 176

    Google Scholar 

  • Galvani A (2007) The challenge of the food sufficiency through salt tolerant crops. Rev Environ Sci Biotechnol 6:3–16

    CAS  Google Scholar 

  • Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845

    CAS  Google Scholar 

  • Garcia PMA, Asega AF, Silva EA, Carvalho MAM (2011) Effect of drought and re-watering on fructan metabolism in Vernonia herbacea (Vell.) Rusby. Plant Physiol Biochem 49:664–670

    CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010a) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010b) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    CAS  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    CAS  Google Scholar 

  • Hayashi M, Inoue S, Takahashi K, Kinoshita T (2011) Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+ATPase in stomatal guard cells. Plant Cell Physiol 52:1238–1248

    CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Ahmad A (2013) Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot Croat 2:323–335

    Google Scholar 

  • Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycine betaine enhance antioxidant defense and methyl glyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. J Plant Physiol 165:813–824

    CAS  Google Scholar 

  • Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methyl-glyoxal detoxification systems in mung bean seedlings under salt stress. Physiol Mol Biol Plants 16:19–29

    CAS  Google Scholar 

  • Hu CA, Delauney AJ, Verma DPS (1992) A bifunctional D1-enzyme pyrroline-5-carboxylate synthetase catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    CAS  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Google Scholar 

  • Jagendorf AT, Takabe T (2001) Inducers of glycine betaine synthesis in barley. Plant Physiol 127:1827–1835

    CAS  Google Scholar 

  • Jagesh K, Tiwari AD, Munshi RK, Raghu N, Pandey A, Bhat AKS (2010) Effect of salt stress on cucumber: Na+ −K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant 32:103–114

    Google Scholar 

  • Jain M (2013) Emerging role of metabolic pathways in abiotic stress tolerance. J Plant Biochem Physiol 1:108

    Google Scholar 

  • Jain M, Tiwary S, Gadre R (2010) Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant Soil Environ 6:263–267

    Google Scholar 

  • Kadioglu A, Saruhan N, Saglam A, Terzi R, Acet T (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    CAS  Google Scholar 

  • Kalaji HM, Govindjee, Bosa K, Koscielniak J, Zuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

  • Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607–1608

    CAS  Google Scholar 

  • Kanayama Y, Watanabe M, Moriguchi R, Deguchi M, Kanahama K, Yamaki S (2006) Effects of low temperature and abscisic acid on the expression of the sorbitol-6-phosphate dehydrogenase gene in apple leaves. J Jpn Soc Hortic Sci 75:20–25

    CAS  Google Scholar 

  • Kawakami A, Yoshida M (2005) Fructan: fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta 223:90–104

    CAS  Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Ashraf M, Dikilitas M (2013) Exogenous application of mannitol and thiourea regulates plant growth and oxidative stress responses in salt-stressed maize (Zea mays L.). J Plant Interact 3:234–241

    Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    CAS  Google Scholar 

  • Khattab EA, Afifi MH (2009) Effect of proline and glycinebetain on canola plants grown under salinity stress condition. Mod J Appl Biol Sci Crop Sci 3:42–51

    Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    CAS  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  • Kubiś J (2008) Exogenous spermidine alters in different ways activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water stressed cucumber leaves. J Plant Physiol 165:397–406

    Google Scholar 

  • Kubiś J, Floryszak-Wieczorek J, Arasimowicz-Jelonek M (2014) Polyamines induce adaptive responses in water deficit stressed cucumber roots. J Plant Res 127:151–158

    Google Scholar 

  • Kumar SG, Reddy AM, Sudhakar C (2003) NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Sci 165:1245–1251

    CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research in 2007. J Plant Res 120:345–350

    CAS  Google Scholar 

  • Kuznetsov V, Shevyakova NI (2010) Polyamines and plant adaptation to saline environments. In: Remawat KG (ed) Desert Plants. Springer, Berlin, pp 261–298

    Google Scholar 

  • Lang F (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26:613S–623S

    CAS  Google Scholar 

  • Le TN, McQueen-Mason SJ (2006) Desiccation-tolerant plants in dry environments. Rev Environ Sci Biotechnol 5:269–279

    CAS  Google Scholar 

  • Li F, Lei HJ, Zhao XJ, Tian RR, Li TH (2011) Characterization of three sorbitol transporter genes in micropropagated apple plants grown under drought stress. Plant Mol Biol Rep 30:123–130

    Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Liu C, Zhao L, Yu G (2011) The dominant glutamic acid metabolic flux to produce gamma-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol 53:608–618

    CAS  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    CAS  Google Scholar 

  • Luo Y, Li F, Wang GP, Yang XH, Wang W (2010) Exogenous supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol Plant 54:495–501

    CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    CAS  Google Scholar 

  • Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blázquez MA (2008) Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119–2128

    CAS  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Google Scholar 

  • Mitoi EN, Holobiuc I, Blindu R (2009) The effect of mannitol on antioxidative enzymes In vitro long term cultures of Dianthus tenuifolius and Dianthus spiculifolius. Rom J Biol Plant Biol 54:25–30

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Munns R, James AJ, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    CAS  Google Scholar 

  • Murakeozy EP, Nagy Z, Duhaze C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401

    CAS  Google Scholar 

  • Nathawat NS, Kuhad MS, Goswami CL, Patel AL, Kumar R (2005) Nitrogen-metabolizing enzymes: effect of nitrogen sources and saline irrigation. J Plant Nut 28:1089–1101

    CAS  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365

    CAS  Google Scholar 

  • Nayyar H, Walia DP (2003) Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant 46:275–279

    CAS  Google Scholar 

  • Nidetzky B, Haltrich D, Schmidt K, Schmidt H, Weber A, Kulbe KD (1996) Simultaneous enzymatic synthesis of mannitol and gluconic acid: II. Development of a continuous process for a coupled NAD(H)-dependent enzyme system. Biocatal Biotrans 14:47–65

    CAS  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Phan Trana LS (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    CAS  Google Scholar 

  • Nounjana N, Nghiab PT, Theerakulpisuta P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Google Scholar 

  • Nyyssola A, Kerovuo J, Kaukinen P, Von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201

    CAS  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Phan Tran LS (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    Google Scholar 

  • Oukarroum A, El Madidi S, Strasser RJ (2012) Exogenous glycine betaine and proline play a protective role in heat-stressed barley leaves (Hordeum vulgare L.): a chlorophyll a fluorescence study. Plant Biosyst 4:1037–1043

    Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant 5:619–627

    Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2014) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res. doi:10.1007/s11356-014-3739-1

    Google Scholar 

  • Patonnier MP, Peltier JP, Marigo G (1999) Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. J Exp Bot 50:1223–1229

    CAS  Google Scholar 

  • Paul M, Pellny T, Goddijn O (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200

    CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang YH (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    CAS  Google Scholar 

  • Peshev D, Vergauwen R, Moglia A, Hideg É, Ende WVD (2013) Towards understanding vacuolar antioxidant mechanisms: a role for fructans? J Exp Bot 64:1025–1038

    CAS  Google Scholar 

  • Pilon-Smits E, Ebskamp M, Paul MJ, Jeuken M, Weisbeek PJ, Smeekens S (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Van Dun K (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37:313–317

    CAS  Google Scholar 

  • Ranganayakulu GS, Veeranagamallaiah G, Sudhakar C (2013) Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. Afr J Plant Sci 12:586–592

    Google Scholar 

  • Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta 1819:186–194

    CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Mol Biol 44:357–384

    CAS  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073

    CAS  Google Scholar 

  • Rubio JS, Rubio F, Martínez V, García-Sánchez F (2010) Amelioration of salt stress by irrigation management in pepper plants grown in coconut coir dust. Agric Water Manag 97:1695–1702

    Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    CAS  Google Scholar 

  • Sawahel W (2004) Improved performance of transgenic glycine betaine-accumulating rice plants under drought stress. Biol Plant 47:39–44

    Google Scholar 

  • Shahbaz M, Mushtaq Z, Andaz F, Masood A (2013) Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)? Sci Hortic 164:507–511

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by d-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  Google Scholar 

  • Siddiqui MH, Khan MN, Mohammad F, Khan MMA (2008) Osmoprotectant accumulation in Brassica juncea L. under salt stress. J Agron Crop Sci 194:214–224

    CAS  Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Google Scholar 

  • Szabolcs I (1989) Salt affected soils. CRC Press, Boca Raton

    Google Scholar 

  • Taiz L, Zeiger E (2003) Plant Physiology, 3rd Edn. Panima Publishing Co., New delhi, pp 591–620

  • Talat A, Nawaz K, Hussian K, Bhatti KH, Siddiqi EH, Khalid A, Anwer S, Sharif MU (2013) Foliar application of proline for salt tolerance of two wheat (Triticum aestivum L.) cultivars. World Appl Sci J 4:547–554

    Google Scholar 

  • Tari I, Kiss G, Deér AK, Csiszár J, Erdei L, Gallé Á, Gémes K, Horváth F, Poór P, Szepesi Á, Simon LM (2010) Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biol Plant 54:677–683

    CAS  Google Scholar 

  • Theerakulpisut P, Gunnula W (2012) Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt tolerance rice seedlings. Asian J Crop Sci 4:165–170

    Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Google Scholar 

  • Vandesteenea L, Ramonb M, Royc KL, Dijckd PV, Rollanda F (2010) A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol Plant 2:406–419

    Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 1:1–14

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense System. J Plant Physiol 162:669–677

    CAS  Google Scholar 

  • Villa-Castorena M, Ulery AL, Catalan-Valencia EA, Remmenga MD (2003) Salinity and nitrogen rate effects on the growth and yield of chile pepper plants. Soil Sci Soc Am J 67:1781–1789

    CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Google Scholar 

  • Wahomea PK, Jeschb HH, Grittnerb I (2001) Mechanisms of salt stress tolerance in two rose root stocks: Rosa chinensis ‘Major’ and R. rubiginosa. Sci Hortic 87:207–216

    Google Scholar 

  • Wang HY, Huang YC, Chen SF, Yeh KW (2003) Molecular cloning, characterization and gene expression of a water deficiency and chilling induced proteinase inhibitor I gene family from sweet potato (Ipomoea batatas Lam.) leaves. Plant Sci 165:191–203

    CAS  Google Scholar 

  • Wani SH, Gosal SS (2011) Introduction of OsglyII gene into Indicam rice through particle bombardment for increased salinity tolerance. Biol Plant 55:536–540

    CAS  Google Scholar 

  • Wani SH, Lone AA, Da Silva T, Gosal SS (2010) Effects of NaCl stress on callus induction and plant regeneration from mature seeds of rice (Oryza sativa L.). Asian Aust J Plant Sci Biotechnol 4:56–71

    Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14:157–165

    CAS  Google Scholar 

  • Wei GP, Yang LF, Zhu YL, Chen G (2009) Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Sci Hortic 120:443–451

    CAS  Google Scholar 

  • Williamson JD, Jennings DB, Guo WW, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress and fungal resistance: polyols: multifunctional plant protection? J Am Soc Hortic Sci 127:467–473

    CAS  Google Scholar 

  • Wu BH, Li SH, Nosarzewski M, Archbold DD (2010) Sorbitol dehydrogenase gene expression and enzyme activity in apple: tissue specificity during bud development and response to rootstock vigor and growth manipulation. J Am Soc Hortic Sci 135:379–387

    Google Scholar 

  • Wu X, Zhu Z, Li X, Zha D (2012) Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol Plant 34:2105–2114

    CAS  Google Scholar 

  • Yadav G, Srivastava PK, Singh VP, Prasad SM (2014) Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res 158:410–421

    CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano TA (2007) Protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    CAS  Google Scholar 

  • Yu GH, Li W, Yuan ZY, Cui HY, Lv CG, Gao ZP, Han B, Gong YZ, Chen GX (2013) The effects of enhanced UV-B radiation on photosynthetic and biochemical activities in super-high-yield hybrid rice Liangyoupeijiu at the reproductive stage. Photosynthetica 51:33–44

    CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    CAS  Google Scholar 

  • Zhang LX, Lai JH, Liang ZS, Ashraf M (2014) Interactive effects of sudden and gradual drought stress and foliar-applied glycine betaine on growth, water relations, osmolyte accumulation and antioxidant defence system in two maize cultivars differing in drought tolerance. J Agron Crop Sci 200:425–433

    CAS  Google Scholar 

  • Zhou R, Cheng LL, Wayne R (2003) Purification and characterization of sorbitol-6- phosphate phosphatase from apple leaves. Plant Sci 165:227–232

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grants Commission, New Delhi, for financial assistance to carry out this work. Dr. Vijay Pratap Singh is thankful to Central Regional Office, Bhopal of University Grants Commission, New Delhi for providing financial assistance (PI-UGC Minor Research Project, File No. MS-27/201022/XII/13-14/CRO). Jitendra Kumar, is thankful to UGC, New Delhi for providing the financial support as SRF under Rajiv Gandhi National Fellowship (Ref. No. RGNF-2012-13-SC-UTT-33185).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Pratap Singh or Sheo Mohan Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kumar, J., Singh, S. et al. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14, 407–426 (2015). https://doi.org/10.1007/s11157-015-9372-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-015-9372-8

Keywords

Navigation