Skip to main content
Log in

Transgenic Potato Plants Overexpressing SOD and APX Exhibit Enhanced Lignification and Starch Biosynthesis with Improved Salt Stress Tolerance

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Potato (Solanum tuberosum L.) is a major crop worldwide and its productivity is severely reduced by high soil salinity. The aim of the current study was to gain insights into the response and regulation of the antioxidant system in the transgenic potato, overexpressing two genes viz. thermostable CuZn-superoxide dismutase (PaSOD) gene from polyextremophile high-altitude plant Potentilla atrosanguinea and ascorbate peroxide (RaAPX) gene from Rheum australe under salinity stress. Transgenic lines and wild type (WT) were assessed under 50, 100, and 150 mM concentrations of NaCl treatment at the anatomical, transcriptional and metabolic levels. Although superoxide dismutase (SOD) and ascorbate peroxide (APX) activities in transgenic lines were significantly higher than WT under salt stress, the secondary cell wall lignification was profoundly affected by the modulated antioxidant enzymes activities and the corresponding H2O2 levels in transgenic. Expression profiles showed that the several genes and transcription factors directly involved in lignin biosynthesis were profoundly induced in transgenic lines as compared to WT. In addition, transgenic plants harbored increased starch accumulation, improved growth attributes, and reduced accumulation of reactive oxygen species than WT plants. Together, these results indicated that the expression of SOD and APX genes in transgenic potato may function as a positive set of physiological, anatomical, and molecular adjustments in the H2O2 regulated lignin biosynthesis signaling pathway, enabling the plants to withstand severe saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler E, Bjorkquist KJ, Haggroth S (1948) Über die Ursache der Farbreaktionen des Holzes. Acta Chem Scand 2:93–94

    Article  CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol 97:1136–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    Article  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates L, Waldren R, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bilski JJ, Nelson DC, Conlon RL (1988) The response of four potato cultivars to chloride salinity, sulfate salinity and calcium in pot experiments. Am Potato J 65:85–90

    Article  CAS  Google Scholar 

  • Blokhina O, Violainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, de Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chapple CCS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicek N, Cakirlar H (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulg J Plant Physiol 28:66–74

    Google Scholar 

  • Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2015) Food and Agricultural Organization of the United Nations; Statistic Division. FAO home page http://faostat3.fao.org/download/Q/QC/E

  • Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, Raizada J, Singh K, Kumar S (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill T, Sreenivasulu Y, Kumar S, Ahuja PS (2010) Over-expression of superoxide dismutase exhibits lignification of vascular structures in Arabidopsis thaliana. J Plant Physiol 167:757–760

    Article  CAS  PubMed  Google Scholar 

  • Gómez JM, Hernández JA, Jiménez A, del Río LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31:S11–S18

    Article  PubMed  Google Scholar 

  • Halder KP, Burrage SW (2003) Drought stress effects on water relations of rice grown in nutrient film technique. Pak J Biol Sci 6:441–446

    Article  Google Scholar 

  • Hernández JA, Talavera JM, Martínez-Gómez P, Dicent F, Sevilla F (2001) Response of antioxidant enzymes to plum pox virus in two apricot cultivars. Plant Physiol 11:313–321

    Article  Google Scholar 

  • Horton D, Sawyer RL (1985) The potato as a world food crop, with special reference to developing areas. In: Li PH (ed) Potato physiology. Academic Press Inc., USA, pp 2–32

    Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Li W, Ch-Xu YQ, Li GY, Lia Y, Fu FL (2009) Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J Appl Genet 50:213–223

    Article  CAS  PubMed  Google Scholar 

  • Jbir N, Chaïbi W, Ammar S, Jemmali A, Ayadi A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. CR Acad Sci 324:863–868

    Article  CAS  Google Scholar 

  • Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the casparian strip in primary roots of maize under salt stress. Planta 219:41–47

    Article  CAS  PubMed  Google Scholar 

  • Karpinska B, Karlsson M, Schinkel H, Streller S, Suss KH, Melzer M, Wingsle G (2001) A novel superoxide dismutase with a high isoelectric point in higher plants: expression, regulation and protein localization. Plant Physiol 126:1668–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Barbara T (2008) Involvement of extracellular Cu/Zn superoxide dismutase in cotton fiber primary and secondary cell wall biosynthesis. Plant Signal Behav 3:1119–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Mizuno K, Fujimura T (2002) Isolation of MADS-box genes from sweet potato (Ipomoea batatas (L.) Lam.) expressed specifically in vegetative tissues. Plant Cell Physiol 43:314–322

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Obst JR (1988) Lignin Determination. In: Wood WA, Kellogg ST (eds) Methods in enzymology, volume 161, biomass, part B, lignin, pectin, and chitin. Academic Press, Inc., New York, pp 87–101

    Chapter  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukud H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis, and biodegradation. Ann Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  Google Scholar 

  • Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweet potato plants that express both CuZn-SOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breed 19:227–239

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings. J Plant Physiol 158:667–671

    Article  CAS  Google Scholar 

  • Liyama K, Wallis PJ (1990) Determination of lignins in herbaceous plants by improved acetylbromide procedure. J Sci Food Agric 51:145–161

    Article  Google Scholar 

  • López-Delgado H, Zavaleta-Mancera HA, Mora-Herrera ME, Vázquez-Rivera M, Flores-Gutiérrez FX, Scott IM (2005) Hydrogen peroxide increases potato tuber and stem starch content, stem diameter and stem lignin content. Am Potato J 82:279–285

    Article  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Article  CAS  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura JCMS, Bonine CAV, Viana JOF, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Naseer S, Lee Y, Lapierre CR, Franke C, Nawrath N, Geldner (2012) Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci U S A 109:10101–10106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Expt Bot 56:2907–2914

    Article  CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1996) Intra- and extra-cellular localization of “cytosolic” CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant Cell Physiol 37:790–799

    Article  CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. The Plant J 4:887–892

    Article  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (1999) Hydrogen peroxide is generated systematically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci U S A 96:6553–6557

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal AK, Acharya K, Vats SK, Kumar S, Ahuja PS (2013) Over-expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. Biol Plant 57(2):359–364

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:36

    Article  Google Scholar 

  • Ros-Barceló A (1998) Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants. Ann Bot 82:97–103

    Article  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Bio 132:365–386

    CAS  Google Scholar 

  • Samis K, Bowley S, Mckerssie B (2002) Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot 53:1343–1350

    CAS  PubMed  Google Scholar 

  • Sánchez-Aguayo I, Rodrigues-Galán JM, Garcia R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta 220:278–285

    Article  PubMed  Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hort 103:93–99

    Article  CAS  Google Scholar 

  • Santos I, Caldeira G (1999) Comparative responses of Helianthus annuus plants and calli exposed to NaCl: I. Growth rate and osmotic regulation in intact plants and calli. J Plant Physiol 155:769–777

    Article  Google Scholar 

  • Santos I, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52:351–360

    Article  CAS  PubMed  Google Scholar 

  • Schreiber L (1996) Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin. Planta 199:596–601

    Article  CAS  Google Scholar 

  • Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9:e110302

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafi A, Gill T, Sreenivasulu Y, Kumar S, Ahuja PS, Singh AK (2015a) Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma 252:41–51

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK (2015b) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  CAS  PubMed  Google Scholar 

  • Sonja V, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507

    Article  Google Scholar 

  • Toenniessen GH (1991) Potentially useful genes for rice genetic engineering. In: Khush GS, Toenniessen GH (eds) Rice biotechnology. International & IRRI, Wallingford, pp 253–280

    Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  CAS  PubMed  Google Scholar 

  • Vierling E, Kimpel JA (1992) Plant responses to environmental stress. Curr Opin Biotechnol 3:164–170

    Article  CAS  PubMed  Google Scholar 

  • Waditee R, Bhuiyan MNH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzukim S, Takanom J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci U S A 102:1318–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Wu JY (2005) Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol 46:923–930

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Hort 560:285–292

    Article  CAS  Google Scholar 

  • Yan J, Wang J, Tissue D, Holaday AS, Allen R, Zhang H (2003) Photosynthesis and seed production under water-deficit conditions in transgenic tobacco plants that overexpress an Arabidopsis ascorbate peroxidase gene. Crop Sci 43:1477–1483

    Article  CAS  Google Scholar 

  • Zhao FY, Wang XY, Zhao YX, Zhang H (2006) Transferring the Suaeda salsa glutathione-S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings. J Plant Physiol Mol Biol 32:231–238

    Google Scholar 

  • Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 121:248–266

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53:247–273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, under CSIR Network Projects: PlaGen (BSC0107) and SIMPLE (BSC0109) and Indo-German Science and Technology Centre (IGSTC), India. AS, AKP, and VS acknowledge fellowships awarded by the CSIR, India. This paper represents CSIR-IHBT communication number 3668.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Singh.

Electronic Supplementary Material

Supplementary Table S1

(DOCX 22 kb)

Supplementary Table S2

(DOCX 60 kb)

Supplementary Table S3

(DOCX 35 kb)

ESM 1

(PPTX 5616 kb)

ESM 2

(PPTX 2781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, A., Pal, A.K., Sharma, V. et al. Transgenic Potato Plants Overexpressing SOD and APX Exhibit Enhanced Lignification and Starch Biosynthesis with Improved Salt Stress Tolerance. Plant Mol Biol Rep 35, 504–518 (2017). https://doi.org/10.1007/s11105-017-1041-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-017-1041-3

Keywords

Navigation