Skip to main content

Advertisement

Log in

Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adwan H, Bayer H, Pervaiz A, Sagini M, Berger MR (2014) Riproximin is a recently discovered type II ribosome inactivating protein with potential for treating cancer. Biotechnol Adv 32(6):1077–1090

    Article  CAS  PubMed  Google Scholar 

  • Ago H, Kataoka J, Tsuge H, Habuka N, Inagaki E, Noma M, Miyano M (1994) X-ray structure of a pokeweed antiviral protein, coded by a new genomic clone, at 0.23 nm resolution. A model structure provides a suitable electrostatic field for substrate binding. Eur J Biochem 225(1):369–374

    Article  CAS  PubMed  Google Scholar 

  • Alegre C, Iglesias R, Ferreras JM, Citores L, Girbés T (1996) Sensitivity of ribosomes from Agrobacterium tumefaciens to the ribosome-inactivating protein crotin 2 depending on the translocational state. Cell Mol Biol (Noisy-le-grand) 42(2):151–158

    CAS  Google Scholar 

  • Au KY, Wang RR, Wong YT, Wong KB, Zheng YT, Shaw PC (2014) Engineering a switch-on peptide to ricin A chain for increasing its specificity towards HIV-infected cells. Biochim Biophys Acta 1840(3):958–963

    Article  CAS  PubMed  Google Scholar 

  • Au TK, Collins RA, Lam TL, Ng TB, Fong WP, Wan DC (2000) The plant ribosome inactivating proteins luffin and saporin are potent inhibitors of HIV-1 integrase. FEBS Lett 471(2-3):169–172

    Article  CAS  PubMed  Google Scholar 

  • Azzi A, Wang T, Zhu DW, Zou YS, Liu WY, Lin SX (2009) Crystal structure of native cinnamomin isoform III and its comparison with other ribosome inactivating proteins. Proteins 74(1):250–255

    Article  CAS  PubMed  Google Scholar 

  • Bagaria A, Surendranath K, Ramagopal UA, Ramakumar S, Karande AA (2006) Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin. J Biol Chem 281(45):34465–34474

    Article  CAS  PubMed  Google Scholar 

  • Barbieri L, Polito L, Bolognesi A, Ciani M, Pelosi E, Farini V, Jha AK, Sharma N, Vivanco JM, Chambery A, Parente A, Stirpe F (2006) Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochim Biophys Acta 1760(5):783–792

    Article  CAS  PubMed  Google Scholar 

  • Becker-Ritt AB, Carlini CR (2012) Fungitoxic and insecticidal plant polypeptides. Biopolymers: Peptide Sci 38:367–384

    Article  CAS  Google Scholar 

  • Berger-Sweeney J, Stearns NA, Murg SL, Floerke-Nashner LR, Lappi DA, Baxter MG (2001) Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci 21(20):8164–8173

    CAS  PubMed  Google Scholar 

  • Bertholdo-Vargas LR, Martins JN, Bordin D, Salvador M, Schafer AE, Barros NM, Barbieri L, Stirpe F, Carlini CR (2009) Type 1 ribosome-inactivating proteins-Entomotoxic, oxidative and genotoxic action on Anticarsia gemmatalis (Hubner) and Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). J Insect Physiol 55:51–58

    Article  CAS  PubMed  Google Scholar 

  • Bonness MS, Ready MP, Irvin JD, Mabry TJ (1994) Pokeweed antiviral protein inactivates pokeweed ribosomes; implications for the antiviral mechanism. Plant J 5:173–183

    Article  CAS  PubMed  Google Scholar 

  • Borthakur G, Rosenblum MG, Talpaz M, Daver N, Ravandi F, Faderl S, Freireich EJ, Kadia T, Garcia-Manero G, Kantarjian H, Cortes JE (2013) Phase 1 study of anti-CD33 immunotoxin HUM-195/rGEL in patients with advanced myeloid malignancies. Haematologica 8(2):217–221

    Article  CAS  Google Scholar 

  • Bourinbaiar AS, Lee-Huang S (1995) Potentiation of anti-HIV activity of anti-inflammatory drugs, dexamethasone and indomethacin, by MAP30, the antiviral agent from bitter melon. Biochem Biophys Res Commun 208(2):779–785

    Article  CAS  PubMed  Google Scholar 

  • Bourinbaiar AS, Lee-Huang S (1996) The activity of plant-derived antiretroviral proteins MAP30 and GAP31 against herpes simplex virus in vitro. Biochem Biophys Res Commun 219(3):923–929

    Article  CAS  PubMed  Google Scholar 

  • Brown DC, Agnello K (2013) Intrathecal substance P-saporin in the dog: efficacy in bone cancer pain. Anesthesiology 119(5):1178–1185

    Article  CAS  PubMed  Google Scholar 

  • Byers VS, Levin AS, Malvino A, Waites L, Robins RA, Baldwin RW (1994) A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents. AIDS Res Hum Retroviruses 10:413–420

    Article  CAS  PubMed  Google Scholar 

  • Byers VS, Levin AS, Waites LA, Starrett BA, Mayer RA, Clegg JA, Price MR, Robins RA, Delaney M, Baldwin RW (1990) A phase I/II study of trichosanthin treatment of HIV disease. AIDS 4(12):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Carlini C, Grossi-de-Sa M (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539

    Article  CAS  PubMed  Google Scholar 

  • Carzaniga R, Sinclair L, Fordham-Skelton AP, Harris N, Croy RRD (1994) Cellular and subcellular distribution of saporins, type-1 ribosome-inactivating proteins, in soapwort (Saponaria officinalis L.). Planta 194:461–470

    Article  CAS  Google Scholar 

  • Chan WY, Ng TB, Yeung HW (1994) Differential abilities of the ribosome inactivating proteins luffaculin, luffins and momorcochin to induce abnormalities in developing mouse embryos in vitro. Gen Pharmacol 25:363–367

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Ng TB (1994) Actions of selected proteins, peptides and amino acid derivatives on mouse embryonic development in vitro. Gen Pharmacol 25:1611–1616

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Ng TB (2001) Comparison of the embryotoxic effects of saporin, agrostin (type 1 ribosome-inactivating proteins) and ricin (a type 2 ribosome-inactivating protein). Pharmacol Toxicol 88:300–303

    Article  CAS  PubMed  Google Scholar 

  • Chan WY, Tam PP, Choi HL, Ng TB, Heung HW (1986) Effects of momorcharins on the mouse embryo at the early organogenesis stage. Contraception 34:537–544

    Article  CAS  PubMed  Google Scholar 

  • Chen GF, Huang WG, Chen FY, Shan JL (2006) Protective effects of trichosanthin in Herpes simplex virus-1 encephalitis in mice. Zhongguo Dang Dai Er Ke Za Zhi 8(3):239–241

    PubMed  Google Scholar 

  • Cheng J, Lu TH, Liu CL, Lin JY (2010) A biophysical elucidation for less toxicity of agglutinin than abrin-a from the seeds of Abrus precatorius in consequence of crystal structure. J Biomed Sci 17:34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Choi AK, Wong EC, Lee KM, Wong KB (2015) Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Toxins (Basel) 7(3):638–647

    Article  CAS  Google Scholar 

  • Chopra R, Saini R (2014) Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Appl Biochem Biotechnol 174(8):2791–2800

    Article  CAS  PubMed  Google Scholar 

  • Choudhary N, Kapoor HC, Lodha ML (2008) Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea x buttiana. J Biol Sci 33:91–101

    CAS  Google Scholar 

  • Citores L, Ferreras JM, Muñoz R, Benítez J, Jiménez P, Girbés T (2002) Targeting cancer cells with transferrin conjugates containing the non-toxic type 2 ribosome-inactivating proteins nigrin b or ebulin l. Cancer Lett 184:29–35

    Article  CAS  PubMed  Google Scholar 

  • Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC (2009) Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 32(6):574–584

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Di R, Tumer NE (2015) Pokeweed antiviral protein: its cytotoxicity mechanism and application in plant disease resistance. Toxins (Basel) 7(3):755–772

    Article  CAS  Google Scholar 

  • Ding Y, Too H, Wang Z, Liu Y, Bartlam M, Dong Y, Wong K, Shaw P, Rao Z (2003) The structural basis of Trp192 and the C-terminal region in trichosanthin for activity and conformational stability. Protein Eng 16(5):351–356

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Tsurugi K, Lambert JM (1988) The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes: the RNA N-glycosidase activity of the proteins. Biochem Biophys Res Commun 150:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Fan JM, Zhang Q, Xu J, Zhu S, Ke T, de Gao F, Xu YB (2009) Inhibition on hepatitis B virus in vitro of recombinant MAP30 from bitter melon. Mol Biol Rep 36(2):381–388

    Article  CAS  PubMed  Google Scholar 

  • Fang EF, Zhang CZ, Ng TB, Wong JH, Pan WL, Ye XJ, Chan YS, Fong WP (2012a) Momordica charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prev Res (Phila) 5(1):109–121

  • Fang EF, Zhang CZ, Zhang L, Wong JH, Chan YS, Pan WL, Dan XL, Yin CM, Cho CH, Ng TB (2012b) Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One 7(9):e41592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreras JM, Citores L, Iglesias R, Jiménez P, Girbés T (2011) Use of ribosomes-inactivating proteins from Sambucus for the construction of immunotoxins and conjugates for cancer therapy. Toxins 3:420–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foa-Tomasi L, Campadelli-Fiume G, Barbieri L, Stirpe F (1982) Effect of ribosome-inactivating proteins on virus infected cells. Inhibition of virus multiplication and of protein synthesis. Arch Virol 71:323–332

    Article  CAS  PubMed  Google Scholar 

  • Fracasso G, Bellisola G, Castelletti D, Tridente G, Colombatti M (2004) Immunotoxins and other conjugates: preparation and general characteristics. Mini Rev Med Chem 4(5):545–562

    Article  CAS  PubMed  Google Scholar 

  • French RR, Bell AJ, Hamblin TJ, Tutt AL, Glennie MJ (1996) Response of B-cell lymphoma to a combination of bispecific antibodies and saporin. Leuk Res 20(7):607–617

    Article  CAS  PubMed  Google Scholar 

  • French RR, Hamblin TJ, Bell AJ, Tutt AL, Glennie MJ (1995) Treatment of B-cell lymphomas with combination of bispecific antibodies and saporin. Lancet 346(8969):223–224

    Article  CAS  PubMed  Google Scholar 

  • Furman RR, Grossbard ML, Johnson JL, Pecora AL, Cassileth PA, Jung SH, Peterson BA, Nadler LM, Freedman A, Bayer RL, Bartlett NL, Hurd DD, Cheson BD, Cancer Leukemia Group B, , Eastern Cooperative Oncology Group (2011) A phase III study of anti-B4-blocked ricin as adjuvant therapy post-autologous bone marrow transplant: CALGB 9254. Leuk Lymphoma 52(4):587–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia PA, Bredesen DE, Vinters HV, Graefin von Einsiedel R, Williams RL, Kahn JO, Byers VS, Levin AS, Waites LA, Messing RO (1993) Neurological reactions in HIV-infected patients treated with trichosanthin. Neuropathol Appl Neurobiol 19:402–405

    Article  CAS  PubMed  Google Scholar 

  • Gawlak SL, Neubauer M, Klei HE, Chang CY, Einspahr HM, Siegall CB (1997) Molecular, biological, and preliminary structural analysis of recombinant bryodin 1, a ribosome inactivating protein from the plant Bryonia dioica. Biochemistry 36(11):3095–3103

    Article  CAS  PubMed  Google Scholar 

  • Gerashchenko D, Kohls MD, Greco M, Waleh NS, Salin-Pascual R, Kilduff TS, Lappi DA, Shiromani PJ (2001) Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J Neurosci 21(18):7273–7283

    CAS  PubMed  Google Scholar 

  • Giansanti F, Sabatini D, Pennacchio MR, Scotti S, Angelucci F, Dhez AC, Antonosante A, Cimini A, Giordano A, Ippoliti R (2015) PDZ domain in the engineering and production of a saporin chimeric toxin as a tool for targeting cancer cells. J Cell Biochem 116(7):1256–1266

    Article  CAS  PubMed  Google Scholar 

  • Gilabert-Oriol R, Weng A, Bv M, Melzig MF, Fuchs H, Thakur M (2014) Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: a lethal cocktail with tumor specific efficacy. Curr Pharm Des 20(42):6584–6643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Göz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS One 3(9):e3153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grayer RJ, Kokubun T (2001) Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263

    Article  CAS  PubMed  Google Scholar 

  • Gu YJ, Xia ZX (2000) Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase. Proteins 39(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Zhou W, Too HM, Li J, Liu Y, Bartlam M, Dong Y, Wong KB, Shaw PC, Rao Z (2003) Substrate binding and catalysis in trichosanthin occur in different sites as revealed by the complex structures of several E85 mutants. Protein Eng 16(6):391–396

    Article  CAS  PubMed  Google Scholar 

  • He D, Yau K, He X, Shi H, Zheng Y, Tam S (2011) Conversion of trichosanthin-induced CD95 (Fas) type I into type II apoptotic signaling during Herpes simplex virus infection. Mol Immunol 48(15-16):2000–2008

    Article  CAS  PubMed  Google Scholar 

  • He DX, Tam SC (2010) Trichosanthin affects HSV-1 replication in Hep-2 cells. Biochem Biophys Res Commun 402(4):670–675

    Article  CAS  PubMed  Google Scholar 

  • He WJ, Liu WY (2003) Cinnamomin: a multifunctional type II ribosome-inactivating protein. Int J Biochem Cell Biol 35:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Ho MC, Sturm MB, Almo SC, Schramm VL (2009) Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc Natl Acad Sci U S A 106(48):20276–20281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes SE, Bachran C, Fuchs H, Weng A, Melzig MF, Flavell SU, Flavell DJ (2015) Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacol Immunotoxicol 37(1):42–55

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Chen M, Chen L, Meehan EJ, Xie J, Huang M (2007) X-ray sequence and crystal structure of luffaculin 1, a novel type 1 ribosome-inactivating protein. BMC Struct Biol 7:29

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hou X, Meehan EJ, Xie J, Huang M, Chen M, Chen L (2008) Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. J Struct Biol 164(1):81–87

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Chan H, Wang YY, Ouyang DY, Zheng YT, Tam SC (2006) Trichosanthin suppresses the elevation of p38 MAPK, and Bcl-2 induced by HSV-1 infection in Vero cells. Life Sci 79(13):1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Huang MX, Hou P, Wei Q, Xu Y, Chen F (2008) A ribosome-inactivating protein (curcin2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Reg 54:115–123

    Article  CAS  Google Scholar 

  • Husain J, Tickle IJ, Wood SP (1994) Crystal structure of momordin, a type I ribosome inactivating protein from the seeds of Momordica charantia. FEBS Lett 342(2):154–158

    Article  CAS  PubMed  Google Scholar 

  • Ishag HZ, Li C, Huang L, Sun MX, Ni B, Guo CX, Mao X (2013) Inhibition of Japanese encephalitis virus infection in vitro and in vivo by pokeweed antiviral protein. Virus Res 171(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo-Quintero LP, Montes C, de Oca A, Romero Rojas A, Rojas-Hernández S, Campos-Rodríguez R, Martínez-Ayala AL (2015) Cytotoxic effect of the immunotoxin constructed of the ribosome-inactivating protein curcin and the monoclonal antibody against Her2 receptor on tumor cells. Biosci Biotechnol Biochem 23:1–11

    Google Scholar 

  • Jasmin L, Janni G, Moallem TM, Lappi DA, Ohara PT (2000) Schwann cells are removed from the spinal cord after effecting recovery from paraplegia. J Neurosci 20(24):9215–9223

    CAS  PubMed  Google Scholar 

  • Jay J (2015) Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Toxins 7(2):274–298

    Article  CAS  Google Scholar 

  • Jiang SY, Bhalla R, Ramamoorthy R, Luan HF, Venkatesh PN, Cai M, Ramachandran S (2012) Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21(4):785–795

    Article  CAS  PubMed  Google Scholar 

  • Kahn JO, Gorelick KJ, Gatti G, Arri CJ, Lifson JD, Gambertoglio JG, Bostrom A, Williams R (1994) Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex. Antimicrob Agents Chemother 38:260–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, Crawford SM, Burgess JM, Petry NA, Butchko GM, Glenn SD, Wahl RL (1993) Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N Engl J Med 329(7):459–465

    Article  CAS  PubMed  Google Scholar 

  • Kaur I, Puri M, Ahmed Z, Blanchet FP, Mangeat B, Piguet V (2013) Inhibition of HIV-1 replication by balsamin, a ribosome inactivating protein of Momordica balsamina. PLoS One 8(9):e73780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaur I, Gupta RC, Puri M (2011) Ribosome inactivating proteins from plants inhibiting viruses. Virol Sin 26:357–365

    Article  CAS  PubMed  Google Scholar 

  • Krauspenhaar R, Eschenburg S, Perbandt M, Kornilov V, Konareva N, Mikailova I, Stoeva S, Wacker R, Maier T, Singh T, Mikhailov A, Voelter W, Betzel C (1999) Crystal structure of mistletoe lectin I from Viscum album. Biochem Biophys Res Commun 257(2):418–424

    Article  CAS  PubMed  Google Scholar 

  • Krivdova G, Neller KCM, Parikh BA, Hudak KA (2014) Antiviral and antifungal, properties of RIPs. In: Stirpe F, Lappi DA (eds) Ribosome-inactivating proteins: ricin and related proteins, Chapter 13th edn. Wiley, Ames, pp 198–211

    Chapter  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci U S A 100:16101–16106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar MA, Timm DE, Neet KE, Owen WG, Peumans WJ, Rao AG (1993) Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein-synthesis. J Biol Chem 268:25176–25183

    CAS  PubMed  Google Scholar 

  • Kurinov IV, Myers DE, Irvin JD, Uckun FM (1999a) X-ray crystallographic analysis of the structural basis for the interactions of pokeweed antiviral protein with its active site inhibitor and ribosomal RNA substrate analogs. Protein Sci 8(9):1765–1772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurinov IV, Rajamohan F, Uckun FM (2004) High resolution X-ray structure and potent anti-HIV activity of recombinant dianthin antiviral protein. Arzneimittelforschung 54(10):692–702

    CAS  PubMed  Google Scholar 

  • Kurinov IV, Rajamohan F, Venkatachalam TK, Uckun FM (1999b) X-ray crystallographic analysis of the structural basis for the interaction of pokeweed antiviral protein with guanine residues of ribosomal RNA. Protein Sci 8(11):2399–2405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurinov IV, Uckun FM (2003) High resolution X-ray structure of potent anti-HIV pokeweed antiviral protein-III. Biochem Pharmacol 65(10):1709–1717

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha GS, Pandey N, Sinha M, Singh SB, Kaur P, Sharma S, Singh TP (2012) Crystal structures of a type-1 ribosome inactivating protein from Momordica balsamina in the bound and unbound states. Biochim Biophys Acta 1824(4):679–691

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha GS, Yamini S, Kumar M, Sinha M, Kaur P, Sharma S, Singh TP (2013) First structural evidence of sequestration of mRNA cap structures by type 1 ribosome inactivating protein from Momordica balsamina. Proteins 81(5):896–905

    Article  CAS  PubMed  Google Scholar 

  • Laplante F, Lappi DA, Sullivan RM (2011) Cholinergic depletion in the nucleus accumbens: effects on amphetamine response and sensorimotor gating. Prog Neuropsychopharmacol Biol Psychiatry 35(2):501–509

    Article  CAS  PubMed  Google Scholar 

  • Law SK, Wang RR, Mak AN, Wong KB, Zheng YT, Shaw PC (2010) A switch-on mechanism to activate maize ribosome-inactivating protein for targeting HIV-infected cells. Nucleic Acids Res 38(19):6803–6812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leach ND, Nodal FR, Cordery PM, King AJ, Bajo VM (2013) Cortical cholinergic input is required for normal auditory perception and experience-dependent plasticity in adult ferrets. J Neurosci 33(15):6659–6671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lebeda FJ, Olson MA (1999) Prediction of a conserved, neutralizing epitope in ribosome inactivating proteins. Int J Biol Macromol 24(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Lee BG, Kim MK, Kim BW, Suh SW, Song HK (2012) Structures of the ribosome inactivating protein from barley seeds reveal a unique activation mechanism. Acta Crystallogr D Biol Crystallogr 68(11):1488–1500

    Article  CAS  PubMed  Google Scholar 

  • Lee-Huang S, Huang PL, Kung H, Li B, Huang PL, Huang P, Huang HI, Chen H (1991) TAP 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc Natl Acad Sci U S A 88:6570–6574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee-Huang S, Huang PL, Nara PL, Chen HC, Kung H, Huang P, Huang HI, Huang PI (1990) MAP 30: a new inhibitor. FEBS Lett 272:12–18

    Article  CAS  PubMed  Google Scholar 

  • Lee-Huang S, Kung HF, Huang PL, Bourinbaiar AS, Morell JL, Brown JH, Huang PL, Tsai WP, Chen AY, Huang HI, Chen HC (1994) Human immunodeficiency virus type 1 (HIV-1) inhibition, DNA-binding, RNA-binding, and ribosome inactivation activities in the N-terminal segments of the plant anti-HIV protein GAP31. Proc Natl Acad Sci U S A 91(25):12208–12212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li HG, Huang PL, Zhang D, Sun Y, Chen HC, Zhang J, Huang PL, Kong XP, Lee-Huang S (2010) A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase—structural and modeling insight into its functions. Biochem Biophys Res Commun 391(1):340–345

    Article  CAS  PubMed  Google Scholar 

  • Logemann J, Jach G, Tommerup H, Mundy J, Schell J (1992) Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Nat Biotechnol 10:305–308

    Article  CAS  Google Scholar 

  • Lord JM (1985) Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur J Biochem 146:411–416

    Article  CAS  PubMed  Google Scholar 

  • Lu PX, Jin YC (1989) Ectopic pregnancy treated with trichosanthin. Clinical analysis of 71 patients. Chin Med J (Engl) 102(5):365–367

    CAS  Google Scholar 

  • Lv Q, Yang XZ, Fu LY, Lu YT, Lu YH, Zhao J, Wang FJ (2015) Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity. Protein Expr Purif 111:9–17

    Article  CAS  PubMed  Google Scholar 

  • Ma QJ, Li JH, Li HG, Wu S, Dong YC (2003) Crystal structure of beta-luffin, a ribosome inactivating protein, at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr 59(8):1366–1370

    Article  PubMed  CAS  Google Scholar 

  • Mak AN, Wong YT, An YJ, Cha SS, Sze KH, Au SW, Wong KB, Shaw PC (2007) Structure-function study of maize ribosome-inactivating protein: implications for the internal inactivation region and the sole glutamate in the active site. Nucleic Acids Res 35(18):6259–6267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mansouri S, Choudhary G, Sarzala PM, Ratner L, Hudak KA (2009) Suppression of human T-cell leukemia virus I gene expression by pokeweed antiviral protein. J Biol Chem 284(45):31453–31462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mantyh PW, Rogers SD, Honore P, Allen BJ, Ghilardi JR, Li J, Daughters RS, Lappi DA, Wiley RG, Simone DA (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278(5336):275–279

    Article  CAS  PubMed  Google Scholar 

  • McGrath MS, Huang KM, Caldwell SE, Gaston I, Luk KC, Wu P, Ng VL, Crowe S, Daniels J, Marsh J, Dein-hart T, Cekas PV, Uermari JC, Yeung HW, Lifson JF (1989) GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc Natl Acad Sci U S A 86:2844–2848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Micheau J, Marighetto A (2011) Acetylcholine and memory: a long, complex and chaotic but still living relationship. Behav Brain Res 221(2):424–429

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Liu S, Li J, Meng Y, Zhao X (2012) Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica charantia L. with covalent conjugation of polyethyelene glycol. Int J Nanomedicine 7:3133–3142

    PubMed Central  PubMed  Google Scholar 

  • Meyer A, Rypniewski W, Szymański M, Voelter W, Barciszewski J, Betzel C (2008) Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin. Biochim Biophys Acta 1784(11):1590–1595

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Bilgrami S, Sharma RS, Kaur P, Yadav S, Krauspenhaar R, Betzel C, Voelter W, Babu CR, Singh TP (2005) Crystal structure of Himalayan mistletoe ribosome inactivating protein reveals the presence of a natural inhibitor and a new functionally active sugar-binding site. J Biol Chem 280(21):20712–20721

    Article  CAS  PubMed  Google Scholar 

  • Ng T, Chan W, Yeung H (1992a) Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen Pharmacol 23:579–590

    Article  CAS  PubMed  Google Scholar 

  • Ng TB, Huang B, Fong WP, Yeung HW (1997) Anti-Human Immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors. Life Sci 61:933–949

    Article  CAS  PubMed  Google Scholar 

  • Ng TB, Lam JS, Wong JH, Lam SK, Ngai PH, Wang HX, Chu KT, Chan WY (2010) Differential abilities of the mushroom ribosome-inactivating proteins hypsin and velutin to perturb normal development of cultured mouse embryos. Toxicol In Vitro 24:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Ng TB, Shaw PC, Yeung HW, Ho WK (1993) Immunological relatedness of ribosome inactivating proteins from the Cucurbitaceae family. Biochem Mol Biol Int 31(3):447–453

    CAS  PubMed  Google Scholar 

  • Ng TB, Wong RN, Yeung HW (1992b) Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Curcurbitaceae). Biochem Int 27:197–207

    CAS  PubMed  Google Scholar 

  • Ng TB (2004) Antifungal proteins and peptides leguminous and non-leguminous origins. Peptides 25:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Ng YM, Yang Y, Sze KH, Zhang X, Zheng YT, Shaw PC (2011) Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica). J Struct Biol 174(1):164–172

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Tonevitsky AG, Agapov II, Saward S, Pfüller U, Palmer RA (2003) Crystal structure at 3 A of mistletoe lectin I, a dimeric type-II ribosome-inactivating protein, complexed with galactose. Eur J Biochem 270(13):2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Nuchsuk C, Wetprasit N, Roytrakul S, Ratanapo S (2012) Larvicidal activity of a toxin from the seeds of Jatropha curcas Linn. against Aedes aegypti Linn. and Culex quinquefaciatus Say. Trop Biomed 29:286–296

    Google Scholar 

  • Olsnes S (2004) The history of ricin, abrin and related toxins. Toxicon 44:361–370

    Article  CAS  PubMed  Google Scholar 

  • Pan WL, Wong JH, Fang EF, Chan YS, Ng TB, Cheung RC (2014) Preferential cytotoxicity of the type I ribosome inactivating protein alpha-momorcharin on human nasopharyngeal carcinoma cells under normoxia and hypoxia. Biochem Pharmacol 89(3):329–339

    Article  CAS  PubMed  Google Scholar 

  • Pan WL, Wong JH, Fang EF, Chan YS, Ye XJ, Ng TB (2013) Differential inhibitory potencies and mechanisms of the type I ribosome inactivating protein marmorin on estrogen receptor (ER)-positive and ER-negative breast cancer cells. Biochim Biophys Acta 1833(5):987–9610

    Article  CAS  PubMed  Google Scholar 

  • Parikh BA, Tumer NE (2004) Antiviral activity of ribosome inactivating proteins in medicine. Mini Rev Med Chem 4(5):523–543

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Lawrence CB, Linden JC, Vivanco JM (2002) Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol 130:164–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SW, Vepachedu R, Sharma N, Vivanco JM (2004) Ribosome-inactivating proteins in plant biology. Planta 219:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Pascal JM, Day PJ, Monzingo AF, Ernst SR, Robertus JD, Iglesias R, Pérez Y, Férreras JM, Citores L, Girbés T (2001) 2.8-A crystal structure of a nontoxic type-II ribosome inactivating protein, ebulin l. Proteins 43(3):319–326

    Article  CAS  PubMed  Google Scholar 

  • Pasqualucci L, Flenghi L, Terenzi A, Bolognesi A, Stirpe F, Bigerna B, Falini B (1995) Immunotoxin therapy of hematological malignancies. Haematologica 80(6):546–556

    CAS  PubMed  Google Scholar 

  • Peumans WJ, Hao Q, Van Damme EJM (2001) Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 15:1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Polito L, Bortolotti M, Pedrazzi M, Bolognesi A (2011) Immunotoxins and other conjugates containing saporin-s6 for cancer therapy. Toxins (Basel) 3(6):697–720

    Article  CAS  Google Scholar 

  • Porreca F, Burgess SE, Gardell LR, Vanderah TW, Malan TP Jr, Ossipov MH, Lappi DA, Lai J (2001) Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. J Neurosci 21(14):5281–5288

    CAS  PubMed  Google Scholar 

  • Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar JR (2009) Ribosome inactivating proteins (RIPs) from Momordica charantia for antiviral therapy. Curr Mol Med 9:1080–1094

    Article  CAS  PubMed  Google Scholar 

  • Qian Q, Huang L, Yi R, Wang S, Ding Y (2014) Enhanced resistance to blast fungus in rice (Oryza sativa L.) by expressing the ribosome-inactivating protein α-momorcharin. Plant Sci 217–218:1–7

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Zheng X, Shao C, Gao J, Jiang L, Zhu X, Yan F, Tang L, Xu Y, Chen F (2009) Stress-induced curcin-L promoter in leaves of Jatropha curcas L. and characterization in transgenic tobacco. Planta 230(2):387–395

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Ming-Xing H, Ying X, Xin-Shen Z, Fang C (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas in induced by stress. J Biosci 30:351–357

    Article  PubMed  Google Scholar 

  • Qin X, Shao C, Hou P, Gao J, Lei N, Jiang L, Ye S, Gou C, Luo S, Zheng X, Gu X, Zhu X, Xu Y, Chen F (2010) Different functions and expression profiles of Curcin and Curcin-L in Jatropha curcal L. Z Naturfosch C 65:355–362

    CAS  Google Scholar 

  • Ren J, Wang Y, Dong Y, Stuart DI (1994) The N-glycosidase mechanism of ribosome inactivating proteins implied by crystal structures of alpha-momorcharin. Structure 2(1):7–16

    Article  CAS  PubMed  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1986) Isolation and partial characterization of two antifungal proteins from barley. Biochim Biophys Acta 880:161–170

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ML, Archer M, Martel P, Miranda S, Thomaz M, Enguita FJ, Baptista RP, e ME P, Sousa N, Cravador A, Carrondo MA (2006) Crystal structures of the free and sterol-bound forms of beta-cinnamomin. Biochim Biophys Acta 1764(1):110–121

    Article  CAS  PubMed  Google Scholar 

  • Rudolph MJ, Vance DJ, Cheung J, Franklin MC, Burshteyn F, Cassidy MS, Gary EN, Herrera C, Shoemaker CB, Mantis NJ (2014) Crystal structures of ricin toxin's enzymatic subunit (RTA) in complex with neutralizing and non-neutralizing single-chain antibodies. J Mol Biol 426(17):3057–3068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruggiero A, Chambery A, Di Maro A, Parente A, Berisio R (2008) Atomic resolution (1.1 A) structure of the ribosome-inactivating protein PD-L4 from Phytolacca dioica L. leaves. Proteins 71(1):8–15

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero A, Di Maro A, Severino V, Chambery A, Berisio R (2009) Crystal structure of PD-L1, a ribosome inactivating protein from Phytolacca dioica L. leaves with the property to induce DNA cleavage. Biopolymers 91(12):1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Savino C, Federici L, Ippoliti R, Lendaro E, Tsernoglou D (2000) The crystal structure of saporin SO6 from Saponaria officinalis and its interaction with the ribosome. FEBS Lett 470(3):239–243

    Article  CAS  PubMed  Google Scholar 

  • Scattoni ML, Adriani W, Calamandrei G, Laviola G, Ricceri L (2006) Long-term effects of neonatal basal forebrain cholinergic lesions on radial maze learning and impulsivity in rats. Behav Pharmacol 17(5-6):517–524

    Article  CAS  PubMed  Google Scholar 

  • Scattoni ML, Calamandrei G, Ricceri L (2003) Neonatal cholinergic lesions and development of exploration upon administration of the GABAa receptor agonist muscimol in preweaning rats. Pharmacol Biochem Behav 76(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Schindler J, Gajavelli S, Ravandi F, Shen Y, Parekh S, Braunchweig I, Barta S, Ghetie V, Vitetta E, Verma A (2011) A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol 154(4):471–476

    Article  CAS  PubMed  Google Scholar 

  • Schreiber CA, Wan L, Sun Y, Lu L, Krey LC, Lee-Huang S (1999) The antiviral agents, MAP30 and GAP31, are not toxic to human spermatozoa and may be useful in preventing the sexual transmission of human immunodeficiency virus type 1. Fertil Steril 72(4):686–690

    Article  CAS  PubMed  Google Scholar 

  • Schrot J, Weng A, Melzig MF (2015) Ribosome-inactivating and related proteins. Toxins (Basel) 7(5):1556–1615

    Article  CAS  Google Scholar 

  • Severino V, Chambery A, Di Maro A, Marasco D, Ruggiero A, Berisio R, Giansanti F, Ippoliti R, Parente A (2010) The role of the glycan moiety on the structure-function relationships of PD-L1, type 1 ribosome-inactivating protein from P. dioica leaves. Mol BioSyst 6(3):570–579

    Article  CAS  PubMed  Google Scholar 

  • Sha O, Kwong WH, Pang Cho EY, Wai Yew DT, Ng TB (2008) Different neuronal toxicity of single-chain ribosome-inactivating proteins on the rat retina. Toxicon 51(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Sha O, Niu J, Ng TB, Cho EY, Fu X, Jiang W (2013) Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: a mini review. Cancer Chemother Pharmacol 71(6):1387–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sha O, Yew DT, Cho EY, Ng TB, Yuan L, Kwong WH (2010a) Mechanism of the specific neuronal toxicity of a type I ribosome-inactivating protein, trichosanthin. Neurotox Res 18(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Sha O, Yew DT, Ng TB, Yuan L, Kwong WH (2010b) Different in vitro toxicities of structurally similar type I ribosome-inactivating proteins (RIPs). Toxicol In Vitro 24(4):1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Veluthambi K (2010) Dianthin, a negative selection marker in tobacco, is non-toxic in transgenic rice and confers sheath blight resistance. Biol Plant 54:443–450

    Article  CAS  Google Scholar 

  • Shahidi-Noghabi S, Van Damme EJ, Smagghe G (2006) Bioassays for insecticidal activity of iris ribosome-inactivating proteins expressed in tobacco plants. Commun Agric Appl Biol Sci 71:285–289

    PubMed  Google Scholar 

  • Shahidi-Noghabi S, Van Damme EJM, De Vos WH, Smagghe G (2011) Internalization of Sambucus nigra agglutinis I and II in insect midgut CF-203 cells. Arch Insect Biochem Physiol 76:211–222

    Article  CAS  PubMed  Google Scholar 

  • Shen WZ, Sha O, Yew DT, Kwong WH (2009) Retrograde transport of a traditional Chinese medicine, alpha-trichosanthin, and its selective neural toxicity. Clin Toxicol (Phila) 47(9):876–883

    Article  CAS  Google Scholar 

  • Shepherd RJ, Fulton JP, Wakeman R (1969) Properties of a virus causing pokeweed mosaic. Phytopathology 59:219–222

    Google Scholar 

  • Stevens WA, Spurdon C, Onyon LJ, Stirpe F (1981) Effect of inhibitors of protein synthesis from plants on tobacco mosaic virus infection. Experientia 37:257–259

    Article  CAS  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F (2013) Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon 67:12–16

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F, Barbieri L, Battelli MG, Soris M, Lappi DA (1992) Ribosome-inactivating proteins from plants. Biotechnol 10:405–412

    Article  CAS  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1855–1866

    Article  CAS  Google Scholar 

  • Stirpe F, Olsnes S, Pihl A (1980) Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin A. J Biol Chem 255(14):6947–6953

    CAS  PubMed  Google Scholar 

  • Sun Y, Huang PL, Li JJ, Huang YQ, Zhang L, Huang PL, Lee-Huang S (2001) Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi's sarcoma-associated virus. Biochem Biophys Res Commun 287(4):983–994

    Article  CAS  PubMed  Google Scholar 

  • Tahirov TH, Lu TH, Liaw YC, Chen YL, Lin JY (1995) Crystal structure of abrin-a at 2.14 A. J Mol Biol 250(3):354–367

    Article  CAS  PubMed  Google Scholar 

  • Tam PP, Law LK, Yeung HW (1984) Effect of alpha-momorcharin on preimplantation development in the mouse. J Reprod Fertil 71:33–38

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM, Hartley M (1994) Correlation between the activities of five ribosome inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5:827–835

    Article  CAS  PubMed  Google Scholar 

  • Teltow GJ, Irvin JD, Aron GM (1983) Inhibition of herpes simplex virus DNA synthesis by pokeweed antiviral protein. Antimicrob Agents Chemother 23:390–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tonevitsky AG, Toptygin AY, Pfuller U, Bushueva TL, Ershova GV, Gelbin M, Pfuller K, Agapov II, Franz H (1991) Immunotoxin with mistletoe lectin I A-chain and ricin A-chain directed against CD5 antigen of human T-lymphocytes; comparison of efficiency and specificity. Int J Immunopharmacol 13(7):1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Tong WM, Sha O, Ng TB, Cho EY, Kwong WH (2012) Different in vitro toxicity of ribosome-inactivating proteins (RIPs) on sensory neurons and Schwann cells. Neurosci Lett 524(2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Too PH, Ma MK, Mak AN, Wong YT, Tung CK, Zhu G, Au SW, Wong KB, Shaw PC (2009) The C-terminal fragment of the ribosomal P protein complexed to trichosanthin reveals the interaction between the ribosome-inactivating protein and the ribosome. Nucleic Acids Res 37(2):602–610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Touloupakis E, Gessmann R, Kavelaki K, Christofakis E, Petratos K, Ghanotakis DF (2006) Isolation, characterization, sequencing and crystal structure of charybdin, a type 1 ribosome-inactivating protein from Charybdis maritima agg. FEBS J 273(12):2684–2692

    Article  CAS  PubMed  Google Scholar 

  • Thorpe PE, Brown AN, Ross WC, Cumber AJ, Detre SI, Edwards DC, Davies AJ, Stirpe F (1981) Cytotoxicity acquired by conjugation of an anti-Thy1.1 monoclonal antibody and the ribosome-inactivating protein, gelonin. Eur J Biochem 6(3):447–454

    Article  Google Scholar 

  • Tumor NE, Hwang DJ, Bonness MC (1997) C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc Natl Acad Sci U S A 94:3866–3871

    Article  Google Scholar 

  • Uckun FM, Bellomy K, O'Neill K, Messinger Y, Johnson T, Chen CL (1999) Toxicity, biological activity, and pharmacokinetics of TXU (anti-CD7)-pokeweed antiviral protein in chimpanzees and adult patients infected with human immunodeficiency virus. J Pharmacol Exp Ther 291(3):1301–1307

    CAS  PubMed  Google Scholar 

  • Vivanco JM, Savary BJ, Flores HE (1999) Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the Andean crop Mirabilis expansa. Plant Physiol 119(4):1447–1456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viventia Biotech Inc. (2015) Viventia Biotech initiates patient treatment for Phase I trial of VB6-901 anti-cancer antibody in 1Q 2016. http://www.viventia.com/products/pipeline/ Accessed on 16 July 2015.

  • Walsh MJ, Dodd JE, Hautbergue GM (2013) Ribosome-inactivating proteins: potent poisons and molecular tools. Virulence 4(8):774–784

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Yang A, Zhang B, Yin Q, Huang H, Chen M, Xie J (2014) PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug. Pancreas 43(2):291–297

    Article  CAS  PubMed  Google Scholar 

  • Wang CF, Nie XJ, Chen GM, Yu ZH, Li Z, Sun ZW, Weng ZF, Yang YY, Chen SL, Zheng SR, Luo YY, Lu YT, Cao HQ, Zhan HX (2015a) Early plasma exchange for treating ricin toxicity in children after castor bean ingestion. J Clin Apher 30(3):141–146

    Article  PubMed  Google Scholar 

  • Wang JH, Nie HL, Huang H, Tam SC, Zheng YT (2003a) Independency of anti-HIV-1 activity from ribosome-inactivating activity of trichosanthin. Biochem Biophys Res Commun 302:89–94

    Article  CAS  PubMed  Google Scholar 

  • Wang JP, Wang LX, Sun YT, Bai XF, Li JG, Chen WH, Sun L, Luo KX (2003b) Inhibition of momordica anti-HIV protein of MAP30 on HBeAg expression by laser scanning confocal microscopy. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 19(2):183–184

    PubMed  Google Scholar 

  • Wang P, Tumer NE (2000) Virus resistance mediated by ribosome inactivating proteins. Adv Virus Res 55:325–355

    Article  CAS  PubMed  Google Scholar 

  • Wang RR, Au KY, Zheng HY, Gao LM, Zhang X, Luo RH, Law SK, Mak AN, Wong KB, Zhang MX, Pang W, Zhang GH, Shaw PC, Zheng YT (2015b) The recombinant maize ribosome-inactivating protein transiently reduces viral load in SHIV89.6 infected Chinese rhesus macaques. Toxins (Basel) 7(1):156–169

    Article  CAS  Google Scholar 

  • Wang S, Zhang Y, Liu H, He Y, Yan J, Wu Z, Ding Y (2012) Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha momorcharin) from Momordica charantia. Appl Microbiol Biotechnol 96(4):939–950

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Kawasaki T, Sako N, Funatsu G (1997) Actions of pokeweed antiviral protein on virus-infected protoplasts. Biosci Biotechnol Biochem 61:994–997

    Article  CAS  PubMed  Google Scholar 

  • Wei GQ, Liu RS, Wang QO, Liu WY (2004) Toxicity of two type II ribosome-inactivating proteins (cinnamomin and ricin) to domestic silkworm larvae. Arch Insect Biochem Physiol 57:160–165

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215(4537):1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Wiese AJ, Rathbun M, Butt MT, Malkmus SA, Richter PJ, Osborn KG, Xu Q, Veesart SL, Steinauer JJ, Higgins D, Lappi DA, Russell B, Yaksh TL (2013) Intrathecal substance P-saporin in the dog: distribution, safety, and spinal neurokinin-1 receptor ablation. Anesthesiology 119(5):1163–1177

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG (1992) Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning. Trends Neurosci 15(8):285–290

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG, Harrison MB, Levey AI, Lappi DA (2003) Destruction of midbrain dopaminergic neurons by using immunotoxin to dopamine transporter. Cell Mol Neurobiol 23(4-5):839–850

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG, Lappi DA (1999) Targeting neurokinin-1 receptor-expressing neurons with [Sar9, Met(O2)11] substance P-saporin. Neurosci Lett 277(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG, Kline RH IV (2000) Neuronal lesioning with axonally transported toxins. J Neurosci Methods 103(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Wong JH, Wang HX, Ng TB (2008) Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol 81(4):669–674

    Article  CAS  PubMed  Google Scholar 

  • Wong RN, Dong TX, Ng TB, Choi WT, Yeung HW (1996) Alpha-kirilowin, a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii (family Cucurbitaceae): a comparison with beta-kirilowin and other related proteins. Int J Pept Protein Res 47:103–109

    Article  CAS  PubMed  Google Scholar 

  • Wong RN, Ng TB, Chan SH, Dong TX, Yeung HW (1992) Characterization of Mirabilis antiviral protein—a ribosome inactivating protein from Mirabilis jalapa L. Biochem Int 28:585–593

    CAS  PubMed  Google Scholar 

  • Wrenn CC, Picklo MJ, Lappi DA, Robertson D, Wiley RG (1996) Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Res 740(1-2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Xiong JP, Xia ZX, Wang Y (1994) Crystal structure of trichosanthin-NADPH complex at 1.7 A resolution reveals active-site architecture. Nat Struct Biol 1(10):695–700

    Article  CAS  PubMed  Google Scholar 

  • Xiong SD, Yu K, Liu XH, Yin LH, Kirschenbaum A, Yao S, Narla G, DiFeo A, Wu JB, Yuan Y, Ho SM, Lam YW, Levine AC (2009) Ribosome-inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylase-1 selectively in premalignant and malignant prostate cancer cells. Int J Cancer 125(4):774–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu D, Wang M, Kinard G, Li R (2012) Complete genome sequence of two isolates of pokeweed mosaic virus and its relationship to other members of the genus Potyvirus. Arch Virol 157:2023–2026

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Liu WY (2004) Cinnamomin—a versatile type II ribosome-inactivating protein. Acta Biochim Biophys Sin 36:169–176

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Batra JK (2015) Mechanism of anti-HIV activity of ribosome inactivating protein, saporin. Protein Pept Lett 22(6):497–503

    Article  CAS  PubMed  Google Scholar 

  • Yeung HW, Li WW, Ng TB (1991) Isolation of a ribosome-inactivating and abortifacient protein from seeds of Luffa acutangula. Int J Pept Protein Res 38:15–19

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Ming X, Wang LHP, An C, Chen Z (2002) Expression of a gene encoding trichosanthin in transgenic rice plants enhance resistance to fungus blast disease. Plant Cell Rep 20:992–998

    Article  CAS  Google Scholar 

  • Yu L, Gu F, Zhang C, Xie S, Guo Y (1998) Targeted diagnosis and treatment of superficial bladder cancer with monoclonal antibody BDI-1. Chin Med J (Engl) 111(5):404–407

    CAS  Google Scholar 

  • Yuan YR, He YN, Xiong JP, Xia ZX (1999) Three-dimensional structure of beta-momorcharin at 2.55 A resolution. Acta Crystallogr D Biol Crystallogr 55(6):1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Zarling JM, Moran PA, Haffar O, Sias J, Richman DD, Spina CA, Myers DE, Kuebelbeck V, Ledbetter J, Uckun FM (1990) Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature (London) 347:92–95

    Article  CAS  Google Scholar 

  • Zeng ZH, He XL, Li HM, Hu Z, Wang DC (2003) Crystal structure of pokeweed antiviral protein with well-defined sugars from seeds at 1.8 A resolution. J Struct Biol 141(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Chen B, Zhou J, Zhou L, Li Q, Liu F, Chou KY, Tao L, Lu LM (2015) Low concentrations of trichosanthin induce apoptosis and cell cycle arrest via c-Jun N-terminal protein kinase/mitogen-activated protein kinase activation. Mol Med Rep 11(1):349–356

    CAS  PubMed  Google Scholar 

  • Zheng YT, Chan WL, Chan P, Huang H, Tam SC (2001) Enhancement of the anti-herpetic effect of trichosanthin by acyclovir and interferon. FEBS Lett 496(2-3):139–142

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Fu Z, Chen M, Lin Y, Pan K (1994) Structure of trichosanthin at 1.88 A resolution. Proteins 19(1):4–13

    Article  PubMed  Google Scholar 

  • Zhu F, Zhang P, Meng Y, Xu F, Zhang D, Cheng J, Ling H (2013a) Alpha-momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta 237:77–88

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Huang Q, Qian M, Tang Y (2001) Crystal structure of alpha-momorcharin in 80% acetonitrile–water mixture. Biochim Biophys 1548(1):152–158

    Article  CAS  Google Scholar 

  • Zhu Y, Dai J, Zhang T, Li X, Fang P, Wang H, Jiang Y, Yu X, Xia T, Niu L, Guo Y, Teng M (2013b) Structural insights into the neutralization mechanism of monoclonal antibody 6C2 against ricin. J Biol Chem 288(35):25165–25172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the award of HMRF grants (number 12110672 and number 12131221).

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzi Bun Ng or Wai Yee Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkouh, O., Ng, T.B., Cheung, R.C.F. et al. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl Microbiol Biotechnol 99, 9847–9863 (2015). https://doi.org/10.1007/s00253-015-6941-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6941-2

Keywords

Navigation