Skip to main content

Advertisement

Log in

Alpha-momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Alpha-momorcharin (α-MMC) is type-1 ribosome inactivating proteins (RIPs) with molecular weight of 29 kDa and has lots of biological activity. Our recent study indicated that the α-MMC purified from seeds of Momordica charantia exhibited distinct antiviral and antifungal activity. Tobacco plants pre-treated with 0.5 mg/mL α-MMC 3 days before inoculation with various viruses showed less-severe symptom and less reactive oxygen species (ROS) accumulation compared to that inoculated with viruses only. Quantitative real-time PCR analysis revealed that the replication levels of viruses were lower in the plants treated with the α-MMC than control plants at 15 days post inoculation. Moreover, the coat protein expression of viruses was almost completely inhibited in plants which were treated with the α-MMC compared with control plants. Furthermore, the SA-responsive defense-related genes including non-expressor of pathogenesis-related genes 1 (NPR1), PR1, PR2 were up-regulated and activities of some antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) were increased after the α-MMC treatment. In addition, the α-MMC (500 μg/mL) revealed remarkable antifungal effect against phytopathogenic fungi, in the growth inhibition range 50.35–67.21 %, along with their MIC values ranging from 100 to 500 μg/mL. The α-MMC had also a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of Sclerotinia sclerotiorum. The α-MMC showed a remarkable antiviral and antifungal effect and hence could possibly be exploited in crop protection for controlling certain important plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ChiVMV:

Chilli veinal mottle virus

CMV:

Cucumber mosaic virus

dpi:

Days post inoculation

GFP:

Green fluorescent protein

MIC:

Minimum inhibitory concentration

α-MMC:

Alpha-momorcharin

PR:

Pathogenesis related

PDA:

Potato-dextrose-agar

ROS:

Reactive oxygen species

TMV:

Tobacco mosaic virus

TuMV:

Turnip mosaic potyvirus

References

  • Bajpai VK, Shukla S, Kang SC (2008) Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bioresource Technol 99:8903–8908

    Article  CAS  Google Scholar 

  • Barbieri L, Battelli MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154:237–282

    Article  PubMed  CAS  Google Scholar 

  • Bian XX, Shen FB, Chen YW, Wang BN, Deng M, Meng YF (2010) PEGylation of alpha-momorcharin: synthesis and characterization of novel anti-tumor conjugates with therapeutic potential. Biotechnol Lett 32:883–890

    Article  PubMed  CAS  Google Scholar 

  • Bradford MN (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Calixto JB (2000) Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res 33:179–189

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Zhang ZW, Xue LW, Du JB, Shang J, Xu F, Yuan S, Lin HH (2009) Lack of salicylic acid in NahG Arabidopsis protects plants against moderate salt stress. Z. Naturforsch 64c:231–238

    Google Scholar 

  • Choudhary N, Kapoor HC, Lodha ML (2008) Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea xbuttiana. J Biosci 33:91–101

    Article  PubMed  CAS  Google Scholar 

  • Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annu Rev Phytopathol 41:53–75

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Gholizadeh A, Kumar M, Balasubrahmanyam A, Sharma S, Narwal S, Lodha ML, Kapoor HC (2004) Antioxidant activity of antiviral proteins from Celosia cristata L. J Plant Biochem Biotechnol 13:13–18

    Article  CAS  Google Scholar 

  • Girbés T, Ferreras JM, Arias FJ, Stirpe F (2004) Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev Med Chem 4:461–476

    Article  PubMed  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  PubMed  CAS  Google Scholar 

  • He K, Gou XP, Yuan T, Lin HH, Asami T, Yoshida S, Russell SD, Li J (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Curr Biol 17:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Kawade K, Masuda K (2009) Transcriptional control of two ribosome-inactivating protein genes expressed in spinach (Spinacia oleracea) embryos. Plant Physiol Biochem 47:327–334

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035

    Article  CAS  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK (2009) GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant J 58:235–245

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mock JW, Ng TB, Wong RN, Yao QZ, Yeung HW, Fong WP (1996) Demonstration of ribonuclease activity in the plant ribosome-inactivating proteins alpha- and beta-momorcharins. Life Sci 59:1853–1859

    Article  PubMed  CAS  Google Scholar 

  • Morais JKS, Gomes VM, Oliveira JTA, Santos IS, Da Cunha M, Oliveira HD, Oliveira HP, Sousa DOB, Vasconcelos IM (2010) Soybean toxin (SBTX), a protein from soybeans that inhibits the life cycle of plant and human pathogenic fungi. J Agric Food Chem 58:10356–10363

    Article  PubMed  CAS  Google Scholar 

  • Parikh BA, Tumer NE (2004) Antiviral activity of ribosome inactivating proteins in medicine. Mini Rev Med Chem 4:523–543

    Article  PubMed  CAS  Google Scholar 

  • Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar JR (2009) Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Curr Mol Med 9:1080–1094

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Wang Y, Dong Y, Stuart DI (1994) The N-glycosidase mechanism of ribosome-inactivating proteins implied by crystal structures of alpha-momorcharin. Structure 2:7–16

    Article  PubMed  CAS  Google Scholar 

  • Rodoni B (2009) The role of plant biosecurity in preventing and controlling emerging plant virus disease epidemics. Virus Res 141:150–157

    Article  PubMed  CAS  Google Scholar 

  • Shang J, Xi DH, Xu F, Wang SD, Cao S, Xu MY, Zhao PP, Wang JH, Jia SD, Zhang ZW, Yuan S, Lin HH (2011) A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta 233:299–308

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Park SW, Vepachedu R, Barbieri L, Clani M, Stirpe F, Savary BJ, Vivanco M (2004) Isolation and characterization of an RIP (ribosome inactivating protein)-like protein from tobacco with dual enzymatic activity. Plant Physiol 134:171–181

    Article  PubMed  CAS  Google Scholar 

  • Stevens WA, Spurdon C, Onyon LJ, Stirpe F (1981) Effect of inhibitors of protein synthesis from plants on tobacco mosaic virus infection. Experientia 37:257–259

    Article  CAS  Google Scholar 

  • Stirpe F (2004) Ribosome-inactivating proteins. Toxicon 44:371–383

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Battelli MG (2006) Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci 63:1850–1866

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Battelli MG, Soris M, Lappi DA (1992) Ribosome-inactivating proteins from plants. Biotechnology 10:405–412

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Massiah A, Lomonossoff G, Roberts LM, Lord JM, Hartley M (1994) Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J 5:827–835

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Desmyter S, Ciani M, Proost P, Peumans WJ, Van Damme EJM (2004) Analysis of the in planta antiviral activity of elderberry ribosome-inactivating proteins. Eur J Biochem 271:1508–1515

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Tumer NE (2000) Virus resistance mediated by ribosome inactivating proteins. Adv Virus Res 55:325–355

    Article  PubMed  CAS  Google Scholar 

  • Wang SD, Zhu F, Yuan S, Yang H, Xu F, Shang J, Xu MY, Jia SD, Zhang ZW, Wang JH, Xi DH, Lin HH (2011) The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. Planta 234:171–181

    Article  PubMed  CAS  Google Scholar 

  • Wang SZ, Zhang YB, Liu HG, He Y, Yan JJ, Wu ZH, Ding Y (2012) Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-3886-6

    Google Scholar 

  • Xi DH, Feng H, Lan LQ, Du JB, Wang JH, Zhang ZW, Xue LW, Xu WL, Lin HH (2007) Characterization of synergy between Cucumber mosaic virus and Tobacco necrosis virus in Nicotiana benthamiana. J Phytopathol 155:570–573

    Article  CAS  Google Scholar 

  • Xi DH, Yang H, Jiang Y, Xu MY, Shang J, Zhang ZW, Cheng SY, Sang LS, Lin HH (2010) Interference between Tobacco necrosis virus and Turnip crinkle virus in Nicotiana benthamiana. J Phytopathol 158:263–269

    Article  CAS  Google Scholar 

  • Zambonelli A, ZechiniD‘Aulerio A, Bianchi A, Albasini A (1996) Effects of essential oils on phytopathogenic fungi in vitro. J Phytopathol 144:491–494

    Google Scholar 

  • Zhu F, Xu MY, Wang SD, Jia SD, Zhang P, Lin HH, Xi DH (2012) Prokaryotic expression of pathogenesis related protein 1gene from Nicotiana benthamiana: antifungal activity and preparation of its polyclonal antibody. Biotechnol Lett 34:919–924

    Article  PubMed  CAS  Google Scholar 

  • Zoubenko O, Uckun F, Hur Y, Chet I, Tumer NE (1997) Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants. Nat Biotechnol 15:992–996

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Steve Whitham (Iowa State University, Iowa, USA) for providing TMV-GFP and TuMV-GFP. This work was supported by the National Nature Science Foundation of China (91017004, 30970214, 31070210, 31071669 and 31171835), National Key Basic Research ‘973’ Program of China (2009CB118500), Fundamental Research Funds for the Central Universities (2011SCU04B34) and Doctoral Foundation of the Ministry of Education (20110181110059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hui Xi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, F., Zhang, P., Meng, YF. et al. Alpha-momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta 237, 77–88 (2013). https://doi.org/10.1007/s00425-012-1746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1746-3

Keywords

Navigation