Skip to main content

Biotechnological Potential of Ribosome Inactivating Proteins (RIPs)

Plant Toxins

Part of the book series: Toxinology ((TOXI))

  • 456 Accesses

Abstract

Ribosome-inactivating proteins (RIPs) are enzymes (E.C. 3.2.2.22) that have shown remarkable cytotoxic activity linked to their ability to inactivate protein synthesis through their N-glycosidase activity on the 28S ribosomal RNA (rRNA). They are classified as monomeric type 1 RIP and eterodimeric type 2 RIP and are widely distributed in plants, fungi, and bacteria. Many evidences suggest that they could be involved in the defense of the host against predators and viruses, without neglecting their involvement in stress response and/or nitrogen store. The studies on RIPs began at the end of the nineteenth century when ricin, a potent toxin from Ricinus communis, was identified and isolated. Since then numerous RIPs were investigated, and it has been found that their cytotoxicity is due not only to enzymatic activity but also to their intracellular routing. Their biological activity has suggested their use as potential anticancer drugs. To make selective their cytotoxicity against cancer cells, many molecular approaches have been carried out. RIPs have been linked to, or fused with, appropriate antibodies or other carriers to form “immunotoxins” or other conjugates specifically toxic to target cells of the carrier. Other strategies have been also successfully carried out using nontoxic RIPs (e.g., ebulin I and nigrin b from Sambucus species) to allow them, by using a different intracellular pathway with respect to the canonical one, to efficiently reach ribosomes. This chapter summarizes the procedures used to obtain RIPs as selective bifunctional molecules. Many generations of immune RIPs and RIP conjugates are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1993;1154(3–4):237–82.

    Article  CAS  PubMed  Google Scholar 

  • Battelli MG, Musiani S, Buonamici L, Santi S, Riccio M, Maraldi NM, Girbes T, Stirpe F. Interaction of volkensin with HeLa cells: binding, uptake, intracellular localization, degradation and exocytosis. Cell Mol Life Sci. 2004;61(15):1975–84.

    Article  CAS  PubMed  Google Scholar 

  • Battelli MG, Polito L, Fala F, Musiani S, Tazzari PL, Stirpe F, Bolognesi A. Toxicity of xanthine oxidoreductase to malignant B lymphocytes. J Biol Regul Homeost Agents. 2005;19(3–4):120–9.

    CAS  PubMed  Google Scholar 

  • Benitez J, Ferreras JM, Munoz R, Arias Y, Iglesias R, Cordoba-Diaz M, del Villar R, Girbes T. Cytotoxicity of an ebulin l-anti-human CD105 immunotoxin on mouse fibroblasts (L929) and rat myoblasts (L6E9) cells expressing human CD105. Med Chem. 2005;1(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro U, del Vecchio A, Lappi DA, Soria MR. A conjugate between human urokinase and saporin, a type-1 ribosome-inactivating protein, is selectively cytotoxic to urokinase receptor-expressing cells. J Biol Chem. 1993;268(31):23186–90.

    CAS  PubMed  Google Scholar 

  • Chaudhry B, Muller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J. The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J. 1994;6(6):815–24.

    Article  CAS  PubMed  Google Scholar 

  • D’Cruz OJ, Waurzyniak B, Uckun FM. Mucosal toxicity studies of a gel formulation of native pokeweed antiviral protein. Toxicol Pathol. 2004;32(2):212–21.

    Article  PubMed  Google Scholar 

  • de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins (Basel). 2010;2(11):2699–737.

    Article  Google Scholar 

  • Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry. 2002;41(10):3405–13.

    Article  CAS  PubMed  Google Scholar 

  • Di Maro A, Valbonesi P, Bolognesi A, Stirpe F, De Luca P, Siniscalco Gigliano G, Gaudio L, Delli Bovi P, Ferranti P, Malorni A, Parente A. Isolation and characterization of four type-1 ribosome-inactivating proteins, with polynucleotide: adenosine glycosidase activity, from leaves of Phytolacca dioica L. Planta. 1999;208(1):125–31.

    Article  PubMed  Google Scholar 

  • Di Maro A, Citores L, Russo R, Iglesias R, Ferreras JM. Sequence comparison and phylogenetic analysis by the Maximum Likelihood method of ribosome-inactivating proteins from angiosperms. Plant Mol Biol. 2014;85(6):575–88.

    Article  PubMed  Google Scholar 

  • Endo Y, Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987;262(17):8128–30.

    CAS  PubMed  Google Scholar 

  • Ferreras JM, Citores L, Iglesias R, Jimenez P, Girbes T. Use of ribosome-inactivating proteins from Sambucus for the construction of immunotoxins and conjugates for cancer therapy. Toxins (Basel). 2011;3(5):420–41.

    Article  CAS  Google Scholar 

  • Garrosa M, Jimenez P, Tejero J, Cabrero P, Cordoba-Diaz D, Quinto EJ, Gayoso MJ, Girbes T. Toxicity of the anti-ribosomal lectin ebulin f in lungs and intestines in elderly mice. Toxins (Basel). 2015;7(2):367–79.

    Article  CAS  Google Scholar 

  • Gayoso MJ, Munoz R, Arias Y, Villar R, Rojo MA, Jimenez P, Ferreras JM, Aranguez I, Girbes T. Specific dose-dependent damage of Lieberkuhn crypts promoted by large doses of type 2 ribosome-inactivating protein nigrin b intravenous injection to mice. Toxicol Appl Pharmacol. 2005;207(2):138–46.

    Article  CAS  PubMed  Google Scholar 

  • Ghetie MA, May RD, Till M, Uhr JW, Ghetie V, Knowles PP, Relf M, Brown A, Wallace PM, Janossy G, et al. Evaluation of ricin A chain-containing immunotoxins directed against CD19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy. Cancer Res. 1988;48(9):2610–7.

    CAS  PubMed  Google Scholar 

  • Gilabert-Oriol R, Weng A, Mallinckrodt B, Melzig MF, Fuchs H, Thakur M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: a lethal cocktail with tumor specific efficacy. Curr Pharm Des. 2014;20(42):6584–643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Girbes T, Citores L, Ferreras JM, Rojo MA, Iglesias R, Munoz R, Arias FJ, Calonge M, Garcia JR, Mendez E. Isolation and partial characterization of nigrin b, a non-toxic novel type 2 ribosome-inactivating protein from the bark of Sambucus nigra L. Plant Mol Biol. 1993a;22(6):1181–6.

    Article  CAS  PubMed  Google Scholar 

  • Girbes T, Citores L, Iglesias R, Ferreras JM, Munoz R, Rojo MA, Arias FJ, Garcia JR, Mendez E, Calonge M. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus L. leaves. J Biol Chem. 1993b;268(24):18195–9.

    CAS  PubMed  Google Scholar 

  • Girbes T, Ferreras JM, Arias FJ, Stirpe F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev Med Chem. 2004;4(5):461–76.

    Article  CAS  PubMed  Google Scholar 

  • Hey TD, Hartley M, Walsh TA. Maize ribosome-inactivating protein (b-32). Homologs in related species, effects on maize ribosomes, and modulation of activity by pro-peptide deletions. Plant Physiol. 1995;107(4):1323–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang SY, Bhalla R, Ramamoorthy R, Luan HF, Venkatesh PN, Cai M, Ramachandran S. Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res. 2012;21(4):785–95.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez P, Cabrero P, Basterrechea JE, Tejero J, Cordoba-Diaz D, Girbes T. Isolation and molecular characterization of two lectins from dwarf elder (Sambucus ebulus L.) blossoms related to the Sam n1 allergen. Toxins (Basel). 2013a;5(10):1767–79.

    Article  Google Scholar 

  • Jimenez P, Gayoso M, Tejero J, Cabrero P, Cordoba-Diaz D, Basterrechea JE, Girbes T. Toxicity in mice of lectin ebulin f present in dwarf Elderberry (Sambucus ebulus L.). Toxicon. 2013b;61:26–9.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez P, Cabrero P, Basterrechea JE, Tejero J, Cordoba-Diaz D, Cordoba-Diaz M, Girbes T. Effects of short-term heating on total polyphenols, anthocyanins, antioxidant activity and lectins of different parts of dwarf elder (Sambucus ebulus L.). Plant Foods Hum Nutr. 2014a;69(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez P, Gayoso MJ, Garrosa M, Cordoba-Diaz D, Cabrero P, Tejero J, Aracil M, Girbes T. Paneth cells are also target of the ribotoxic lectin nigrin b. Histol Histopathol. 2014b;29(8):1057–63.

    PubMed  Google Scholar 

  • Lord JM, Spooner RA. Ricin trafficking in plant and mammalian cells. Toxins (Basel). 2011;3(7):787–801.

    Article  CAS  Google Scholar 

  • Lord JM, Roberts LM, Robertus JD. Ricin: structure, mode of action, and some current applications. FASEB J. 1994;8(2):201–8.

    CAS  PubMed  Google Scholar 

  • Mohamed MS, Veeranarayanan S, Baliyan A, Poulose AC, Nagaoka Y, Minegishi H, Iwai S, Shimane Y, Yoshida Y, Maekawa T, Kumar DS. Structurally distinct hybrid polymer/lipid nanoconstructs harboring a type-I ribotoxin as cellular imaging and glioblastoma-directed therapeutic vectors. Macromol Biosci. 2014a;14(12):1696–711.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MS, Veeranarayanan S, Poulose AC, Nagaoka Y, Minegishi H, Yoshida Y, Maekawa T, Kumar DS. Type 1 ribotoxin-curcin conjugated biogenic gold nanoparticles for a multimodal therapeutic approach towards brain cancer. Biochim Biophys Acta. 2014b;1840(6):1657–69.

    Article  CAS  PubMed  Google Scholar 

  • Montanaro L, Sperti S, Mattioli A, Testoni G, Stirpe F. Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes. Biochem J. 1975;146(1):127–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munoz R, Arias Y, Ferreras JM, Rojo MA, Gayoso MJ, Nocito M, Benitez J, Jimenez P, Bernabeu C, Girbes T. Targeting a marker of the tumour neovasculature using a novel anti-human CD105-immunotoxin containing the non-toxic type 2 ribosome-inactivating protein nigrin b. Cancer Lett. 2007;256(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  • Munoz R, Arias Y, Ferreras JM, Jimenez P, Rojo MA, Bernabeu C, Cordoba-Diaz D, Girbes T. Transient injury-dependent up-regulation of CD105 and its specific targeting with an anti-vascular anti-mouse endoglin-nigrin b immunotoxin. Med Chem. 2012;8(6):996–1002.

    CAS  PubMed  Google Scholar 

  • Munoz R, Arias Y, Ferreras JM, Jimenez P, Langa C, Rojo MA, Gayoso MJ, Cordoba-Diaz D, Bernabeu C, Girbes T. In vitro and in vivo effects of an anti-mouse endoglin (CD105)-immunotoxin on the early stages of mouse B16MEL4A5 melanoma tumours. Cancer Immunol Immunother. 2013;62(3):541–51.

    Article  CAS  PubMed  Google Scholar 

  • Pascal JM, Day PJ, Monzingo AF, Ernst SR, Robertus JD, Iglesias R, Perez Y, Ferreras JM, Citores L, Girbes T. 2.8-A crystal structure of a nontoxic type-II ribosome-inactivating protein, ebulin l. Proteins. 2001;43(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  • Poerio E, Di Gennaro S, Di Maro A, Farisei F, Ferranti P. Parente A Primary structure and reactive site of a novel wheat proteinase inhibitor of subtilisin and chymotrypsin. Biol Chem. 2003;384(2):295–304.

    Article  CAS  PubMed  Google Scholar 

  • Polito L, Bortolotti M, Mercatelli D, Battelli MG, Bolognesi A. Saporin-S6: a useful tool in cancer therapy. Toxins (Basel). 2013;5(10):1698–722.

    Article  Google Scholar 

  • Santanche S, Bellelli A, Brunori M. The unusual stability of saporin, a candidate for the synthesis of immunotoxins. Biochem Biophys Res Commun. 1997;234(1):129–32.

    Article  CAS  PubMed  Google Scholar 

  • Selbo PK, Weyergang A, Hogset A, Norum OJ, Berstad MB, Vikdal M, Berg K. Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release. 2010;148(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  • Sgambati V, Pizzo E, Mezzacapo MC, Di Giuseppe AM, Landi N, Poerio E, Di Maro A. Cytotoxic activity of chimeric protein PD-L4UWSCI(tr) does not appear be affected by specificity of inhibition mediated by anti-protease WSCI domain. Biochimie. 2014;107(Pt B):385–90.

    Article  CAS  PubMed  Google Scholar 

  • Spooner RA, Lord JM. Ricin trafficking in cells. Toxins (Basel). 2015;7(1):49–65.

    Article  Google Scholar 

  • Stillmark PH. Über Ricin, ein giftiges Ferment aus den Samen von Ricinus comm. L. und einigen anderen Euphorbiaceen [doctoral thesis] [doctoral thesis]. Vol. University of Dorpat Dorpat (Estonian); 1888.

    Google Scholar 

  • Stirpe F. Ribosome-inactivating proteins. Toxicon. 2004;44(4):371–83.

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F. Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon. 2013;67:12–6.

    Article  CAS  PubMed  Google Scholar 

  • Stirpe F, Battelli MG. Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci. 2006;63(16):1850–66.

    Article  CAS  PubMed  Google Scholar 

  • Tamburino R, Pizzo E, Sarcinelli C, Poerio E, Tedeschi F, Ficca AG, Parente A, Di Maro A. Enhanced cytotoxic activity of a bifunctional chimeric protein containing a type 1 ribosome-inactivating protein and a serine protease inhibitor. Biochimie. 2012;94(9):1990–6.

    Article  CAS  PubMed  Google Scholar 

  • Tejero J, Jimenez P, Quinto EJ, Cordoba-Diaz D, Garrosa M, Cordoba-Diaz M, Gayoso MJ, Girbes T. Elderberries: a source of ribosome-inactivating proteins with lectin activity. Molecules. 2015;20(2):2364–87.

    Article  PubMed  Google Scholar 

  • Thorpe PE, Brown AN, Bremner Jr JA, Foxwell BM, Stirpe F. An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Inst. 1985;75(1):151–9.

    CAS  PubMed  Google Scholar 

  • Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Ed Engl. 2014;53(11):2893–8.

    Article  CAS  PubMed  Google Scholar 

  • Wiley RG, Stirpe F, Thorpe P, Oeltmann TN. Neuronotoxic effects of monoclonal anti-Thy 1 antibody (OX7) coupled to the ribosome inactivating protein, saporin, as studied by suicide transport experiments in the rat. Brain Res. 1989;505(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  • Yang WH, Wieczorck M, Allen MC, Nett TM. Cytotoxic activity of gonadotropin-releasing hormone (GnRH)-pokeweed antiviral protein conjugates in cell lines expressing GnRH receptors. Endocrinology. 2003;144(4):1456–63.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Xiong YL, Su ZJ, Zhang QH, Dai XY, Li LY, Xiao X, Huang YD. Expression of curcin-transferrin receptor binding peptide fusion protein and its anti-tumor activity. Protein Expr Purif. 2013;89(2):181–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Girbes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

DiMaro, A., Pizzo, E., Girbes, T. (2015). Biotechnological Potential of Ribosome Inactivating Proteins (RIPs). In: Gopalakrishnakone, P., Carlini, C., Ligabue-Braun, R. (eds) Plant Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6728-7_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6728-7_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6728-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Biotechnological Potential of Ribosome Inactivating Proteins (RIPs)
    Published:
    06 October 2015

    DOI: https://doi.org/10.1007/978-94-007-6728-7_14-2

  2. Original

    Biotechnological Potential of Ribosome Inactivating Proteins (RIPs)
    Published:
    11 August 2015

    DOI: https://doi.org/10.1007/978-94-007-6728-7_14-1