Skip to main content
Log in

Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phospholipids (PLs) containing specific polar head groups and fatty acids, artificially synthesized from a complex mixture of natural PLs, have considerable industrial applications. The biocatalytic approaches to synthesizing structured PLs are of great interest because the enzymes used show high selectivity and performance under mild conditions, leading to the generation of products that cannot easily be obtained by chemical catalysis. Although the limited supply of phospholipases (e.g., phospholipase D) has thus far been an obstacle to the widespread use of enzymatic processing, recent advances in enzyme preparation have opened up various applications for PL modification. In this review, attempts to increase the productivity and utility of microbial phospholipases and lipases are presented. We also summarize recent developments in enzyme-catalyzed modification of PLs, focusing particularly on the relevant reactions, bioreactor design, and novel proof-of-concept experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adlercreutz D, Budde H, Wehtje E (2002) Synthesis of phosphatidylcholine with defined fatty acid in the sn-1 position by lipase-catalyzed esterification and transesterification reaction. Biotechnol Bioeng 78:403–411

    Article  CAS  PubMed  Google Scholar 

  • Baeza-Jiménez R, González-Rodríguez J, Kim I-H, García HS, Otero C (2012) Use of immobilized phospholipase A1-catalyzed acidolysis for the production of structured phosphatidylcholine with an elevated conjugated linoleic acid content. Grasas Y Aceites 63:44–52

    Article  CAS  Google Scholar 

  • Baeza-Jiménez R, López-Martínez LX, Otero C, Kim I-H, García HS (2013) Enzyme-catalysed hydrolysis of phosphatidylcholine for the production of lysophosphatidylcholine. J Chem Technol Biotechnol 88:1859–1863

    Article  CAS  Google Scholar 

  • Balcão VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb Technol 18:392–416

    Article  PubMed  Google Scholar 

  • Beer HD, Wohlfahrt G, Schmid RD, McCarthy JEG (1996) The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochem J 319:351–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bekkers ACAPA, Franken PA, van den Bergh CJ, Verbakel JMA, Verheij HM, de Haas GH (1991) The use of genetic engineering to obtain efficient production of porcine pancreatic phospholipase A2 by Saccharomyces cerevisiae. Biochim Biophys Acta 1089:345–351

    Article  CAS  PubMed  Google Scholar 

  • Bi Y-H, Duan Z-Q, Li X-Q, Wang Z-Y, Zhao X-R (2015) Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine. J Agric Food Chem 63:1558–1561

    Article  CAS  PubMed  Google Scholar 

  • Cabezas DM, Diehl B, Tomás MC (2009) Effect of processing parameters on sunflower phosphatidylcholine-enriched fractions extracted with aqueous ethanol. Eur J Lipid Sci Technol 111:993–1002

    Article  CAS  Google Scholar 

  • Cabezas DM, Madoery R, Diehl BWK, Tomás MC (2011) Application of enzymatic hydrolysis on sunflower lecithin using a pancreatic PLA2. J Am Oil Chem Soc 88:443–446

    Article  CAS  Google Scholar 

  • Cansell M, Nacka F, Combe F (2003) Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids 38:551–559

    Article  CAS  PubMed  Google Scholar 

  • Casado V, Martín D, Torres C, Reglero G (2012) Phospholipases in food industry: a review. Methods Mol Biol 861:495–523

    Article  CAS  PubMed  Google Scholar 

  • Casado V, Reglero G, Torres CF (2013) Production and scale-up of phosphatidyl-tyrosol catalyzed by a food grade phospholipase D. Food Bioprod Process 91:599–608

    Article  CAS  Google Scholar 

  • Casado V, Reglero G, Torres CF (2014) Novel and efficient solid to solid transphosphatidylation of two phenylalkanols in a biphasic GRAS medium. J Mol Cat B: Enz 99:14–19

    Article  CAS  Google Scholar 

  • Chen S, Xu L, Li Y, Hao N, Yan M (2013) Bioconversion of phosphatidylserine by phospholipase D from Streptomyces racemochromogenes in a microaqueous water-immiscible organic solvent. Biosci Biotechnol Biochem 77:1939–1941

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka A, Gładkowski W, Kiełbowicz G, Wawrzeńczyk C (2009) Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid. Biotechnol Lett 31:705–709

    Article  CAS  PubMed  Google Scholar 

  • Correia-Ledo D, Arnold AA, Mauzeroll J (2010) Synthesis of redox active ferrocene-modified phospholipids by transphosphatidylation reaction and chronoamperometry study of the corresponding redox sensitive liposome. J Am Chem Soc 132:15120–15123

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Wang Y, Pham BP, Ping F, Pan H, Cheong G-W, Zhang S, Jia B (2012) High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1. Extremophiles 16:619–625

    Article  CAS  PubMed  Google Scholar 

  • D’Arrigo P, Servi S (2010) Synthesis of lysophospholipids. Molecules 15:1354–1377

    Article  PubMed  CAS  Google Scholar 

  • D’Arrigo P, Fasoli E, Pedrocchi-Fantoni G, Servi S, Tessaro D (2005) Membrane assisted coupled enzyme system for phospholipid modification. Enzyme Microb Technol 37:435–440

    Article  CAS  Google Scholar 

  • D’Arrigo P, Cerioli L, Chiappe C, Panzeri W, Tessaro D, Mele A (2012) Improvements in the enzymatic synthesis of phosphatidylserine employing ionic liquids. J Mol Cat B: Enz 84:132–135

    Article  CAS  Google Scholar 

  • Damnjanović J, Iwasaki Y (2013) Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure and protein engineering. J Biosci Bioeng 116:271–280

    Article  PubMed  CAS  Google Scholar 

  • De Maria L, Vind J, Oxenbøll KM, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300

    Article  CAS  PubMed  Google Scholar 

  • Dippe M, Mrestani-Klaus C, Schierhorn A, Ulbrich-Hofmann R (2008) Phospholipase D-catalyzed synthesis of new phospholipids with polar head groups. Chem Phys Lipids 152:71–77

    Article  CAS  PubMed  Google Scholar 

  • Dittrich N, Ulbrich-Hofmann R (2001) Transphosphatidylation by immobilized phospholipase D in aqueous media. Biotechnol Appl Biochem 34:189–194

    Article  CAS  PubMed  Google Scholar 

  • Doig SD, Diks RMM (2003) Toolbox for exchanging constituent fatty acids in lecithins. Eur J Lipid Sci Technol 105:359–367

    Article  CAS  Google Scholar 

  • Driouch H, Sommer B, Wittmann C (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105:1058–1068

    CAS  PubMed  Google Scholar 

  • Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger. Targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109:462–471

    Article  CAS  PubMed  Google Scholar 

  • Duan Z-Q, Hu F (2013) Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran. J Biotechnol 163:45–49

    Article  CAS  PubMed  Google Scholar 

  • Durban MA, Silbersack J, Schweder T, Schauer F, Bornscheuer UT (2007) High level expression of a recombinant phospholipase C from Bacillus cereus in Bacillus subtilis. Appl Microbiol Biotechnol 74:634–639

    Article  CAS  PubMed  Google Scholar 

  • Estiasih T, Ahmadi K, Ginting E, Priyanto AD (2013) Modification of soy crude lecithin by partial enzymatic hydrolysis using phospholipase A1. Int Food Res J 20:843–849

    CAS  Google Scholar 

  • Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Cat B: Enz 62:197–212

    Article  CAS  Google Scholar 

  • Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673

    Article  CAS  PubMed  Google Scholar 

  • Garcia HS, Kim I-H, Lopez-Hernandez A, Hill CG Jr (2008) Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas Y Aceites 59:368–374

    Article  CAS  Google Scholar 

  • Guo Z, Vikbjerg AF, Xu X (2005) Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 23:203–259

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda H (2006) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 101:328–333

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Tamalampudi S, Shindo N, Numata T, Yamaji H, Fukuda H, Kondo A (2008) Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae. Appl Microbiol Biotechnol 79:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Yoshida A, Nakashima K, Noda H, Fukuda H, Kondo A (2010) Surfactant-modified yeast whole-cell biocatalyst displaying lipase on cell surface for enzymatic production of structured lipids in organic media. Appl Microbiol Biotechnol 87:537–543

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Miura K, Yoshida A, Noda H, Fukuda H, Kondo A (2011) Transesterification of phosphatidylcholine in sn-1 position through direct use of lipase-producing Rhizopus oryzae cells as whole-cell biocatalyst. Appl Microbiol Biotechnol 90:1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Onodera K, Yoshida A, Noda H, Kondo A (2015) Improved production of phospholipase A1 by recombinant Aspergillus oryzae through immobilization to control the fungal morphology under nutrient-limited conditions. Biochem Eng J 96:1–6

    Article  CAS  Google Scholar 

  • Hara F, Nakashima T (1996) Transesterification of phospholipids by acetone-dried cells of a Rhizopus species immobilized on biomass support particles. J Am Oil Chem Soc 73:657–659

    Article  CAS  Google Scholar 

  • Hara F, Nakashima T, Fukuda H (1997) Comparative study of commercially available lipases in hydrolysis reaction of phosphatidylcholine. J Am Oil Chem Soc 74:1129–1132

    Article  CAS  Google Scholar 

  • Hartmann M, Guberman A, Florin-Christensen M, Tiedtke A (2000) Screening for and characterization of phospholipase A1 hypersecretory mutants of Tetrahymena thermophile. Appl Microbiol Biotechnol 54:390–396

    Article  CAS  PubMed  Google Scholar 

  • Hossen M, Hernandez E (2005) Enzyme-catalyzed synthesis of structured phospholipids with conjugated linoleic acid. Eur J Lipid Sci Technol 107:730–736

    Article  CAS  Google Scholar 

  • Huge-Jensen B, Andreasen F, Christensen T, Christensen M, Thim L, Boel E (1989) Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae. Lipids 24:781–785

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki Y, Mizumoto Y, Okada T, Yamamoto T, Tsutsumi K, Yamane T (2003) An aqueous suspension system for phospholipase D-mediated synthesis of PS without toxic organic solvent. J Am Oil Chem Soc 80:653–657

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Paratkar SG, Thorat BN (2006) Modification of lecithin by physical, chemical and enzymatic methods. Eur J Lipid Sci Technol 108:363–373

    Article  CAS  Google Scholar 

  • Kim I-H, Garcia HS, Hill CG Jr (2007) Phospholipase A1-catalyzed synthesis of phospholipids enriched in n-3 polyunsaturated fatty acid residues. Enzyme Microb Technol 40:1130–1135

    Article  CAS  Google Scholar 

  • Kim I-H, Garcia HS, Hill CG Jr (2010) Synthesis of structured phosphatidylcholine containing n-3 PUFA residues via acidolysis mediated by immobilized phospholipase A1. J Am Oil Chem Soc 87:1293–1299

    Article  CAS  Google Scholar 

  • Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen J-F, Yang B, Li D-M, Wang Y-H, Wang W-F (2014) Production of structured phosphatidylcholine with high content of DHA/EPA by immobilized phospholipase A1-catalyzed transesterification. Int J Mol Sci 15:15244–15258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang M-H, Jiang J-G (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Kim BH, Kim I-H, Lee M-W (2015) Modeling and optimization of phospholipase A1-catalyzed hydrolysis of phosphatidylcholine using response surface methodology for lysophosphatidylcholine production. Biotechnol Prog 31:35–41

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Fu M, Wang Y, Zhao Q, Sun W, Zhao M (2012) Immobilization of Lecitase® Ultra onto a novel polystyrene DA-201 resin: characterization and biochemical properties. Appl Biochem Biotechnol 168:1108–1120

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang T, Qiao J, Liu X, Bo J, Wang J, Lu F (2014) High-yield phosphatidylserine production via yeast surface display of phospholipase D from Streptomyces chromofuscus on Pichia pastoris. J Agric Food Chem 62:5354–5360

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Yu X-W, Sha C, Xu Y (2015) Streptomyces violaceoruber phospholipase A2: expression in Pichia pastoris, properties, and application in oil degumming. Appl Biochem Biotechnol 175:3195–3206

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva T, Gouveia L, Reis A (2014) Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 98:1043–1053

    Article  CAS  Google Scholar 

  • Marsaoui N, Laplante S, Raies A, Naghmouchi K (2013) Incorporation of omega-3 polyunsaturated fatty acids into soybean lecithin: effect of amines and divalent cations on transesterification by lipases. World J Microbiol Biotechnol 29:2233–2238

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Mineta S, Murayama K, Sugimori D (2013) A novel phospholipase B from Streptomyces sp. NA684—purification, characterization, gene cloning, extracellular production and prediction of the catalytic residues. FEBS J 280:3780–3796

    Article  CAS  PubMed  Google Scholar 

  • Nakajima J, Nakashima T, Shima Y, Fukuda H, Yamane T (1994) A facile transphosphatidylation reaction using a culture supernatant of actinomycetes directly as a phospholipase D catalyst with a chelating agent. Biotechnol Bioeng 44:1193–1198

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa Y, Sagane Y, Sakurai S, Uchino M, Sato H, Toeda K, Takano K (2011) Large-scale production of phospholipase D from Streptomyces racemochromogenes and its application to soybean lecithin modification. Appl Biochem Biotechnol 165:1494–1506

    Article  CAS  PubMed  Google Scholar 

  • Nishio T, Kamimura M (1988) Ester synthesis in various organic solvents by three kinds of lipase preparations derived from Pseudomonas fragi 22.39 B. Agric Biol Chem 52:2631–2632

    Article  CAS  Google Scholar 

  • Ochoa AA, Hernández-Becerra JA, Cavazos-Garduño A, García HS, Vernon-Carter EJ (2013) Phosphatidylcholine enrichment with medium chain fatty acids by immobilized phospholipase A1-catalyzed acidolysis. Biotechnol Prog 29:230–236

    Article  CAS  PubMed  Google Scholar 

  • Ogino C, Negi Y, Matsumiya T, Nakaoka K, Kondo A, Kuroda S, Tokuyama S, Kikkawa U, Yamane T, Fukuda H (1999) Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum. J Biochem 125:263–269

    Article  CAS  PubMed  Google Scholar 

  • Ogino C, Kuroda S, Tokuyama S, Kondo A, Shimizu N, Tanizawa K, Fukuda H (2003) Phospholipase D from Streptoverticillium cinnamoneum: protein engineering and application for phospholipid production. J Mol Cat B: Enz 23:107–115

    Article  CAS  Google Scholar 

  • Ogino C, Kanemasu M, Hayashi Y, Kondo A, Shimizu N, Tokuyama S, Tahara Y, Kuroda S, Tanizawa K, Fukuda H (2004) Over-expression system for secretory phospholipase D by Streptomyces lividans. Appl Microbiol Biotechnol 64:823–828

    Article  CAS  PubMed  Google Scholar 

  • Ogino C, Kanemasu M, Fukumoto M, Kubo T, Yoshino T, Kondo A, Fukuda H, Shimizu N (2007) Continuous production of phospholipase D using immobilized recombinant Streptomyces lividans. Enzyme Microb Technol 41:156–161

    Article  CAS  Google Scholar 

  • Ogino C, Matsuda T, Okazaki F, Tanaka T, Kondo A (2014) The effect of combining signal sequences with the N28 fragment on GFP production in Aspergillus oryzae. Process Biochem 49:1078–1083

    Article  CAS  Google Scholar 

  • Okahata Y, Niikura K, Ijiro K (1995) Simple transphosphatidylation of phospholipids catalyzed by a lipid-coated phospholipase D in organic solvents. J Chem Soc Perkin Trans 1:919–925

    Article  Google Scholar 

  • Okazaki F, Aoki J, Tabuchi S, Tanaka T, Ogino C, Kondo A (2012) Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Appl Microbiol Biotechnol 96:81–88

    Article  CAS  PubMed  Google Scholar 

  • Patil VV, Galge RV, Thorat BN (2010) Extraction and purification of phosphatidylcholine from soyabean lecithin. Sep Purif Technol 75:138–144

    Article  CAS  Google Scholar 

  • Pinsolle A, Roy P, Cansell M (2014) Modulation of enzymatic PS synthesis by liposome membrane composition. Colloids Surf B 115:157–163

    Article  CAS  Google Scholar 

  • Ramchuran SO, Vargas VA, Hatti-Kaul R, Karlsson EN (2006) Production of a lipolytic enzyme originating from Bacillus halodurans LBB2 in the methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 71:463–472

    Article  CAS  PubMed  Google Scholar 

  • Ramrakhiani L, Chand S (2011) Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 164:991–1022

    Article  CAS  PubMed  Google Scholar 

  • Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic phospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122:155–161

    Article  CAS  PubMed  Google Scholar 

  • Seo KH, Rhee JI (2004) High-level expression of recombinant phospholipase C from Bacillus cereus in Pichia pastoris and its characterization. Biotechnol Lett 26:1475–1479

    Article  CAS  PubMed  Google Scholar 

  • Shiba Y, Ono C, Fukui F, Watanabe I, Serizawa N, Gomi K, Yoshikawa H (2001) High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci Biotechnol Biochem 65:94–101

    Article  CAS  PubMed  Google Scholar 

  • Song JK, Kim MK, Rhee JS (1999) Cloning and expression of the gene encoding phospholipase A1 from Serratia sp. MK1 in Escherichia coli. J Biotechnol 72:103–114

    Article  CAS  PubMed  Google Scholar 

  • Song JK, Han JJ, Rhee JS (2005) Phospholipases: occurrence and production in microorganisms, assay for high-throughput screening, and gene discovery from natural and man-made diversity. J Am Oil Chem Soc 82:691–705

    Article  CAS  Google Scholar 

  • Song S, Cheong L-Z, Guo Z, Kristensen K, Glasius M, Jensen HM, Bertelsen K, Tan T, Xu X (2012) Phospholipase D (PLD) catalyzed synthesis of phosphatidyl-glucose in biphasic reaction system. Food Chem 135:373–379

    Article  CAS  PubMed  Google Scholar 

  • Sugimori D, Kano K, Matsumoto Y (2012) Purification, characterization, molecular cloning and extracellular production of a phospholipase A1 from Streptomyces albidoflavus NA297. FEBS Open Bio 2:318–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugiyama M, Ohtani K, Izuhara M, Koike T, Suzuki K, Imamura S, Misaki H (2002) A novel prokaryotic phospholipase A2. Characterization, gene cloning, and solution structure. J Biol Chem 277:20051–20058

    Article  CAS  PubMed  Google Scholar 

  • Takemori D, Yoshino K, Eba C, Nakano H, Iwasaki Y (2012) Extracellular production of phospholipase A2 from Streptomyces violaceoruber by recombinant Escherichia coli. Protein Expr Purif 81:145–150

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591

    Article  CAS  PubMed  Google Scholar 

  • Truan D, Vasil A, Stonehouse M, Vasil ML, Pohl E (2013) High-level over-expression, purification, and crystallization of a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Protein Expr Purif 90:40–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van den Bergh CJ, Bekkers AC, De Geus P, Verheij HM, de Haas GH (1987) Secretion of biologically active porcine prophospholipase A2 by Saccharomyces cerevisiae. Use of the prepro sequence of the alpha-mating factor. Eur J Biochem 170:241–246

    Article  PubMed  Google Scholar 

  • Vikbjerg AF, Mu H, Xu X (2005a) Lipase-catalyzed acyl exchange of soybean phosphatidylcholine in n-hexane: a critical evaluation of both acyl incorporation and product recovery. Biotechnol Prog 21:397–404

    Article  CAS  PubMed  Google Scholar 

  • Vikbjerg AF, Mu H, Xu X (2005b) Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent-free system. J Mol Catal B Enzym 36:14–21

    Article  CAS  Google Scholar 

  • Vikbjerg AF, Peng L, Mu H, Xu X (2005c) Continuous production of structured phospholipids in a packed bed reactor with lipase from Thermomyces lanuginosa. J Am Oil Chem Soc 82:237–242

    Article  CAS  Google Scholar 

  • Vikbjerg AF, Rusig J-Y, Jonsson G, Mu H, Xu X (2006) Strategies for lipase-catalyzed production and the purification of structured phospholipids. Eur J Lipid Sci Technol 108:802–811

    Article  CAS  Google Scholar 

  • Vikbjerg AF, Mu H, Xu X (2007) Synthesis of structured phospholipids by immobilized phospholipase A2 catalyzed acidolysis. J Biotechnol 128:545–554

    Article  CAS  PubMed  Google Scholar 

  • Watanabe I, Koishi R, Yao Y, Tsuji T, Serizawa N (1999) Molecular cloning and expression of the gene encoding a phospholipase A1 from Aspergillus oryzae. Biosci Biotechnol Biochem 63:820–826

    Article  CAS  PubMed  Google Scholar 

  • Wongsakul S, Bornscheuer UT, H-Kittikun A (2004) Lipase-catalyzed acidolysis and phospholipase D-catalyzed transphosphatidylation of phosphocholine. Eur J Lipid Sci Technol 106:665–670

    Article  CAS  Google Scholar 

  • Yamamoto Y, Hosokawa M, Kurihara H, Miyashita K (2008) Preparation of phosphatidylated terpenes via phospholipase D-mediated transphosphatidylation. J Am Oil Chem Soc 85:313–320

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kurihara H, Miyashita K, Hosokawa M (2011) Synthesis of novel phospholipids that bind phenylalkanols and hydroquinone via phospholipase D-catalyzed transphosphatidylation. N Biotechnol 28:1–6

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Zhou R, Yang J-G, Wang Y-H, Wang W-F (2008) Insight into the enzymatic degumming process of soybean oil. J Am Oil Chem Soc 85:421–425

    Article  CAS  Google Scholar 

  • Yang H, Mu Y, Chen H, Xiu Z, Yang T (2013) Enzymatic synthesis of feruloylated lysophospholipid in a selected organic solvent medium. Food Chem 141:3317–3322

    Article  CAS  PubMed  Google Scholar 

  • Yon JO, Lee JS, Kim BG, Kim SD, Nam DH (2008) Immobilization of Streptomyces phospholipase D on a Dowex macroporous resin. Biotechnol Bioprocess Eng 13:102–107

    Article  CAS  Google Scholar 

  • Yu D, Ma Y, Xue SJ, Jiang L, Shi J (2013) Characterization of immobilized phospholipase A1 on magnetic nanoparticles for oil degumming application. LWT - Food Sci Technol 50:519–525

    Article  CAS  Google Scholar 

  • Zhan JF, Jiang ST, Pan LJ (2013) Immobilization of phospholipase A1 using a polyvinyl alcohol-alginate matrix and evaluation of the effects of immobilization. Braz J Chem Eng 30:721–728

    Article  CAS  Google Scholar 

  • Zhang L, Liang S, Hellgren LI, Jonsson GE, Xu X (2008) Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production. J Membrane Sci 325:895–902

    Article  CAS  Google Scholar 

  • Zhao T, No DS, Kim BH, Garcia HS, Kim Y, Kim IH (2014) Immobilized phospholipase A1-catalyzed modification of phosphatidylcholine with n-3 polyunsaturated fatty acid. Food Biochem 157:132–140

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants-in-aid from the Cross-ministerial Strategic Innovation Promotion Program (SIP) from Japan Science and Technology Agency, Japan.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hama, S., Ogino, C. & Kondo, A. Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes. Appl Microbiol Biotechnol 99, 7879–7891 (2015). https://doi.org/10.1007/s00253-015-6845-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6845-1

Keywords

Navigation