Skip to main content

Advertisement

Log in

Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander W, Trond EE, Hans-Kristian K, Sergey BZ, Mimmi TH (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microb Biotechnol 76:1209–1221

    Article  Google Scholar 

  • Antoni D, Zverlov V, Schwarz W (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–25

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Briens C, Piskorz J, Berruti F (2008) Biomass valorization for fuel and chemicals production—a review. Int J Chem React Eng 6:1–49

    Google Scholar 

  • Campenni' L, Nobre BP, Santos CA, Oliveira AC, Aires-Barros MR, Palavra AF, Gouveia L (2013) Carotenoids and lipids production of autotrophic microalga Chlorella protothecoides under nutritional, salinity and luminosity stress conditions. Appl Microbiol Biotechnol 97:1383–1393

    Article  PubMed  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  CAS  PubMed  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88:3454–3463

    Article  CAS  Google Scholar 

  • EN 14214 (2008) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods

  • FAO Aquatic Biofuels Working Group (2010) Algae-based biofuels: applications and co-products—review paper. FAO Aquatic Biofuels Working Group, Rome

  • Ferreira A, Marques AE, Batista AP, Marques P, Gouveia L, Silva C (2012) Biological hydrogen production by Anabaena sp.—yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrogen Energy 37:179–190

    Article  CAS  Google Scholar 

  • Ferreira AF, Ribeiro L, Batista AP, Marques PASS, Nobre BP, Palavra AMF, Silva PP, Gouveia L, Silva C (2013) A biorefinery from Nannochloropsis sp. microalga—energy and CO2 emission and economic analyses. Bioresour Technol 138:235–244

    Article  CAS  PubMed  Google Scholar 

  • Frengova G, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  PubMed  Google Scholar 

  • Giordano P, Scicchitano P, Locorotondo M, Mandurino C, Ricci G, Carbonara S, Gesualdo M, Zito A, Dachille A, Caputo P, Riccardi R, Frasso G, Lassandro G, Di Mauro A, Ciccone MM (2012) Carotenoids and cardiovascular risk. Curr Pharm Des 18:5577–5589

    Article  CAS  PubMed  Google Scholar 

  • González-Delgado ÁD, Kafarov V (2011) Microalgae based biorefinery: issues to consider. CT&F Cienc Tecnol Futuro 4:5–21

    Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Book SpringerBriefs. Springer, Heidelberg. doi:10.1007/978-3-642-17997

  • Huo Y, Cho K, Rivera J, Monte E, Shen C, Yan Y, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346–351

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Kim AL, Lee OK, Seong DH, Lee CG, Jung YT, Lee JW, Lee EY (2013) Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta. Bioresour Technol 132:197–201

    Article  PubMed  Google Scholar 

  • Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegget G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Control 10:456–469

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  PubMed  Google Scholar 

  • Lim DK, Garg S, Timmins M, Zhang E, Thomas-Hall S, Schuhmann H, Li Y, Schenk P (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. Plos One 7:e40751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu JH, Junchao JY, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398

    Article  PubMed  Google Scholar 

  • Lopes da Silva T, Roseiro JC, Reis A (2012) Applications and perspectives of multi-parameter flow cytometry to microbial biofuels production. TIBTECH 30:225–232

    Article  CAS  Google Scholar 

  • Maldonado I, Rodriguez-Amaya D, Scamparini A (2008) Carotenoids of yeasts isolated from Brazilian ecosystem. Food Chem 107:145–150

    Article  Google Scholar 

  • Marova I, Certik M, Breierova E (2011) Production of enriched biomass by carotenogenic yeasts—application of whole-cell yeast biomass to production of pigments and other lipid compounds. In: Matovic D (ed) Biomass—detection, production and usage. ISBN: 978-953-307-492-4. InTech, Rijeka. http://www.intechopen.com/books/biomass-detection-production-and-usage/production-ofenriched-biomass-by-carotenogenic-yeasts-application-of-whole-cell-yeast-biomass-to-pr. Accessed 5 Nov 2013

  • Marques AE, Barbosa TA, Jotta J, Tamagnini P, Gouveia L (2011) Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: light, nickel and CO2. J Biomass Bioenergy 35:4426–4434

    Article  CAS  Google Scholar 

  • Mathews JA, Tan H, Moore MJB, Bell G (2011) A conceptual lignocellulosic “feed+fuel” biorefinery and its application to the linked biofuel and cattle raising industries in Brazil. Energy Policy 39:4932–4938

    Article  Google Scholar 

  • Mostafa SSM, Shalaby EA, Mahmoud GI (2012) Cultivating microalgae in domestic wastewater for biodiesel production. Nat Sci Biol 4:56–65

    CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  CAS  PubMed  Google Scholar 

  • Nobre B, Villalobos BF, Barragán BE, Oliveira AC, Batista AP, Marques PASS, Sovotó H, Palavra AF, Gouveia L (2013) A biorefinery from Nannochloropsis sp. microalga—extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136. doi:10.1016/j.biortech.2012.11.084, Special Issue: Biorefinery

    Article  CAS  PubMed  Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  PubMed  Google Scholar 

  • Parmar NK, Singh A, Pandey E, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  PubMed  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of micro-algal derived biofuels. Biofuels Bioprod Bioref 3:431–440

    Article  CAS  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energy Rev 16:3053

    Article  Google Scholar 

  • Ramachandran U, Wrana N, Cicek N, Sparling R, Levin D (2011) Isolation and characterization of a hydrogen- and ethanol-producing Clostridium sp. strain URNW. Can J Microbiol 57:236–243

    Article  CAS  PubMed  Google Scholar 

  • Razani SH, Mousavi SM, Yeganeh HM, Marc I (2007) Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. J Microbiol Biotechnol 10:1591–1597

    Google Scholar 

  • Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1:93–100

    Article  Google Scholar 

  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011a) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Proc Biochem 46:210–218

    Article  CAS  Google Scholar 

  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011b) Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioproc Eng 16:23–33

    Article  CAS  Google Scholar 

  • Schneider T, Graeff-Hönninger S, French W, Hernandez R, Claupein W, Holmes W, Merkt N (2012) Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments. J Combust 15341:1–9. doi:10.1155/2012/153410

    Article  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Somashekar D, Joseph R (2000) Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium. World J Microbiol Biotechnol 16:491–493

    Article  CAS  Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Cardayre S, Keasling J (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  PubMed  Google Scholar 

  • Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy 38:5892–5901

    Article  Google Scholar 

  • Subhadra B, Edwards M (2010) Algal biofuel production using integrated renewable energy park approach in United States. Energy Policy 38:4897–4902

    Article  CAS  Google Scholar 

  • Subhadra BG, Edwards M (2011) Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Appl Energy 88:3515–3523

    Article  Google Scholar 

  • Subhadra BG, Grinson-George (2011) Algal biorefinery based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 9:2–13

    Article  Google Scholar 

  • Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:3202–3242

    Article  CAS  PubMed  Google Scholar 

  • USDOE (2009) National algal biofuel technology roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program, Washington, DC

  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2012) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149. doi:10.1016/j.biortech.2012.10.135

    Article  PubMed  Google Scholar 

  • Waltz E (2009) Biotech's green gold? Nat Biotechnol 27:15–18

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Bioref 4:287–295

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is part of the research projects “Symbioalga—New symbiotic approach for a truly sustainable integrated microalgae production directed to a biorefinery platform” (FCOMP-01-0124-FEDER-013935), “Carofuel—New process for a sustainable microbial biodiesel production: The yeast Rhodotorula glutinis biorefinery as a source of biodiesel, biogas and carotenoids” (PTDC/AAC-AMB/116594/2010) sponsored by the Portuguese Foundation for the Science and Technology (“Fundação para a Ciência e a Tecnologia”—FCT), also supported by FEDER funding through COMPETE – Programa Operacional Factores de Competitividade and “WW-SIP—From Wastewater Treatment Plants To Biorefineries.” (LIFE + Environmental Policy and Governance 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, T.L., Gouveia, L. & Reis, A. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol 98, 1043–1053 (2014). https://doi.org/10.1007/s00253-013-5389-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5389-5

Keywords

Navigation