Skip to main content
Log in

Marine lipid-based liposomes increase in vivo FA bioavailability

  • Articles
  • Published:
Lipids

Abstract

Liposomes made from an extract of natural marine lipids and containing a high n-3 PUFA lipid ratio were envisaged as oral route vectors for FA supplements in order to increase PUFA bioavailability. The absorption of FA in thoracic lymph duct-cannulated rats, after intragastric feeding of dietary fats in the form of liposomes or fish oil, was compared. Lipid and FA analyses were also performed on feces. Five mole percent α-tocopherol was added to fish oil and incorporated into the liposome membrane. The influence of α-tocopherol on FA lymph recovery was also investigated. In vivo, FA absorption in rats was favored by liposomes (98±1%) compared to fish oil (73±6%). In the same way, the DHA proportion in lymph was higher after liposome ingestion (78%) than after fish oil ingestion (47%). However, phospholipid (PL) concentration in lymph was not affected by the kind of dietary fat ingested, suggesting a PL regulation due to de novo TAG synthesis. The influence of the intramolecular distribution of n-3 PUFA in dietary lipids (TAG and PL) on the intramolecular FA distribution in TAG of chylomicrons was also investigated. The results obtained showed that the distribution of n-3 PUFA esterified on the sn-2 of chylomicron TAG depended on the lipid source administered. All these results correlated, at least partly, with in vitro liposome behavior under conditions that mimic those of the gastrointestinal tract. As a whole, this study pointed out that marine PL may constitute an attractive material for the development of liposomes as oral PUFA supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MUFA:

monounsaturated FA

PL:

phospholipid

SFA:

saturated FA

References

  1. Harris, W.S. (1989) Fish Oils and Plasma Lipid and Lipoprotein Metabolism in Humans: A Critical Review, J. Lipid Res. 30, 785–807.

    PubMed  CAS  Google Scholar 

  2. Vognild, E., Elvevoll, E.O., Brox, J., Olsen, R.L., Barstad, H., Aursand, M., and Osterud, B. (1998) Effects of Dietary Marine Oils and Olive Oil on Fatty Acid Composition, Platelet Membrane Fluidity, Platelet Responses and Serum Lipids in Healthy Humans, Lipids 33, 427–436.

    Article  PubMed  CAS  Google Scholar 

  3. Von Schacky, C. (2000) n-3 Fatty Acids and the Prevention of Coronary Atherosclerosis, Am. J. Clin. Nutr. 71, 224S-227S.

    Google Scholar 

  4. Kelley, D.S., Taylor, P.C., Nelson, G.J., Schmidt, P.C., Ferreti, A., Erickson, K.L., Yu, R., Chandra, R.K., and Mackey, B.E. (1999) Docosahexaenoic Acid Ingestion Inhibits Natural Killer Cell Activity and Production of Inflammatory Mediators in Young Healthy Men, Lipids 34, 317–324.

    Article  PubMed  CAS  Google Scholar 

  5. Belluzzi, A., Boschi, S., Brignola, C., Munarini, A., Cariani, G., and Miglio, F. (2000) Polyunsaturated Fatty Acids and Inflammatory Bowel Disease, Am. J. Clin. Nutr. 71, 339S-342S.

    PubMed  CAS  Google Scholar 

  6. Ziboh, V.A., Miller, C.C., and Cho, Y. (2000) Metabolism of Polyunsaturated Fatty Acids by Skin Epidermal Enzymes: Generation of Antiinflammatory and Antiproliferative Metabolites, Am. J. Clin. Nutr. 71, 361S-366S.

    PubMed  CAS  Google Scholar 

  7. Bimbo, A.P., and Crowther, J.B. (1992) Marine Oils: Fishing for Industrial Uses, INFORM 3, 988–1001.

    Google Scholar 

  8. Marsen, T.A., Pollok, M., Oette, K., and Baldamus, C.A. (1992) Pharmacokinetics of Omega-3-Fatty Acids During Ingestion of Fish Oil Preparations, Prostaglandins Leukot, Essent. Fatty Acids 46, 191–196.

    Article  CAS  Google Scholar 

  9. Wallace, J.M., McCabe, A.J., Robson, P.J., Keogh, M.K., Murray, C.A., Kelly, P.M., Marquez-Ruiz, G., McGlynn, H., Gilmore, W.S., and Strain, J.J. (2000) Bioavailability of n-3 Polyunsaturated Fatty Acids (PUFA) in Foods Enriched with Microencapsulated Fish Oil, Ann. Nutr. Metab. 44, 157–162.

    Article  PubMed  CAS  Google Scholar 

  10. El Boustani, S., Colett, C., Monnier, L., Descomps, D., Crastes de Paulet, A., and Mendy, F. (1987) Enteral Absorption in Man of Eicosapentaenoic Acid in Different Chemical Forms, Lipids 22, 711–714.

    PubMed  Google Scholar 

  11. Lawson, L.D., and Hughes, B.G. (1988) Human Absorption of Fish Oil Fatty Acids as Triacylglycerols, Free Fatty Acids or Ethyl Esters, Biochem. Biophys. Res. Commun. 152, 328–335.

    Article  PubMed  CAS  Google Scholar 

  12. Krokan, H.E., Bjerve, K.S., and Mork, E. (1993) The Enteral Biovailability of Eicosapentaenoic Acid and Docosahexaenoic Acid Is as Good from Ethyl Esters as from Glyceryl Esters in Spite of Lower Hydrolytic Rates by Pancreatic Lipase in vitro, Biochim. Biophys. Acta 1168, 59–67.

    PubMed  CAS  Google Scholar 

  13. Ikeda, I., Sasaki, E., Yasunami, H., Nomiyama, S., Nakayama, M., Sugano, M., Imaizumi, K., and Yazawa, K. (1995) Digestion and Lymphatic Transport of Eicosapentaenoic and Docosahexaenoic Acids Given in the Form of Triacylglycerol, Free Acid and Ethyl Ester in Rats, Biochim. Biophys. Acta 1259, 297–304.

    PubMed  Google Scholar 

  14. Degrace, P., Caselli, C., Rayo, J.M., and Bernard, A. (1996) Intestinal Lymph Absorption of Butter, Corn Oil, Cod Liver Oil, Menhaden Oil, and Eicosapentaenoic and Docosahexaenoic Acid Ethyl Esters in Rats, Lipids 31, 405–414.

    Article  PubMed  CAS  Google Scholar 

  15. Bottino, N.R., Vandenburg, G.A., and Reiser, R. (1967) Resistance of Certain Long-Chain Polyunsaturated Fatty Acids of Marine Oils to Pancreatic Lipase Hydrolysis, Lipids 2, 489–493.

    CAS  PubMed  Google Scholar 

  16. Yang, L.Y., Kuksis, A., and Myher, J.J. (1990) Lipolysis of Menhaden Oil Triacylglycerols and the Corresponding Fatty Acid Alkyl Esters by Pancreatic, Lipase in vitro: A Reexamination, J. Lipid Res. 31, 137–148.

    PubMed  CAS  Google Scholar 

  17. Hofmann, A.F. (1976) Fat Digestion: The Interaction of Lipid Digestion Products with Micellar Bile Acid Solutions, in Lipid Absorption: Biochemical and Clinical Aspects (Rommel, K., and Bohmer, R., eds.), pp. 3–18, MTP Press, Lancaster, United Kingdom.

    Google Scholar 

  18. Ikeda, I., Yoshida, H., and Imaizumi, K. (1997) Effects of Triolein or Oleic Acid on Lymphatic Recovery of Docosahexaenoic Acid Given as Ethyl Ester and Their Intramolecular Distribution in Lymph Triglyceride of Rats, Lipids 32, 949–952.

    Article  PubMed  CAS  Google Scholar 

  19. Brockam, H.L. (1984) General Features of Lipolysis: Reaction Scheme, Interfacial Structure and Experimental Approaches, in Lipases (Borgström, B., and Brockam, H.L., eds), pp. 3–46, Elsevier, Dordrecht, The Netherlands.

    Google Scholar 

  20. Armand, A., Pasquier, B., André, M., Borel, P., Senft, M., Peyrot, J., Salducci, J., Portugal, H., Jaussan, V., and Lairon, D. (1999) Digestion and Absorption of 2 Fat Emulsions with Different Droplet Sizes in the Human Digestive Tract. Am. J. Clin. Nutr. 70, 1096–1106.

    PubMed  CAS  Google Scholar 

  21. Christensen, M., Høy, C.E., Becker, C., and Redgrave, T. (1995) Intestinal Absorption and Lymphatic Transport of Eicosapentaenoic (EPA), Docosahexaenoic (DHA), and Decanoic Acids: Dependence on Intramolecular Triacylglycerol Structure, Am. J. Clin. Nutr. 61, 56–61.

    PubMed  CAS  Google Scholar 

  22. Clark, R.M., and She, L. (1995) Lymphatic Fatty Acids from Rats Fed Human Milk and Formula Supplemented with Fish Oil, Lipids 30, 673–676.

    PubMed  CAS  Google Scholar 

  23. Fürst, P., and Kuhn, K.S. (2000) Fish Oil Emulsions: What Benefits Can They Bring? Clin. Nutr. 19, 7–14.

    Article  PubMed  Google Scholar 

  24. Carnielli, V., Verlato, G., Perderzini, F., Luijendijk, I., Boerlage, A., Pedrotti, D., and Sauer, P. (1998) Intestinal Absorption of Long-Chain Polyunsaturated Fatty Acids in Preterm Infants Fed Breast Milk or Formula, Am. J. Clin. Nutr. 67, 97–103.

    PubMed  CAS  Google Scholar 

  25. Song, J.H., Fujimoto, K., and Miyazawa, T. (2000) Polyunsaturated (n-3) Fatty Acids Susceptible to Peroxidation Are Increased in Plasma and Tissue Lipids of Rats Fed Docosahexaenoic Acid-Containing Oils, J. Nutr. 130 3028–3033.

    PubMed  CAS  Google Scholar 

  26. Nacka, F., Cansell, M., Gouygou, J.P., Gerbeaud, C., Méléard, P., and Entressangles, B. (2001) Physical and Chemical Stability of Marine Lipid-Based Liposomes Under Acid Conditions, Colloids Surf. B: Biointerfaces 20, 257–266.

    Article  CAS  Google Scholar 

  27. Nacka, F., Cansell, M., and Entressangles, B. (2001) In vitro Behavior of Marine Lipid-Based Liposomes. Influence of pH, Temperature, Bile Salts, and Phospholipase A2, Lipids 36, 35–42.

    Article  PubMed  CAS  Google Scholar 

  28. Baudimant, G., Maurice, M., Landrein, A., Durand, G., and Durand, P. (1996) Purification of Phosphatidylcholine with High Content of DHA from Squid Illex argentinus by Countercurrent Chromatography, J. Liq. Chromatogr. Rel. Technol. 19, 1793–1804.

    CAS  Google Scholar 

  29. Nacka, F., Cansell, M., Méléard, P., and Combe, N. (2001) Incorporation of α-Tocopherol in Marine Lipid-Based Lipsomes. In vitro and in vivo Studies, Lipids 36, 1313–1320.

    Article  PubMed  CAS  Google Scholar 

  30. Bollman, J.L., Cain, J.C., and Grindlay, J.H. (1948) Techniques for the Collection of Lymph from the Liver, Small Intestine, or Thoracic Duct of Rat, J. Lab. Clin. Med. 33, 1349–1352.

    CAS  PubMed  Google Scholar 

  31. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957) A Simple Method for Isolation and Purification of Total Lipids from Animal Tissues, J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  32. Wolff, R., Combe, N., and Entressangles, B. (1985) Cardiolipides: Purification et Hydrolyse Enzymatique Rapide par la Phospholipase A2, Rev. Fr. Corps Gras 32, 251–255.

    Google Scholar 

  33. Morisson, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.

    Google Scholar 

  34. Becker, C.C., Rosenquist, A., and Holmer, G. (1993) Regiospecific Analysis of Triacylglycerols Using Allylmagnesium Bromide, Lipids 28, 147–149.

    Google Scholar 

  35. Turon, F., Bachain, P., Caro, Y., Pina, M., and Graille, J. (2002) A Direct Method for Regiospecific Analysis of TAG Using α-MAG, Lipids 37, 817–821.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshida, H., Kumamaru, J., Mawatari, M., Ikeda, I., Imaizumi, K., Tsuji, H., and Seto, A. (1996) Lymphatic Absorption of Seal and Fish Oils and Their Effect on Lipid Metabolism and Eicosanoid Production in Rats, Biosci. Biotechnol. Biochem. 60, 1293–1298.

    PubMed  CAS  Google Scholar 

  37. Ames, B.N. (1966) Assay of Inorganic Phosphate, Total Phosphate and Phosphatase, Methods Enzymol. 18, 115–118.

    Article  Google Scholar 

  38. Mordret, F., Coustille, J.L., and Taconne, L. (1984) Dosage Rapide du Cholestérol dans les Margarines, Rev. Fr. Corps Gras 12, 503–507.

    Google Scholar 

  39. Combe, N., Constantin, M.J., and Entressangles, B. (1981) Lymphatic Absorption of Nonvolatile Oxidation Products of Heated Oils in the Rat, Lipids 16, 8–14.

    PubMed  CAS  Google Scholar 

  40. Boulos, P., and Combe, N. (2000) Biodisponibilité de l'Acide α-Linolénique: Intérêt d'une Huile Combinée, O. C. L. 7, 101–104.

    CAS  Google Scholar 

  41. Chen, I., Hotta, S.S., Ikeda, I., Cassidy, M.M., Sheppard, A.J., and Vahouny, G.V. (1987) Digestion, Absorption and Effects on Cholesterol Absorption of Menhaden Oil, Fish Oil Concentrate and Corn Oil by Rats, J. Nutr. 117, 1676–1680.

    PubMed  CAS  Google Scholar 

  42. Renaud, S.C., Ruf, J.C., and Petithory, D. (1995) The Positional Distribution of Fatty Acids in Palm Oil and Lard Influences Their Biologic Effects in Rats, J. Nutr. 125, 229–237.

    PubMed  CAS  Google Scholar 

  43. Christensen, M., and Høy, C.E. (1996) Effect of Dietary Triacylglycerol Structure on Triacylglycerols of Resultant Chylomicrons from Fish Oil-and Seal Oil-Fed Rats, Lipids 31, 341–344.

    PubMed  CAS  Google Scholar 

  44. Yoshida, H., Mawatari, M., Ikeda, I. Imaizumi, K., Seto, A., and Tsuji, H. (1999) Effect of Dietary Seal and Fish Oils on Triacylglycerol Metabolism in Rats, J. Nutr. Sci. Vitaminol. 45, 411–421.

    PubMed  CAS  Google Scholar 

  45. Baxter, J.H. (1966) Origin and Characteristics of Endogenous Lipid in Thoracic Duct Lymph in Rats, J. Lipid Res. 7, 158–166.

    PubMed  CAS  Google Scholar 

  46. Shrivastava, B.K., Redgrave, T.G., and Simmonds, W.J. (1967) The Source of Endogenous Lipid in the Thoracic Duct Lymph of Fasting Rats. Quart. J. Exp. Physiol. 52, 305–312.

    PubMed  CAS  Google Scholar 

  47. Mortimer, B.C., Simmonds, W.J., Joll, C.A., Stick, R.V., and Redgrave, T.G. (1988) Regulation of the Metabolism of Lipid Emulsion Model Lipoproteins by a Saturated Acyl Chain at the 2-Position of Triacylglycerol, J. Lipid Res. 29, 713–720.

    PubMed  CAS  Google Scholar 

  48. Redgrave, T.G., Kodali, D.R., and Small, D.M. (1988) The Effect of Triacyl-sn-glycerol Structure on the Metabolism of Chylomicrons and Triacylglycerol-Rich Emulsions in the Rat, J. Biol. Chem. 11, 5118–5123.

    Google Scholar 

  49. Saito, H., and Ishihara, K. (1997) Antioxidant Activity and Active Sites of Phospholipids as Antioxidants, J. Am. Oil Chem. Soc. 74, 1531–1536.

    CAS  Google Scholar 

  50. Song, J.H., Inoue, Y., and Miyazawa, T. (1997) Oxidative Stability of Docosahexaenoic Acid-Containing Oils in the Form of Phospholipids, Triacylglycerols and Ethyl Esters, Biosci. Biotechnol. Biochem. 61, 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  51. Nara, E., Miyashita, K., Ota, T., and Nadachi, Y. (1998) The Oxidative Stability of Polyunsaturated Fatty Acids in Salmon Egg Phosphatidylcholine Liposomes, Fish. Sci. 64, 282–286.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maud Cansell.

About this article

Cite this article

Cansell, M., Nacka, F. & Combe, N. Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids 38, 551–559 (2003). https://doi.org/10.1007/s11745-003-1341-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1341-0

Keywords

Navigation