Skip to main content
Log in

Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The temporal and spatial expression patterns of stable QTL for plant height and their influences on yield were characterized.

Abstract

Plant height (PH) is a complex trait in wheat (Triticum aestivum L.) that includes the spike length (SL) and the internode lengths from the first to the fifth internode, which are counted from the top and abbreviated as FIRITL, SECITL, THIITL, FOUITL, and FIFITL, respectively. This study identified eight putative additive quantitative trait loci (QTL) for PH. In addition, unconditional and conditional QTL mapping were used to analyze the temporal and spatial expression patterns of five stable QTL for PH. qPh-3A mainly regulated SL, FIRITL, and FIFITL to affect PH during the booting–heading stage (BS–HS); qPh-3D regulated all internode lengths to affect PH, especially during the BS–HS; before HS, qPh-4B mainly affected FIRITL, SECITL, THIITL, and FOUITL and qPh-5A.1 mainly affected SECITL, THIITL, and FOUITL to regulate PH; and qPh-6B mainly regulated FIRITL to affect the PH after the booting stage (BS). qPhdv-4B, a QTL for the response of PH to nitrogen stress, was stable and co-localized with qPh-4B. All five stable QTL, except for qPh-3A, were related to the 1000 kernel weight and yield per plant. Regions of qPh-3A, qPh-3D, qPh-4B, qPh-5A.1, and qPh-6B showed synteny to parts of rice chromosomes 1, 1, 3, 9, and 2, respectively. Based on comparative genomics analysis, Rht-B1b was cloned and mapped in the CI of qPh-4B. This report provides useful information for fine mapping of the stable QTL for PH and the genetic improvement of wheat plant type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PH:

Plant height

PHC:

Plant height components

SL:

Spike length

SEL:

Spike extension length

FIRITL:

The first internode length from the top

SECITL:

The second internode length from the top

THIITL:

The third internode length from the top

FOUITL:

The fourth internode length from the top

FIFITL:

The fifth internode length from the top

JS:

Jointing stage

BS:

Booting stage

HS:

Heading stage

PVE:

Phenotypic variance explanation

H (L) N:

High (Low) nitrogen

PHDV:

The difference PH values for each line in each trial between the HN and LN

YRT:

Yield-related trait

SPP:

Spikes per plant

KNPS:

Kernel number per spike

YPP:

Yield per plant

TKW:

1000 kernel weight

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Ali ML, Baenziger PS, Ajlouni ZA, Campbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I (2011) Mapping QTL for agronomic traits on wheat chromosome 3 A and a comparison of recombinant inbred chromosome line populations. Crop Sci 5:553–556

    Article  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Azadi A, Mardi M, Hervan EM, Mohammadi SA, Moradi F, Tabatabaee MT, Pirseyedi SM, Ebrahimi M, Fayaz F, Kazemi M, Ashkani S, Nakhoda B, Mohammadi-Nejad G (2015) QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep 33:102–120

    Article  CAS  Google Scholar 

  • Bai C, Liang Y, Hawkesford MJ (2013) Identification of QTL associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Börner A, Röder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  • Cao G, Zhu J, He C, Gao Y, Yan J, Wu P (2001) Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160

    Article  CAS  Google Scholar 

  • Cavanagh C, Chao S, Wang S, Huang B, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira G, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Silva M, Bockelman H, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Phillips AL, Condon AG, Parry MA, Hu YG (2013) GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS One 8:e62285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WY, Liu ZM, Deng GB, Pan ZF, Liang JJ, Zeng XQ, Tashi NM, Long H, Yu MQ (2014) Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses. Genet Mol Res 13:1909–1925

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Gao R, Wang H, Wen M, Xiao J, Bian N, Zhang R, Hu W, Cheng S, Bie T, Wang X (2015) Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica 203:583–594

    Article  Google Scholar 

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266

    Article  CAS  Google Scholar 

  • Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517–1536

    Article  PubMed  Google Scholar 

  • Cui F, Fan X, Zhao C, Zhang W, Chen M, Ji J, Li J (2014) A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet 15:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui F, Fan X, Chen M, Zhang N, Zhao C, Zhang W, Han J, Ji J, Zhao X, Yang L, Zhao Z, Tong Y, Wang T, Li J (2016) QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theor Appl Genet 129:469–484

    Article  CAS  PubMed  Google Scholar 

  • Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  CAS  PubMed  Google Scholar 

  • Ellis MH, Bonnett DG, Rebetzke GJ (2007) A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157:209–214

    Article  CAS  Google Scholar 

  • Fan X, Cui F, Zhao C, Zhang W, Yang L, Zhao X, Han J, Su Q, Ji J, Zhao Z, Tong Y, Li J (2015) QTL for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breeding 35:1–16

    Article  CAS  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale MD, Law CN, Worland AJ (1975) The chromosomal location of a major dwarfing gene from Norin 10 in new British semi-dwarf wheats. Heredity 35:417–421

    Article  Google Scholar 

  • Gordon A, Basler R, Bansept-Basler P, Fanstone V, Harinarayan L, Grant PK, Birchmore R, Bayles RA, Boyd LA, O’Sullivan DM (2015) The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles. Theor Appl Genet 128:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171

    Article  Google Scholar 

  • Guo LB, Xing YZ, Mei HW, Xu CG, Shi CH, Wu P, Luo LJ (2005) Dissection of component QTL expression in yield formation in rice. Plant Breed 124:127–132

    Article  CAS  Google Scholar 

  • Haque M, Martinek P, Watanabe N, Kuboyama T (2011) Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat. Cereal Res Commun 39:171–178

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the Green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • Humbert S, Subedi S, Cohn J, Zeng B, Bi Y, Chen X, Zhu T, McNicholas P, Rothstein S (2013) Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genom 14:3

    Article  CAS  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene. GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda A, Sonoda Y, Vernieri P, Perata P, Hirochika H, Yamaguchi J (2002) The slender rice mutant, with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level. Plant Cell Physiol 43:974–979

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Satol Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5 A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Keller M, Karutz C, Schmid JE, Stamp P, Winzeler M, Keller B, Messmer MM (1999) Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor Appl Genet 98:1171–1182

    Article  CAS  Google Scholar 

  • Khattak GS, Ashraf M, Haq MA, McNeilly T, Rha ES (2002) Genetic basis of plant height and its degree of indetermination in mungbean (Vigna radiata (L.) Wilczek). Hereditas 137:52–56

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex trait: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  • Law CN, Snape JW, Worland AJ (1973) The genetical relationship between height and yield in wheat. Heredity 40:133–151

    Article  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007a) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L (2007b) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Article  Google Scholar 

  • Li AX, Yang WL, Lou XY, Liu DC, Sun JZ, Guo XL, Wang J, Li YW, Zhan KH, Ling HQ, Zhang AM (2013) Novel natural allelic variations at the rht-1 Loci in wheat. J Integr Plant Biol 55:1026–1037

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D et al (2013) Draft genome of the wheat A-genome progenitor triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhou R, Dong Y, Li P, Jia J (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  CAS  PubMed  Google Scholar 

  • Liu GF, Yang J, Xu HM, Hayat Y, Zhu J (2008) Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.). Aust J Agric Res 59:189–195

    Article  CAS  Google Scholar 

  • Liu G, Xn SB, Ni ZF, Xie CJ, Qin DD, Li J, Lu LH, Zhang JP, Peng HR, Sun QX (2011) Molecular dissection of plant height QTL using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chinese Sci Bull 13:1897–1903

    Article  Google Scholar 

  • Liu S, Griffey CA, Hall MD, McKendry AL, Chen J, Brooks WS, Brown-Guedira G, Van Sanford D, Schmale DG (2013) Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars. Theor Appl Genet 126:2485–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Lillemo M, Skinnes H, He X, Shi J, Ji F, Dong Y, Bjornstad A (2015a) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    Article  Google Scholar 

  • Lu Y, Xing L, Xing S, Hu P, Cui C, Zhang M, Xiao J, Wang H, Zhang R, Wang X, Chen P, Cao A (2015b) Characterization of a putative new semi-dominant reduced height gene Rht_NM9, in wheat (Triticum aestivum L.). J Genet Genom 42:685–698

    Article  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC domain’. Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. In: Proceedings of 12th International Wheat Genetics Symposium. In, Yokohama

  • Mengistu N, Baenziger PS, Eskridge KM, Dweikat I, Wegulo SN, Gill KS, Mujeeb-Kazi A (2012) Validation of QTL for grain yield-related traits on wheat chromosome 3 A using recombinant inbred chromosome lines. Crop Sci 52:1622

    Article  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales JE, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution genes’ encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Peng ZS, Li X, Yang ZJ, Liao ML (2011) A new reduced height gene found in the tetraploid semi-dwarf wheat Landrace Aiganfanmai. Genet Mol Res 10:2349–2357

    Article  CAS  PubMed  Google Scholar 

  • Pinthus MJ (1973) Lodging in wheat, barley and oats: the phenomenon, its causes and preventative measures. Adv Agron 25:209–263

    Article  CAS  Google Scholar 

  • Prashant R, Kadoo N, Desale C, Kore P, Dhaliwal HS, Chhuneja P, Gupta V (2012) Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL × QTL and genotype × environment interactions. J Cereal Sci 56:432–439

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Ellis MH, Bonnett DG, Condon AG, Falk D, Richards RA (2011) The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Res 124:323–331

    Article  Google Scholar 

  • Rota ML, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genom 4:34–46

    Article  Google Scholar 

  • Rustgi S, Shafqat MN, Kumar N, Baenziger PS, Ali ML, Dweikat I, Campbell BT, Gill KS (2013) Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: bridging gaps between QTL and underlying genes. PLoS ONE 8:e70526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saville RJ, Gosman N, Burt CJ, Makepeace J, Steed A, Corbitt M, Chandler E, Brown JK, Boulton MI, Nicholson P (2012) The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J Exp Botany 63:1271–1283

    Article  CAS  Google Scholar 

  • Snape JW, Law CN, Worland AJ (1977) Whole-chromosome analysis of height in wheat. Heredity 38:25–36

    Article  Google Scholar 

  • Stanca AM, Jenkins G, Hanson PR (1979) Varietal responses in spring barley to natural and artificial lodging and to a growth regulator. J Agric Sci 93:440–456

    Article  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–233

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Li W, Zhang Z, Chen Q, Ning H, Qiu L, Sun G (2006) Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L.). Theor Appl Genet 112:665–673

    Article  CAS  PubMed  Google Scholar 

  • Sutka J, Kovács G (1987) Chromosomal location of dwarfing gene Rht12 in wheat. Euphytica 36:521–523

    Article  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Tyagi S, Mir RR, Balyan HS, Gupta PK (2015) Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201:367–380

    Article  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yao Y, Peng H, Zhang Y, Lu L, Ni Z, Sun Q (2009) The relationship of differential expression of genes in GA biosynthesis and response pathways with heterosis of plant height in a wheat diallel cross. Chin Sci Bull 54:3029–3034

    Article  CAS  Google Scholar 

  • Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R (2010) QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458

    Article  Google Scholar 

  • Wang Z, Cui Y, Chen Y, Zhang D, Liang Y, Zhang D, Wu Q, Xie J, Ouyang S, Li D, Huang Y, Lu P, Wang G, Yu M, Zhou S, Sun Q, Liu Z (2014) Comparative genetic mapping and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. Theor Appl Genet 127:1741–1751

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Long Y, Liu L, Zhao Y, Tian J, Zhao W, Li B, Chen L, Chao H, Li M (2015) Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theor Appl Genet 128:1175–1192

    Article  PubMed  Google Scholar 

  • Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EM, Maier A, Schwechheimer C (2007) The della domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19:1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GLA, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, WebsteR T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotech J 14:1195–1206

    Article  CAS  Google Scholar 

  • Worland AJ, Law CN, Petrovic S (1990) Height reducing genes and their importance to Yugoslavian winter wheat varieties. Savremena Poljoprivreda 38:245–258

    Google Scholar 

  • Wu X, Wang Z, Chang X, Jing R (2010) Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot 61:2923–2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würschum T, Liu W, Busemeyer L, Tucker MR, Reif JC, Weissmann EA, Hahn V, Ruckelshausen A, Maurer HP (2014) Mapping dynamic QTL for plant height in triticale. BMC Genet 15:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J, Zhu J, He C, Benmoussa M, Wu P (1998) Molecular dissection of developmental behavior of PH in Rice (Oryza sativa L.). Genetics 150:1257–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Xing Y, Li S, Ding J, Yue B, Deng K, Li Y, Zhu Y (2006) Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.). Hereditas 143:236–245

    Article  PubMed  Google Scholar 

  • Youssefian S, Kirby EJM, Gale MD (1992a) Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 1. Effects on development of the ear, stem and leaves. Field Crops Res 28:179–190

    Article  Google Scholar 

  • Youssefian S, Kirby EJM, Gale MD (1992b) Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crops Res 28:191–210

    Article  Google Scholar 

  • Yu M, Mao S, Chen G, Pu Z, Wei Y, Zheng Y (2014) QTL for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level. Euphytica 200:95–108

    Article  Google Scholar 

  • Zhang Y, Ni Z, Yao Y, Nie X, Sun Q (2007) Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet 8:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hao C, Ren Q, Chang X, Liu G, Jing R (2011) Association mapping of dynamic developmental plant height in common wheat. Planta 234:891–902

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Dell B, Biddulph B, Drake-Brockman F, Walker E, Khan N, Wong D, Hayden M, Appels R (2013) Wild-type alleles of Rht-B1 and Rht-D1 as independent determinants of thousand-grain weight and kernel number per spike in wheat. Mol Breed 32:771–783

    Article  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants from the National Basic Research Program of China (2014CB138100), National Natural Science Foundation of China (31471573), Strategic Priority Research Program of Chinese Academy of Sciences (XDA08030107), the Youth Innovation Promotion Association (2016095), Hebei Provincial Science and Technology Research and Development Project (16226320D), and China Agriculture Research System (CARS-03-01B). We gratefully acknowledge the generous assistance and technical support from Compass Biotechnology Company (Beijing, China), and we also want to thank Miss Liu Shuai for her warm and thoughtful service.

Author Contribution Statement

Na Zhang, Fa Cui, Xiaoli Fan and Junming Li designed research; Fa Cui, Xiaoli Fan, Na Zhang, Chunhua Zhao and Mei Chen conducted genotyping of the KJ-RIL population; Fa Cui, Xiaoli Fan, Na Zhang, Chunhua Zhao, Wei Zhang, Xueqiang Zhao, Lijuan Yang, Ji Jun, Jie Han, Mei Chen, Dongcheng Liu, Yiping Tong, Zongwu Zhao and Junming Li conducted phenotyping of the KJ-RIL population; Na Zhang, Fa Cui and Xiaoli Fan analyzed data and wrote the paper; Junming Li, Aimin Zhang and Tao Wang had primary responsibility for final content. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fa Cui or Junming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All of the authors have read and have abided by the statement of ethical standards for manuscripts submitted to Theoretical and Applied Genetics.

Additional information

Communicated by Ian Mackay.

N. Zhang, X. Fan and F. Cui have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Fan, X., Cui, F. et al. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet 130, 1235–1252 (2017). https://doi.org/10.1007/s00122-017-2884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2884-6

Keywords

Navigation