Skip to main content

Abstract

The productivity of crops is heavily depending on microbial communities present in rhizospheric soil; within the last few decades, PGPR has emerged as significant and promising tools for the sustainable agriculture practices. PGPR related to Bacillus spp. as symbiotic with plant roots or free-living in rhizosphere contribute significantly to the viability, development, and yield of plants under biotic and abiotic challenges. The Bacillus species are rod-shaped, Gram-positive, endosporic, aerobic, or facultative anaerobic and ubiquitous in nature. Many Bacillus species, e.g., B. megaterium, B. circulans, B. coagulans, B. subtilis, B. azotofixans, B. macerans, B. velezensis, etc. are extensively researched for their PGPR actions. Enhancement of nutrient uptake (N, P, K, and other vital minerals) and regulation of plant hormones are direct actions of PGPR, while promoting plant growth by inhibiting plant pathogen and induction of ISR are indirect actions of PGPR. The genus Bacillus holds largest share in microbe-based agricultural and commercial products. Due to the greater efficacy of production of metabolites and spore-forming nature of Bacillus spp., which increases the life span of cells in commercially manufactured products, Bacillus-based biofertilizers are more active than Pseudomonas-based formulations. The Bacillus species are frequently regarded as an ideal candidate for bioformulations because of their rapid growth, ease of handling, and better colonizing abilities. The Bacillus-based bioformulations for broad-spectrum application against several biotic and abiotic issues are also addressed. In this chapter we will discuss about the mechanism of Bacillus-mediated crop protection and their wide application. PGPR traits of Bacillus are discussed in terms of nutrient uptake, siderophore production, stimulation and production of phytohormone and volatile organic compounds (VOCs), antimicrobial compounds, CRY proteins, and abiotic and biotic stress tolerance. Induction of induced systemic resistance (ISR) in Bacillus inoculated plants and its molecular mechanism is also discussed in this chapter. Bacillus-mediated abiotic and biotic stress tolerance in different host, possible mechanisms, and their effects are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Daim IA, Bejai S, Meijer J (2019) Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Sci Rep 9(1):16282

    Article  PubMed  PubMed Central  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed M, Rauf M, Mukhtar Z, Saeed NA (2017) Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environ Sci Pollut Res 24:26983–26987

    Article  Google Scholar 

  • Akram W, Anjum T, Ali B (2016) Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162, which involves extensive re-modulation in metabolomics of tomato to protect against fusarium wilt. Front Plant Sci 7:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Alaylar B (2022) Isolation and characterization of culturable endophytic plant growth-promoting Bacillus species from Mentha longifolia L. Turk J Agric For 46(1):73–82

    CAS  Google Scholar 

  • Ali SS, Vidhale NN (2013) Bacterial siderophore and their application: a review. Int J Curr Microbiol App Sci 2(12):303–312

    Google Scholar 

  • Ali N, Swarnkar MK, Veer R, Kaushal P, Pati AM (2023) Temperature-induced modulation of stress-tolerant PGP genes bioprospected from Bacillus sp. IHBT-705 associated with saffron (Crocus sativus) rhizosphere: A natural-treasure trove of microbial biostimulants. Frontiers. Plant Sci 14:1141538

    Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CM, Bakker PA (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and pseudomonas sp. Ps14. Biol Control 65(1):14–23

    Article  Google Scholar 

  • Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier JF, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7(6):e01664–e01616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Andy AK, Rajput VD, Burachevskaya M, Gour VS (2023) Exploring the identity and properties of two bacilli strains and their potential to alleviate drought and heavy metal stress. Horticulturae 9(1):46

    Article  Google Scholar 

  • Ansari FA, Ahmad I, Pichtel J (2019) Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Appl Soil Ecol 143:45–54

    Article  Google Scholar 

  • Antar M, Gopal P, Msimbira LA, Naamala J, Nazari M, Overbeek W et al (2021) Inter-organismal signaling in the rhizosphere. In: Rhizosphere biology: Interactions between microbes and plants, pp 255–293

    Chapter  Google Scholar 

  • Antoun H, Prévost D (2006) Ecology of plant growth promoting rhizobacteria. In: PGPR: Biocontrol and biofertilization, pp 1–38

    Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:1–12

    Article  Google Scholar 

  • Arun KD, Sabarinathan KG, Gomathy M, Kannan R, Balachandar D (2020) Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria. J Basic Microbiol 60(9):768–786

    Article  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62(11):4081–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asari S, Tarkowská D, Rolčík J, Novák O, Palmero DV, Bejai S, Meijer J (2017) Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta 245:15–30

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77:383–392

    Article  CAS  PubMed  Google Scholar 

  • Awasthi A, Bharti N, Nair P, Singh R, Shukla AK, Gupta MM et al (2011) Synergistic effect of glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130

    Article  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514

    Article  CAS  PubMed  Google Scholar 

  • Barrow NJ, Debnath A, Sen A (2020) Measurement of the effects of pH on phosphate availability. Plant Soil 454:217–224

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13(3):1140

    Article  CAS  Google Scholar 

  • Bavaresco LG, Osco LP, Araujo ASF, Mendes LW, Bonifacio A, Araujo FF (2020) Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theor Exp Plant Physiol 32(2):99–108

    Article  CAS  Google Scholar 

  • Bechtaoui N, Rabiu MK, Raklami A, Oufdou K, Hafidi M, Jemo M (2021) Phosphate-dependent regulation of growth and stresses management in plants. Front Plant Sci 12:679916

    Article  PubMed  PubMed Central  Google Scholar 

  • Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH, Passaglia LM (2010) PaeniBacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 60(1):128–133

    Article  CAS  PubMed  Google Scholar 

  • Bent E, Chanway CP (2002) Potential for misidentification of a spore-forming PaeniBacillus polymyxa isolate as an endophyte by using culture-based methods. Appl Environ Microbiol 68(9):4650–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt K, Maheshwari DK (2020) Zinc solubilizing bacteria (acillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3. Biotech 10(2):36

    Google Scholar 

  • Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EP, Sekowska A, Vallenet D (2018) Bacillus subtilis, the model gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 11(1):3–17

    Article  PubMed  Google Scholar 

  • Brannen PM, Kenney DS (1997) Kodiak®—a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J Ind Microbiol Biotechnol 19(3):169–171

    Article  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  PubMed  Google Scholar 

  • Brodt S, Six J, Feenstra G, Ingels C, Campbell D (2011) Sustainable agriculture. Nat Educ Knowl 3(10):1

    Google Scholar 

  • Caballero J, Jiménez-Moreno N, Orera I, Williams T, Fernández AB, Villanueva M, Ferré J, Caballero P, Ancín-Azpilicueta C (2020) Unraveling the composition of insecticidal crystal proteins in Bacillus thuringiensis: a proteomics approach. Appl Environ Microbiol 86(12):e00476–e00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter GR (1990) Bacillus. In: Diagnostic procedure in veterinary Bacteriology and mycology. Academic, pp 221–228

    Chapter  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Pesticides in the modern world-pesticides use and management, pp 273–302

    Google Scholar 

  • Chandler S, Van Hese N, Coutte F, Jacques P, Höfte M, De Vleesschauwer D (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91:20–30

    Article  CAS  Google Scholar 

  • Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R (2009) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140(1–2):38–44

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ye J, Kong Q (2020) Potassium-solubilizing activity of Bacillus aryabhattai SK1-7 and its growth-promoting effect on Populus alba L. Forests 11(12):1348

    Article  Google Scholar 

  • Chimiak A, Hider RC, Liu A, Neilands JB, Nomoto K, Sugiura Y, Hider RC (1984) Siderophore mediated absorption of iron. In: Siderophores from microorganisms and plants, pp 25–87

    Google Scholar 

  • Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, Park SH (2009) Identification of a polymyxin synthetase gene cluster of PaeniBacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191(10):3350–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo QC, Samian MR, Najimudin N (2003) Phylogeny and characterization of three nifH-homologous genes from PaeniBacillus azotofixans. Appl Environ Microbiol 69(6):3658–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289–297

    Article  CAS  PubMed  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66(2):223–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Iron nutrition in plants and rhizospheric microorganisms, pp 169–198

    Chapter  Google Scholar 

  • Dasgupta D, Panda AK, Mishra R, Mahanty A, De Mandal S, Bisht SS (2021) Nif genes: tools for sustainable agriculture. In: Recent advancement in microbial biotechnology. Academic, pp 413–434

    Chapter  Google Scholar 

  • Datta M, Banik S, Gupta RK (1982) Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:365–373

    Article  CAS  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • De Vrieze M, Germanier F, Vuille N, Weisskopf L (2018) Combining different potato-associated pseudomonas strains for improved biocontrol of Phytophthora infestans. Front Microbiol 9:2573

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi S, Kiesewalter HT, Kovács R, Frisvad JC, Weber T, Larsen TO et al (2019) Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synth Syst Biotechnol 4(3):142–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Di YN, Kui L, Singh P, Liu LF, Xie LY, He LL, Li FS (2022) Identification and characterization of Bacillus subtilis B9: a diazotrophic plant growth-promoting endophytic bacterium isolated from sugarcane root. J Plant Growth Regul 11:1–18

    Google Scholar 

  • Dimkić I, Janakiev T, Petrović M, Degrassi G, Fira D (2022) Plant-associated Bacillus and pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiol Mol Plant Pathol 117:101754

    Article  Google Scholar 

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99(5):1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Dixit VK, Misra S, Mishra SK, Tewari SK, Joshi N, Chauhan PS (2020) Characterization of plant growth-promoting alkalotolerant alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Van Leeuwenhoek 113:889–905

    Article  CAS  PubMed  Google Scholar 

  • Egidi E, Wood JL, Mathews E, Fox E, Liu W, Franks AE (2016) Draft genome sequence of Bacillus cereus LCR12, a plant growth–promoting rhizobacterium isolated from a heavy metal–contaminated environment. Genome Announc 4(5):e01041–e01016

    Article  PubMed  PubMed Central  Google Scholar 

  • Elshakh AS, Anjum SI, Qiu W, Almoneafy AA, Li W, Yang Z et al (2016) Controlling and defence-related mechanisms of Bacillus strains against bacterial leaf blight of rice. J Phytopathol 164(7–8):534–546

    Article  CAS  Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects a review. J Soil Sci Plant Nutr 17(4):897–911

    Article  CAS  Google Scholar 

  • Ferreira CM, Vilas-Boas Â, Sousa CA, Soares HM, Soares EV (2019) Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express 9(1):78

    Article  PubMed  PubMed Central  Google Scholar 

  • Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25(3):597–610

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39

    Article  Google Scholar 

  • Garbeva P, Van Veen JA, Van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45(3):302–316

    Article  CAS  PubMed  Google Scholar 

  • García-Cárdenas E, Ortiz-Castro R, Ruiz-Herrera LF, Valencia-Cantero E, López-Bucio J (2023) Bacillus sp. LC390B from the maize rhizosphere improves plant biomass, root elongation, and branching and requires the phytochromes PHYA and PHYB for phytostimulation. J Plant Growth Regul 42(5):3056–3070

    Article  Google Scholar 

  • Gessesse A, Gashe BA (1997) Production of alkaline xylanase by an alkaliphilic Bacillus sp. isolated from an alkalinesoda lake. J Appl Microbiol 83(4):402–406

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Gonzalez-Vazquez MC, Vela-Sanchez RA, Rojas-Ruiz NE, Carabarin-Lima A (2021) Importance of cry proteins in biotechnology: initially a bioinsecticide, now a vaccine adjuvant. Life 11(10):999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500

    Google Scholar 

  • Gotor-Vila A, Teixidó N, Di Francesco A, Usall J, Ugolini L, Torres R, Mari M (2017) Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol 64:219–225

    Article  CAS  PubMed  Google Scholar 

  • Grahovac J, Pajčin I, Vlajkov V (2023) Bacillus VOCs in the context of biological control. Antibiotics 12(3):581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara-Avendaño E, Bejarano-Bolívar AA, Kiel-Martínez AL, Ramírez-Vázquez M, Méndez-Bravo A, von Wobeser EA et al (2019) Avocado rhizobacteria emit volatile organic compounds with antifungal activity against fusarium solani, fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol Res 219:74–83

    Article  PubMed  Google Scholar 

  • Gul S, Javed S, Azeem M, Aftab A, Anwaar N, Mehmood T, Zeshan B (2023) Application of Bacillus subtilis for the alleviation of salinity stress in different cultivars of wheat (tritium aestivum L.). Agronomy 13(2):437

    Article  CAS  Google Scholar 

  • Gundlach J, Herzberg C, Hertel D, Thürmer A, Daniel R, Link H, Stülke J (2017) Adaptation of Bacillus subtilis to life at extreme potassium limitation. MBio 8(4):e00861–e00817

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Singh UB, Kumar A, Ramtekey V, Jayaswal D, Singh AN, Sahni P, Kumar S (2022) Role of rhizosphere microorganisms in endorsing overall plant growth and development. In: Re-visiting the rhizosphere eco-system for agricultural sustainability. Springer Nature, Singapore, pp 323–353

    Chapter  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Wu H, Liu Y, Hu Q (2015) Mitigative effect of Bacillus subtilis QM3 on root morphology and resistance enzyme activity of wheat root under lead stress. Adv Microbiol 5:469–478

    Article  Google Scholar 

  • Harwood CR, Mouillon JM, Pohl S, Arnau J (2018) Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42(6):721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Tabassum B, Abd–Allah EF (2019) Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26(6):1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • He CN, Ye WQ, Zhu YY, Zhou WW (2020) Antifungal activity of volatile organic compounds produced by Bacillus methylotrophicus and Bacillus thuringiensis against five common spoilage fungi on loquats. Molecules 25(15):3360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari E, Mohammadi K, Pasari B, Rokhzadi A, Sohrabi Y (2020) Combining the phosphate solubilizing microorganisms with biochar types in order to improve safflower yield and soil enzyme activity. Soil Sci Plant Nutr 66(2):255–267

    Article  CAS  Google Scholar 

  • Horneck G, Bücker H, Reitz G, Requardt H, Dose K, Martens KD et al (1984) Microorganisms in the space environment. Science 225(4658):226–228

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Wang C, Li X, Tang Y, Wang Y, Chen S, Yan S (2018) RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato. Pest Manag Sci 74(12):2793–2805

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wei Z, Tan S, Mei X, Shen Q, Xu Y (2014) Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain bacillus amyloliquefaciens HR62. J Agric Food Chem 62(44):10708–10716

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1(1):31–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 20(6):619–626

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (pseudomonas) cepacia DBO1 (pRO101) in 2, 4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J (2019) A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10(1):409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87(11):1390–1394

    Article  PubMed  Google Scholar 

  • Jiang CH, Fan ZH, Xie P, Guo JH (2016a) Bacillus cereus AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to Pst DC3000 in Arabidopsis. Front Microbiol 7:664

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang CH, Huang ZY, Xie P, Gu C, Li K, Wang DC et al (2016b) Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to pseudomonas syringae pv. Tomato DC3000 in Arabidopsis. J Exp Bot 67(1):157–174

    Article  CAS  PubMed  Google Scholar 

  • Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo YK (2019) Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol 10:2106

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi H, Bisht N, Mishra SK, Prasad V, Chauhan PS (2023a) Bacillus amyloliquefaciens modulate carbohydrate metabolism in Rice-PGPR cross-talk under abiotic stress and phytohormone treatments. J Plant Growth Regul 11:1–18

    Google Scholar 

  • Joshi H, Mishra SK, Prasad V, Chauhan PS (2023b) Bacillus amyloliquefaciens modulate sugar metabolism to mitigate arsenic toxicity in Oryza sativa L. var Saryu-52. Chemosphere 311:137070

    Article  CAS  PubMed  Google Scholar 

  • Jung HK, Kim S-d (2005) An antifungal antibiotic purified from bacillus megaterium KL39, a biocontrol agent of red-pepper phytophthora-blight disease. J Microbiol Biotechnol 15(5):1001–1010

    CAS  Google Scholar 

  • Jung MY, Kim JS, Paek WK, Lim J, Lee H, Kim PI et al (2011) Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J Microbiol 49:1027–1032

    Article  PubMed  Google Scholar 

  • Kant L, Shahid F (2022) Managing intellectual property and technology commercialization: experiences, success stories and lessons learnt—A case study from Vivekananda Institute of Hill Agriculture, India. J World Intellect Prop 25(1):143–156

    Article  Google Scholar 

  • Keith A, McCall C-c H, Fierke CA (2000) Function and Mechanism of Zinc Metalloenzymes. J Nutr 130(5):1437S–1446S

    Article  Google Scholar 

  • Kesaulya, H., Hasinu, J. V., and Tuhumury, G. N. (2018). Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants. In IOP conference series: earth and environmental science Vol. 102, No. 1, p. 012016. IOP Publishing

    Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

    Google Scholar 

  • Khan A, Doshi HV, Thakur MC (2016) Bacillus spp.: a prolific siderophore producer. In: Bacilli and agrobiotechnology, pp 309–323

    Chapter  Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20(1):1–14

    Article  Google Scholar 

  • Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, Snyder D et al (2021) Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. Msystems 6(1):e00770–e00720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24® Bacillus subtilis–mode of action of a microbial agent enhancing plant vitality. Pfl Anzenschutz-Nachrichten Bayer 1(00):1

    Google Scholar 

  • Kim ST, Yoo SJ, Weon HY, Song J, Sang MK (2022) Bacillus butanolivorans KJ40 contributes alleviation of drought stress in pepper plants by modulating antioxidant and polyphenolic compounds. Sci Hortic 301:111111

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1981) Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71(6):642–644

    Article  Google Scholar 

  • Kokalis–Burelle N, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  Google Scholar 

  • Kondoh M, Hirai M, Shoda M (2001) Integrated biological and chemical control of damping-off caused by rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. J Biosci Bioeng 91(2):173–177

    Article  CAS  PubMed  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni GO, Azevedo V et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha P, Srivastava R, Pandiyan K, Singh A, Chakdar H, Kashyap PL et al (2021) Enhancement in plant growth and zinc biofortification of chickpea (Cicer arietinum L.) by Bacillus altitudinis. J Soil Sci Plant Nutr 21:922–935

    Article  CAS  Google Scholar 

  • Lam VB, Meyer T, Arias AA, Ongena M, Oni FE, Höfte M (2021) Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms 9(7):1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastochkina O, Seifikalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S et al (2019) Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plan Theory 8(4):97

    CAS  Google Scholar 

  • Latham JR, Love M, Hilbeck A (2017) The distinct properties of natural and GM cry insecticidal proteins. Biotechnol Genet Eng Rev 33(1):62–96

    Article  CAS  PubMed  Google Scholar 

  • Li H, Bouwer G (2012) Toxicity of Bacillus thuringiensis cry proteins to Helicoverpa armigera (lepidoptera: Noctuidae) in South Africa. J Invertebr Pathol 109(1):110–116

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu X, Zhang H, Chen S (2019) Evolution and functional analysis of orf1 within nif gene cluster from PaeniBacillus graminis RSA19. Int J Mol Sci 20(5):1145. MDPI AG. https://doi.org/10.3390/ijms20051145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Tang J, Karuppiah V, Li Y, Xu N, Chen J (2020) Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biol Control 140:104122

    Article  CAS  Google Scholar 

  • Lim JH, Kim SD (2009) Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and bacillus licheniforims K11. J Korean Soc Appl Biol Chem 52:531–538

    Article  CAS  Google Scholar 

  • Line MA, Loutit MW (1971) Non-symbiotic nitrogen-fixing organisms from some New Zealand tussock-grassland soils. Microbiology 66(3):309–318

    Google Scholar 

  • Liu X, Li Q, Li Y, Guan G, Chen S (2019) PaeniBacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. Peer J 7:e7445

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Feng L, Zhou D, Jia M, Liu Z, Hou Z et al (2022) Complete genome sequence of Bacillus subtilis CNBG-PGPR-1 for studying the promotion of plant growth. Mol Plant-Microbe Interact 35(12):1115–1119

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Jiang X, Wang Q, Guan D, Li L, Ongena M, Li J (2018) Isolation and identification of PGPR strain and its effect on soybean growth and soil bacterial community composition. Int J Agric Biol 20:1289–1297

    CAS  Google Scholar 

  • Mageshwaran V, Gupta R, Singh S, Sahu PK, Singh UB, Chakdar H, Bagul SY, Paul S, Singh HV (2022) Endophytic Bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (Cicer arietinum L.). Front Microbiol 13:994847

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahdavi A, Sajedi RH, Rasa M, Jafarian V (2010) Characterization of an α-amylase with broad temperature activity from an acid-neutralizing Bacillus cereus strain. Iran. J. Biotechnol 2:103–111

    Google Scholar 

  • Malviya D, Sahu PK, Singh UB, Paul S, Gupta A, Gupta AR, Singh S, Kumar M, Paul D, Rai JP, Singh HV (2020a) Lesson from ecotoxicity: revisiting the microbial lipopeptides for the management of emerging diseases for crop protection. Int J Environ Res Public Health 17(4):1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malviya D, Singh UB, Singh S, Sahu PK, Pandiyan K, Kashyap AS, Manzar N, Sharma PK, Singh HV, Rai JP, Sharma SK (2020b) Microbial interactions in the rhizosphere contributing crop resilience to biotic and abiotic stresses. In: Rhizosphere microbes: soil and plant functions. Springer Nature, Singapore, pp 1–33

    Google Scholar 

  • Malviya D, Ilyas T, Chaurasia R, Singh UB, Shahid M, Vishwakarma SK, Shafi Z, Yadav B, Sharma SK, Singh HV (2022a) Engineering the plant microbiome for biotic stress tolerance: biotechnological advances. In: Rhizosphere microbes: biotic stress management. Springer Nature Singapore, pp 133–151

    Chapter  Google Scholar 

  • Malviya D, Thosar R, Kokare N, Pawar S, Singh UB, Saha S, Rai JP, Singh HV, Somkuwar RG, Saxena AK (2022b) A comparative analysis of microbe-based technologies developed at ICAR-NBAIM against Erysiphe necator causing powdery mildew disease in grapes (Vitis vinifera L.). Front Microbiol 13:871901

    Article  PubMed  PubMed Central  Google Scholar 

  • Marteinsson V, Birrien JL, Jeanthon C, Prieur D (1996) Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol Ecol 21(4):255–266

    Article  CAS  Google Scholar 

  • Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CM, Van Wees SC (2017) Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213(3):1363–1377

    Article  PubMed  Google Scholar 

  • Masood F, Ahmad S, Malik A (2022) Role of rhizobacterial bacilli in zinc solubilization. microbial biofertilizers and micronutrient availability. In: The role of zinc in agriculture and human health, pp 361–377

    Google Scholar 

  • Matsuda R, Handayani ML, Sasaki H, Takechi K, Takano H, Takio S (2018) Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Arch Microbiol 200:255–265

    Article  CAS  PubMed  Google Scholar 

  • Maugeri TL, Gugliandolo C, Caccamo D, Stackebrandt E (2001) A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst Appl Microbiol 24(4):572–587

    Article  CAS  PubMed  Google Scholar 

  • Medeiros FH, Souza RM, Medeiros FC, Zhang H, Wheeler T, Payton P et al (2011) Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA285) induced biotic-stress tolerance. Plant Soil 347:327–337

    Article  CAS  Google Scholar 

  • Mehmood S, Khatoon Z, Amna AI, Muneer MA, Kamran MA et al (2023) Bacillus sp. PM31 harboring various plant growth-promoting activities regulates fusarium dry rot and wilt tolerance in potato. Arch Agron Soil Sci 69(2):197–211

    Article  CAS  Google Scholar 

  • Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca ridge. Appl Environ Microbiol 69(2):960–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2015) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J Basic Microbiol 55(1):33–44

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Dixit VK, Khan MH, Mishra SK, Dviwedi G, Yadav S et al (2017) Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiol Res 205:25–34

    Article  CAS  PubMed  Google Scholar 

  • Mo B, Lian B (2011) Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar): weathering rate, products, and reaction mechanisms. Chin J Geochem 30:187–192

    Article  CAS  Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz MZ, Barry KM, Baker AL, Nichols DS, Ahmad M, Zahir ZA, Britz ML (2019) Production of lactic and acetic acids by Bacillus sp. ZM20 and Bacillus cereus following exposure to zinc oxide: A possible mechanism for Zn solubilization. Rhizosphere 12:100170

    Article  Google Scholar 

  • Nafisah W, Prabaningtyas S, Witjoro A, Saptawati RT, Rodiansyah A (2022) Exploration non-symbiotic nitrogen-fixing bacteria from several lakes in East Java, Indonesia. Biodivers J Biol Div 23(4):1752–1758

    Google Scholar 

  • Namwongsa J, Jogloy S, Vorasoot N, Boonlue S, Riddech N, Mongkolthanaruk W (2019) Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under Normal and deficit water Conditi. J Microbiol Biotechnol 29(11):1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Ngugi HK, Dedej S, Delaplane KS, Savelle AT, Scherm H (2005) Effect of flower-applied serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biol Control 33(1):32–38

    Article  Google Scholar 

  • Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Schwarzenberg A, Nguema-Ona E, Clément C et al (2020) Bacillus subtilis and Pseudomonas fluorescens trigger common and distinct systemic immune responses in Arabidopsis thaliana depending on the pathogen lifestyle. Vaccines 8(3):503. MDPI AG. https://doi.org/10.3390/vaccines8030503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64(3):548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nithyapriya S, Lalitha S, Sayyed RZ, Reddy MS, Dailin DJ, El Enshasy HA et al (2021) Production, purification, and characterization of bacillibactin siderophore of Bacillus subtilis and its application for improvement in plant growth and oil content in sesame. Sustainability 13(10):5394

    Article  CAS  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24(5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P (2005) Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67:692–698

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by bacillus megaterium involves cytokinin signaling. Plant signaling and behavior 3(4):263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Owens CP, Tezcan FA (2018) Conformationally gated electron transfer in nitrogenase. Isolation, purification, and characterization of nitrogenase from Gluconacetobacter diazotrophicus. In: Methods in enzymology, vol 599. Academic, pp 355–386

    Google Scholar 

  • Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN (2021) Chemical fertilizers and their impact on soil health. In: Microbiota and biofertilizers, vol 2.: Ecofriendly tools for reclamation of degraded soil environs, pp 1–20

    Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6(12):3296–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda MK, Sahu MK, Tayung K (2013) Isolation and characterization of a thermophilic bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iran J Microbiol 5(2):159–165

    PubMed  PubMed Central  Google Scholar 

  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW et al (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12(3):e0173203

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Ton J, van Loon LC (2001) Cross-talk between plant defence signaling pathways: boost or burden? Agri Biotech Net 3:1–18

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Plant-associated bacteria, pp 195–230

    Chapter  Google Scholar 

  • Poulaki EG, Tjamos SE (2023) Bacillus species: factories of plant protective volatile organic compounds. J Appl Microbiol 134(3):lxad037

    Article  PubMed  Google Scholar 

  • Poveda J (2021) Beneficial effects of microbial volatile organic compounds (MVOCs) in plants. Appl Soil Ecol 168:104118

    Article  Google Scholar 

  • Prabhu N et al (2018) Phosphate solubilization mechanisms in alkaliphilic bacterium bacillus Marisflavi FA7. Curr Sci 114(4):845–853. JSTOR, http://www.jstor.org/stable/26495245. Accessed 6 May 2023

    Article  CAS  Google Scholar 

  • Prakash J, Arora NK (2019) Phosphate-solubilizing bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3. Biotech 9(4):126. https://doi.org/10.1007/s13205-019-1660-5

    Article  Google Scholar 

  • Pramanik P, Goswami AJ, Ghosh S, Kalita C (2019) An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of north-East India. J Appl Microbiol 126(1):215–222

    Article  CAS  PubMed  Google Scholar 

  • Prashanth S, Mathivanan N (2010) Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Arch Phytopathol Plant Protect 43(2):191–208

    Article  CAS  Google Scholar 

  • Prathuangwong S, Buensanteai N (2007) Bacillus amyloliquefaciens induced systemic resistance against bacterial pustule pathogen with increased phenols, phenylalanine ammonia lyase, peroxidases and 1, 3-β-glucanases in soybean plants. Acta Phytopathol Entomol Hung 42(2):321–330

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph PaeniBacillus polymyxa P2b-2R. Biol Fertil Soils 52:119–125

    Article  CAS  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2(1):1–7

    Article  Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by fusarium species using PGPR strains. Biol Control 50(2):194–198

    Article  Google Scholar 

  • Riaz U, Murtaza G, Anum W, Samreen T, Sarfraz M, Nazir MZ (2021) Plant growth-promoting rhizobacteria (PGPR) as biofertilizers and biopesticides. In: Microbiota and biofertilizers: a sustainable continuum for plant and soil health, pp 181–196

    Chapter  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivadeneyra MA, Delgado R, Delgado G, Moral AD, Ferrer MR, Ramos-Cormenzana A (1993) Precipitation of carbonates by bacillus sp. isolated from saline soils. Geomicrobiol J 11(3–4):175–184

    Article  CAS  Google Scholar 

  • Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J et al (2019) Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front Plant Sci 10:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero-Munar A, Aroca R, Zamarreño AM, García-Mina JM, Perez-Hernández N, Ruiz-Lozano JM (2023) Dual inoculation with Rhizophagus irregularis and bacillus megaterium improves maize tolerance to combined drought and high temperature stress by enhancing root hydraulics, photosynthesis and hormonal responses. Int J Mol Sci 24(6):5193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of fusarium dry rot of potato tubers. J Plant Pathol 83:101–117

    CAS  Google Scholar 

  • Saeid A, Prochownik E, Dobrowolska-Iwanek J (2018) Phosphorus solubilization by bacillus species. Molecules (Basel, Switzerland) 23(11):2897. https://doi.org/10.3390/molecules23112897

    Article  CAS  PubMed  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash GP, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen sclerotium rolfsii in tomato. Biol Control 137:104014

    Article  CAS  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Paul S, Paul D, Kuppusamy P, Singh HV, Saxena AK (2020a) A simplified protocol for reversing phenotypic conversion of Ralstonia solanacearum during experimentation. Int J Environ Res Public Health 17(12):4274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PK, Singh S, Gupta AR, Gupta A, Singh UB, Manzar N, Bhowmik A, Singh HV, Saxena AK (2020b) Endophytic bacilli from medicinal-aromatic perennial holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against rhizoctonia solani in rice (Oryza sativa L.). Biol Control 150:104353

    Article  CAS  Google Scholar 

  • Sahu PK, Singh S, Singh UB, Chakdar H, Sharma PK, Sarma BK, Teli B, Bajpai R, Bhowmik A, Singh HV, Saxena AK (2021) Inter-genera colonization of Ocimum tenuiflorum endophytes in tomato and their complementary effects on Na+/K+ balance, oxidative stress regulation, and root architecture under elevated soil salinity. Front Microbiol 12:744733

    Article  PubMed  PubMed Central  Google Scholar 

  • Samaniego-Gámez BY, Valle-Gough RE, Garruña-Hernández R, Reyes-Ramírez A, Latournerie-Moreno L, Tun-Suárez JM et al (2023) Induced systemic resistance in the bacillus spp.—Capsicum chinense Jacq.—PepGMV interaction, elicited by Defense-related gene expression. Plants 12(11):2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Sardans J, Peñuelas J (2021) Potassium control of plant functions: ecological and agricultural implications. Plants (Basel, Switzerland) 10(2):419. https://doi.org/10.3390/plants10020419

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Chakraborty U, Chakraborty BN (2018) Induced defense response in wheat plants against Bipolaris sorokiniana following application of Bacillus safensis and Ochrobactrum pseudogrignonense. Indian Phytopathology 71:49–58

    Article  Google Scholar 

  • Sarmiento-López LG, López-Meyer M, Maldonado-Mendoza IE, Quiroz-Figueroa FR, Sepúlveda-Jiménez G, Rodríguez-Monroy M (2022) Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. J Biosci Bioeng 134(1):21–28

    Article  PubMed  Google Scholar 

  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants (Basel, Switzerland) 10(2):259. https://doi.org/10.3390/plants10020259

    Article  CAS  PubMed  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  PubMed  Google Scholar 

  • Shafi Z, Ilyas T, Shahid M, Vishwakarma SK, Malviya D, Yadav B, Sahu PK, Singh UB, Rai JP, Singh HB, Singh HV (2023) Microbial management of fusarium wilt in banana: a comprehensive overview. In: Detection, diagnosis and management of soil-borne phytopathogens. Springer Nature, Singapore, pp 413–435

    Chapter  Google Scholar 

  • Shahid M, Singh UB, Ilyas T, Malviya D, Vishwakarma SK, Shafi Z, Yadav B, Singh HV (2022a) Bacterial inoculants for control of fungal diseases in Solanum lycopersicum L.(tomatoes): a comprehensive overview. In: Rhizosphere microbes: biotic stress management. Springer Nature, Singapore, pp 311–339

    Chapter  Google Scholar 

  • Shahid M, Zeyad MT, Syed A, Singh UB, Mohamed A, Bahkali AH, Elgorban AM, Pichtel J (2022b) Stress-tolerant endophytic isolate Priestia aryabhattai BPR-9 modulates physio-biochemical mechanisms in wheat (Triticum aestivum L.) for enhanced salt tolerance. Int J Environ Res Public Health 19(17):10883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Li S, Zhang N, Cui X, Zhou X, Zhang G et al (2015) Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb Cell Factories 14:1–13

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Potassium solubilizing microorganisms for sustainable agriculture, pp 203–219

    Chapter  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37(10):1918–1922

    Article  CAS  Google Scholar 

  • Shi HW, Wang LY, Li XX, Liu XM, Hao TY, He XJ, Chen SF (2016) Genome-wide transcriptome profiling of nitrogen fixation in PaeniBacillus sp. WLY78. BMC Microbiol 16(1):1–10

    Article  Google Scholar 

  • Shrivastava M, Srivastava PC, D’souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Potassium solubilizing microorganisms for sustainable agriculture, pp 221–234

    Chapter  Google Scholar 

  • Siddikee MA, Sundaram S, Chandrasekaran M, Kim K, Selvakumar G, Sa T (2015) Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination. J Korean Soc Appl Biol Chem 58:237–241

    Article  CAS  Google Scholar 

  • Sidorova DE, Plyuta VA, Padiy DA, Kupriyanova EV, Roshina NV, Koksharova OA, Khmel IA (2021) The effect of volatile organic compounds on different organisms: agrobacteria, plants and insects. Microorganisms 10(1):69. https://doi.org/10.3390/microorganisms10010069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RR, Wesemael W (2022) Endophytic PaeniBacillus polymyxa LMG27872 inhibits Meloidogyne incognita parasitism, promoting tomato growth through a dose-dependent effect. Frontiers. Plant Sci 13:961085

    Google Scholar 

  • Singh UB, Malviya D, Singh S, Imran M, Pathak N, Alam M, Rai JP, Singh RK, Sarma BK, Sharma PK, Sharma AK (2016a) Compatible salt-tolerant rhizosphere microbe-mediated induction of phenylpropanoid cascade and induced systemic responses against Bipolaris sorokiniana (Sacc.) shoemaker causing spot blotch disease in wheat (Triticum aestivum L.). Appl Soil Ecol 108:300–306

    Article  Google Scholar 

  • Singh UB, Malviya D, Singh S, Pradhan JK, Singh BP, Roy M, Imram M, Pathak N, Baisyal BM, Rai JP, Sarma BK et al (2016b) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiol Res 192:300–312

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Singh P, Li HB, Song QQ, Guo DJ, Solanki MK et al (2020) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in saccharum spp. BMC Plant Biol 20:1–21

    Article  CAS  Google Scholar 

  • Singh S, Singh UB, Trivdi M, Malviya D, Sahu PK, Roy M, Sharma PK, Singh HV, Manna MC, Saxena AK (2021a) Restructuring the cellular responses: connecting microbial intervention with ecological fitness and adaptiveness to the maize (Zea mays L.) grown in saline–sodic soil. Front Microbiol 12(11):568325

    Article  Google Scholar 

  • Singh UB, Malviya D, Singh S, Singh P, Ghatak A, Imran M, Rai JP, Singh RK, Manna MC, Sharma AK, Saxena AK (2021b) Salt-tolerant compatible microbial inoculants modulate physio-biochemical responses enhance plant growth, Zn biofortification and yield of wheat grown in saline-sodic soil. Int J Environ Res Public Health 18(18):9936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67(10):4742–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    Article  CAS  PubMed  Google Scholar 

  • Soper FM, Simon C, Jauss V (2021) Measuring nitrogen fixation by the acetylene reduction assay (ARA): is 3 the magic ratio? Biogeochemistry 152(2):345–351

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857

    Article  CAS  PubMed  Google Scholar 

  • Sukkasem P, Kurniawan A, Kao TC, Chuang HW (2018) A multifaceted rhizobacterium Bacillus licheniformis functions as a fungal antagonist and a promoter of plant growth and abiotic stress tolerance. Environ Exp Bot 155:541–551

    Article  CAS  Google Scholar 

  • Sun B, Gu L, Bao L, Zhang S, Wei Y, Bai Z et al (2020) Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biol Biochem 148:107911

    Article  CAS  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Res 77(1):43–49

    Article  Google Scholar 

  • Suthar KP, Patel RM, Singh D, Khunt MD (2017) Efficacy of Bacillus subtilis isolate K18 against chickpea wilt fusarium oxysporum F. Sp. ciceri. Int J Pure Appl Biosci 5(5):838–843

    Article  Google Scholar 

  • Tiessen H (2008) Phosphorus in the global environment. Springer, Netherlands, pp 1–7

    Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium PaeniBacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12(11):951–959

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) PaeniBacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71(11):7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Güneş A, Karagöz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38(3):327–333

    Article  CAS  Google Scholar 

  • Tzeneva VA, Li Y, Felske AD, De Vos WM, Akkermans AD, Vaughan EE, Smidt H (2004) Development and application of a selective PCR-denaturing gradient gel electrophoresis approach to detect a recently cultivated Bacillus group predominant in soil. Appl Environ Microbiol 70(10):5801–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela-Soto JH, Estrada-Hernández MG, Ibarra-Laclette E, Délano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231(2):397

    Article  CAS  PubMed  Google Scholar 

  • Vanitha S, Ramjegathesh R (2014) Bio control potential of Pseudomonas fluorescens against coleus root rot disease. J Plant Pathol Microb 5(1):216

    Google Scholar 

  • von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) PaeniBacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52(6):2147–2153

    PubMed  Google Scholar 

  • Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA et al (2009) Bergey s manual of systematic bacteriology: the firmicutes. In: Bergey s manual of systematic bacteriology: the firmicutes, pp 1450–1450

    Google Scholar 

  • Wagi S, Ahmed A (2019) Bacillus spp.: potent microfactories of bacterial IAA. PeerJ 7:e7258

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters D, Walsh D, Newton A, Lyon G (2005) Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology 95(12):1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, Gao X (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19(10):1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, He Y, Huang Y, Li X, Ye BC (2018) Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotoxicol Environ Saf 164:520–529

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Li Y, Xu Y, Zhang Y, Tao G, Zhang L, Shi G (2022) Transcriptome analysis of Bacillus licheniformis for improving bacitracin production. ACS Synth Biol 11(3):1325–1335

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S et al (2021) Isolation and identification of antibacterial bioactive compounds from bacillus megaterium L2. Front Microbiol 12:645484

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Potassium solubilizing microorganisms for sustainable agriculture, pp 187–201

    Chapter  Google Scholar 

  • Yadav RC, Sharma SK, Varma A, Rajawat MV, Khan MS, Sharma PK, Malviya D, Singh UB, Rai JP, Saxena AK (2022a) Modulation in biofertilization and biofortification of wheat crop by inoculation of zinc-solubilizing rhizobacteria. Front Plant Sci 13:777771

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Bumbra P, Laura JS, Khosla B (2022b) Optimization of nutritional and physical parameters for enhancing the keratinase activity of Bacillus cereus isolated from soil of poultry dump site in Gurugram, Haryana. Bioresour Technol Rep 18:101108

    Article  CAS  Google Scholar 

  • Yadav RC, Sharma SK, Varma A, Singh UB, Kumar A, Bhupenchandra I, Rai JP, Sharma PK, Singh HV (2023) Zinc-solubilizing Bacillus spp. in conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Front Microbiol 14:1210938

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan X, Yang W, Chen X, Wang M, Wang W, Ye D, Wu L (2020) Soil phosphorus pools, bioavailability and environmental risk in response to the phosphorus supply in the red soil of southern China. Int J Environ Res Public Health 17(20):7384. https://doi.org/10.3390/ijerph17207384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang SY, Park MR, Kim IS, Kim YC, Yang JW, Ryu CM (2011) 2-aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovotrum SCC1 in tobacco. Eur J Plant Pathol 129:371–378

    Article  CAS  Google Scholar 

  • Yang P, Zhao Z, Fan J, Liang Y, Bernier M, Gao Y et al (2023a) Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. Frontiers. Plant Sci 14:1078100

    Google Scholar 

  • Yang W, Zhao Y, Yang Y, Zhang M, Mao X, Guo Y et al (2023b) Co-application of biochar and microbial inoculants increases soil phosphorus and potassium fertility and improves soil health and tomato growth. J Soils Sediments 23(2):947–957

    Article  Google Scholar 

  • Yi HS, Yang JW, Ryu CM (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Yousuf J, Thajudeen J, Rahiman M, Krishnankutty S, Alikunj P, Abdulla MH (2017) Nitrogen fixing potential of various heterotrophic bacillus strains from a tropical estuary and adjacent coastal regions. J Basic Microbiol 57(11):922–932

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Teng C, Bai X, Liang J, Song T, Dong L et al (2017) Optimization of siderophore production by bacillus sp. PZ-1 and its potential enhancement of phytoextration of pb from soil. J Microbiol Biotechnol 27(8):1500–1512

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78(16):5942–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y et al (2015) Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB 72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J 84(2):309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Ding Y, Cui Y, Zhang Y, Liu K, Yao L et al (2022) Isolation and genome sequence of a novel phosphate-solubilizing rhizobacterium Bacillus altitudinis GQYP101 and its effects on rhizosphere microbial community structure and functional traits of corn seedling. Curr Microbiol 79(9):249

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhu J, Qian N, Guo J, Yan C (2021) Bacillus subtilis SL18r induces tomato resistance against Botrytis cinerea, involving activation of long non-coding RNA, MSTRG18363, to decoy miR1918. Front Plant Sci 11:634819

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Director, ICAR-NBAIM, Mau for providing scientific and technical support during preparation of the manuscript. The authors gratefully acknowledge the Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM, and Indian Council of Agricultural Research, Ministry of Agriculture and Farmers Welfare, Government of India, for providing financial support for the study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

This research was supported by Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM, and Indian Council of Agricultural Research, New Delhi (India).

Conflicts of Interest

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the content reported in this manuscript. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vishwakarma, S.K. et al. (2024). Bacillus spp.: Nature’s Gift to Agriculture and Humankind. In: Mageshwaran, V., Singh, U.B., Saxena, A.K., Singh, H.B. (eds) Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond. Microorganisms for Sustainability, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-99-8195-3_1

Download citation

Publish with us

Policies and ethics