Skip to main content

Advertisement

Log in

Isolation and Genome Sequence of a Novel Phosphate-Solubilizing Rhizobacterium Bacillus altitudinis GQYP101 and Its Effects on Rhizosphere Microbial Community Structure and Functional Traits of Corn Seedling

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacillus altitudinis is a widely distributed soil bacterium that has various functional activities, including remediation of contaminated soil, degradation of herbicides, and enhancement of plant growth. B. altitudinis GQYP101 was isolated from the rhizosphere soil of Lycium barbarum L. and demonstrated potential as a plant growth-promoting bacterium. In this work, strain GQYP101 could solubilize phosphorus, and increased the stem diameter, maximum leaf area, and fresh weight of corn in a pot experiment. Nitrogen and phosphorus contents of corn seedlings (aerial part) increased by 100% and 47.9%, respectively, after application of strain GQYP101. Concurrently, nitrogen and phosphorus contents of corn root also increased, by 55.40% and 20.3%, respectively. Furthermore, rhizosphere soil nutrients were altered and the content of available phosphorus increased by 73.2% after application of strain GQYP101. The mechanism by which strain GQYP101 improved plant growth was further investigated by whole genome sequence analysis. Strain GQYP101 comprises a circular chromosome and a linear plasmid. Some key genes of strain GQYP101 were identified that were related to phosphate solubilization, alkaline phosphatase, chemotaxis, and motility. The findings of this study may provide a theoretical basis for strain GQYP101 to enhance crop yield as microbial fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data of this study are available within the manuscript and supplementary materials.

References

  1. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  2. You M, Fang S, MacDonald J, Xu J, Yuan Z-C (2020) Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiol Res 233:126395. https://doi.org/10.1016/j.micres.2019.126395

    Article  CAS  PubMed  Google Scholar 

  3. Yue Z, Shen Y, Chen Y, Liang A, Chu C, Chen C, Sun Z (2019) Microbiological insights into the stress-alleviating property of an endophytic Bacillus altitudinis WR10 in wheat under low-phosphorus and high-salinity stresses. Microorganisms 7:508. https://doi.org/10.3390/microorganisms7110508

    Article  CAS  PubMed Central  Google Scholar 

  4. Narayanasamy S, Thangappan S, Uthandi S (2020) Plant growth-promoting Bacillus sp cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system. Microbiol Res 239:126518. https://doi.org/10.1016/j.micres.2020.126518

    Article  CAS  PubMed  Google Scholar 

  5. Pereira S, Abreu D, Moreira H, Vega A, Castro P (2020) Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L) under water deficit conditions. Heliyon 6:e05106. https://doi.org/10.1016/j.heliyon.2020.e05106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Y, Chen C-X, Feng H-P, Wang X-J, Roessner U, Walker R, Cheng Z-Y, An Y-Q, Du B, Bai J-G (2020) Transcriptome profiling combined with activities of antioxidant and soil enzymes reveals an ability of Pseudomonas sp CFA to mitigate p-hydroxybenzoic and ferulic acid stresses in cucumber. Front Microbiol 11:2706. https://doi.org/10.3389/fmicb.2020.522986

    Article  Google Scholar 

  7. Pranaw K, Pidlisnyuk V, Trögl J, Malinská H (2020) Bioprospecting of a novel plant growth-promoting bacterium Bacillus altitudinis KP-14 for enhancing Miscanthus × giganteus growth in metals contaminated soil. Biology 9:305. https://doi.org/10.3390/biology9090305

    Article  CAS  PubMed Central  Google Scholar 

  8. Wang C, Zhao D, Qi G, Mao Z, Hu X, Du B, Liu K, Ding Y (2020) Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd and inhibiting Fusarium verticillioides. Front Microbiol 10:2889. https://doi.org/10.3389/fmicb.2019.02889

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  10. Shivaji S, Chaturvedi P, Suresh K, Reddy G, Dutt C, Wainwright M, Narlikar JV, Bhargava P (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56:1465–1473. https://doi.org/10.1099/ijs.0.64029-0

    Article  CAS  PubMed  Google Scholar 

  11. Kaur R, Goyal D (2020) Biodegradation of butachlor by Bacillus altitudinis and identification of metabolites. Current Microbiol 77:2602–2612. https://doi.org/10.1007/s00284-020-02031-1

    Article  CAS  PubMed  Google Scholar 

  12. Yue Z, Chen Y, Chen C, Ma K, Tian E, Wang Y, Liu H, Sun Z (2021) Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. J Hazard Mater 405:124272. https://doi.org/10.1016/j.jhazmat.2020.124272

    Article  CAS  PubMed  Google Scholar 

  13. Goswami M, Deka S (2019) Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids Surf B Biointerfaces 178:285–296. https://doi.org/10.1016/j.colsurfb.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Othman R, Panhwar QA (2015) Phosphate-solubilizing bacteria improves nutrient uptake in aerobic rice. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer, Cham, pp 207–224

    Google Scholar 

  15. Pande A, Pandey P, Mehra S, Singh M, Kaushik S (2017) Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol 15:379–391. https://doi.org/10.1016/j.jgeb.2017.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xue H-P, Zhang D-F, Xu L, Wang X-N, Zhang A-H, Huang J-K, Liu C (2021) Actirhodobacter atriluteus gen. nov., sp. Nov., isolated from the surface water of the Yellow Sea. Antonie van Leeuwenhoek 114:1–10. https://doi.org/10.1007/s10482-021-01576-w

    Article  CAS  Google Scholar 

  17. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  CAS  PubMed  Google Scholar 

  18. Bowman R (1988) A rapid method to determine total phosphorus in soils. Soil Sci Soc Am J 52:1301–1304. https://doi.org/10.2136/sssaj1988.03615995005200050016x

    Article  CAS  Google Scholar 

  19. Yu C, Hu X, Deng W, Li Y, Xiong C, Ye C, Han G, Li X (2015) Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization. Appl Soil Ecol 86:30–40. https://doi.org/10.1016/j.apsoil.2014.09.013

    Article  Google Scholar 

  20. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  23. Ma J, Wang C, Wang H, Liu K, Zhang T, Yao L, Zhao Z, Du B, Ding Y (2018) Analysis of the complete genome sequence of Bacillus atrophaeus GQJK17 reveals its biocontrol characteristics as a plant growth-promoting rhizobacterium. Biomed Res Int. https://doi.org/10.1155/2018/9473542

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232. https://doi.org/10.1093/nar/gks1005

    Article  CAS  PubMed  Google Scholar 

  26. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618. https://doi.org/10.1093/nar/29.12.2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krogh A, Brown M, Mian IS, Sjölander K, Haussler D (1994) Hidden Markov models in computational biology: applications to protein modeling. J Mol Biol 235:1501–1531. https://doi.org/10.1006/jmbi.1994.1104

    Article  CAS  PubMed  Google Scholar 

  28. Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat methods 8:785–786. https://doi.org/10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Yu P, Luo J, Jiang Y (2003) Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 14:859–865. https://doi.org/10.1007/s00335-003-2296-6

    Article  CAS  PubMed  Google Scholar 

  30. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34:2115–2122. https://doi.org/10.1093/molbev/msx148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang H-Y, Dosztányi Z, El-Gebali S, Fraser M (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199. https://doi.org/10.1093/nar/gkw1107

    Article  CAS  PubMed  Google Scholar 

  32. Lam MQ, Chen SJ, Goh KM, Abd Manan F, Yahya A, Shamsir MS, Chong CS (2020) Genome sequence of an uncharted halophilic bacterium Robertkochia marina with deciphering its phosphate-solubilizing ability. Braz J Microbiol. https://doi.org/10.1007/s42770-020-00401-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. Arcondéguy T, Jack R, Merrick M (2001) PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105. https://doi.org/10.1128/MMBR.65.1.80-105.2001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nannan C, Vu HQ, Gillis A, Caulier S, Mahillon J (2020) Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against gram-negative foodborne pathogens. J Biotechnol 327:28–35. https://doi.org/10.1016/j.jbiotec.2020.12.017

    Article  CAS  PubMed  Google Scholar 

  35. Schalk IJ, Rigouin C, Godet J (2020) An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 22:1447–1466. https://doi.org/10.1111/1462-2920.14937

    Article  PubMed  Google Scholar 

  36. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cesari A, Paulucci N, López-Gómez M, Hidalgo-Castellanos J, Plá CL, Dardanelli MS (2019) Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiol Biochem 142:519–527. https://doi.org/10.1016/j.plaphy.2019.08.015

    Article  CAS  PubMed  Google Scholar 

  38. Potshangbam M, Sahoo D, Verma P, Verma S, Kalita MC, Devi SI (2018) Draft genome sequence of Bacillus altitudinis Lc5, a biocontrol and plant growth-promoting endophyte strain isolated from indigenous black rice of Manipur. Genome Announc. https://doi.org/10.1128/genomeA.00601-18

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ahemad M (2015) Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5:111–121. https://doi.org/10.1007/s13205-014-0206-0

    Article  PubMed  Google Scholar 

  40. Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR (2019) Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. Geomicrobiol J 36:904–916. https://doi.org/10.1080/01490451.2019.1654043

    Article  CAS  Google Scholar 

  41. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. https://doi.org/10.1007/s11104-006-9056-9

    Article  CAS  Google Scholar 

  42. Suleman M, Yasmin S, Rasul M, Yahya M, Atta BM, Mirza MS (2018) Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE 13:e0204408. https://doi.org/10.1371/journal.pone.0204408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang Z, Zhang L, He N, Gong D, Gao H, Ma Z, Fu L, Zhao M, Wang H, Wang C (2021) Soil bacterial community as impacted by addition of rice straw and biochar. Sci Rep-UK 11(1):1–9. https://doi.org/10.1038/s41598-021-99001-9

    Article  CAS  Google Scholar 

  44. Zhang W, Chen L, Zhang R, Lin K (2016) High throughput sequencing analysis of the joint effects of BDE209-Pb on soil bacterial community structure. J Hazard Mater 301:1–7. https://doi.org/10.1016/j.jhazmat.2015.08.037

    Article  CAS  PubMed  Google Scholar 

  45. Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, Nuti M (2008) Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Appl Soil Ecol 40:260–270. https://doi.org/10.1016/j.apsoil.2008.05.002

    Article  Google Scholar 

  46. Chen T, Hu R, Zheng Z, Yang J, Fan H, Deng X, Yao W, Wang Q, Peng S, Li J (2021) Soil bacterial community in the multiple cropping system increased grain yield within 40 cultivation years. Front Plant Sci. https://doi.org/10.3389/fpls.2021.804527

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu C, Dong Y, Hou L, Deng N, Jiao R (2017) Acidobacteria community responses to nitrogen dose and form in chinese fir plantations in Southern China. Curr Microbiol 74(3):396–403. https://doi.org/10.1007/s00284-016-1192-8

    Article  CAS  PubMed  Google Scholar 

  48. Zhelezova A, Chernov T, Tkhakakhova A, Xenofontova N, Semenov M, Kutovaya O (2019) Prokaryotic community shifts during soil formation on sands in the tundra zone. PLoS ONE 14(4):e0206777. https://doi.org/10.1371/journal.pone.0206777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032. https://doi.org/10.1111/nph.13838

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Feng G, Declerck S (2018) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12:2339–2351. https://doi.org/10.1038/s41396-018-0171-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (31700094) supported Dr. Chengqiang Wang. The National Natural Science Foundation of China (31770115) supported Dr. Yanqin Ding. The National Key Research and Development Program of China (No. 2017YFD0200804), the Science and Technology Project of Guizhou (ZYJ2017-8), and the Key Field Research and Development Program of Guangdong Province (2019B020218009) supported Prof. Binghai Du.

Author information

Authors and Affiliations

Authors

Contributions

DZ and YC performed the work and analyzed the data. DZ and YD wrote the original draft. CW revised the manuscript. YZ, KL, LY, XH, YP, and JG advised the manuscript. CW and BD supported the study.

Corresponding author

Correspondence to Chengqiang Wang.

Ethics declarations

Conflict of Interest

All the authors declare no competing interests.

Ethical Approval

The research does not involve human and animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 22 KB)

Supplementary file2 (DOCX 236 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Ding, Y., Cui, Y. et al. Isolation and Genome Sequence of a Novel Phosphate-Solubilizing Rhizobacterium Bacillus altitudinis GQYP101 and Its Effects on Rhizosphere Microbial Community Structure and Functional Traits of Corn Seedling. Curr Microbiol 79, 249 (2022). https://doi.org/10.1007/s00284-022-02944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02944-z

Navigation