Skip to main content

Strategies to Develop Heat and Drought–Tolerant Wheat Varieties Following Physiological Breeding

  • Chapter
  • First Online:
Translating Physiological Tools to Augment Crop Breeding

Abstract

Worldwide, abiotic stresses including heat and drought are the major obstructions that threaten the agricultural production. Development of climate-resilient cultivars is the easy and economical way to combat drought and heat stress with limited resources. Plants do follow adaptation strategies to mitigate the impact of stress and lead to alteration in some of the morphological traits such as leaf rolling, leaf angle, cuticular wax content, stomatal conductance, deep root system, altered signalling and metabolic pathways. Targeting such traits along with the economical yield will help to identify suitable genotypes which perform better under stress environment. The basic step is to explore the available physiological trait variation among the cultivars, germplasm set and wild relatives to main stream alleles of importance to breeding material from the donor parent. Conventional and advanced breeding strategies can be implemented to develop climate-resilient cultivars with the suitable breeding and screening methods. As a key factor hybridization and selection along with the implication of advanced breeding methods like MABB, MARS, GS and transgenic approach make it easy and accurate to develop varieties in less time. Linkage, QTL and genome-wide association mapping helps to identify the genomic region of interest to target during marker-aided breeding approaches. A cocktail of breeding methods from conventional to transgenic may help in the development of high-yielding climate-resilient varieties which can help to serve farmers to escape from glitch of crop loss due to dry spell during cropping season. The recent advancement and methodologies regarding drought and heat tolerance breeding in wheat are discussed in this chapter along with the difficulties posed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abou-Elwafa SF, Shehzad T (2021) Genetic diversity, GWAS and prediction for drought and terminal heat stress tolerance in bread wheat (Triticum aestivum L.). Genet Resour Crop Evol 68(2):711–728

    Article  CAS  Google Scholar 

  • Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492. https://doi.org/10.2135/cropsci2013.11.0793

    Article  Google Scholar 

  • Adams SR, Cockshull KE, Cave CRJ (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88(5):869–877

    Article  Google Scholar 

  • Ahn C, Park U, Park PB (2011) Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun 415(4):669–674

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Donnart T, Nouri MZ, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9(8):4189–4204

    Article  CAS  PubMed  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91(3):385–395

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GN (2012) Phenological development-yield relationships in durum wheat cultivars under late-season high-temperature stress in a semiarid environment. International Scholarly Research Notices 2012

    Google Scholar 

  • Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci 176(2):119–129

    Article  Google Scholar 

  • Anderegg J, Yu K, Aasen H, Walter A, Liebisch F, Hund A (2020) Spectral vegetation indices to track senescence dynamics in diverse wheat germplasm. Front Plant Sci 10:1749

    Article  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sancher-Diaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679. https://doi.org/10.1016/S0168-9452(03)00257-7

    Article  CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Bahuguna RN, Jagadish KSV, Coast O, Wassmann R (2014) Plant abiotic stress: temperature extremes. In: Encyclopedia of agriculture and food systems. Elsevier, Amsterdam, pp 330–334

    Chapter  Google Scholar 

  • Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29(4):471–487

    Article  CAS  PubMed  Google Scholar 

  • Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV (2017) Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci 263:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240. https://doi.org/10.1093/jxb/ert375

    Article  CAS  PubMed  Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bhandari A, Bartholomé J, Cao-Hamadoun TV, Kumari N, Frouin J, Kumar A, Ahmadi N (2019) Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice. PLoS One 14(5):1–21. https://doi.org/10.1371/journal.pone.0208871

    Article  Google Scholar 

  • Bhattacharya A (2019) Effect of high temperature on crop productivity and metabolism of macro molecules. Academic, New York

    Google Scholar 

  • Bhusal N, Sharma P, Sareen S, Sarial AK (2018) Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biol Plant 62(4):721–731

    Article  CAS  Google Scholar 

  • Bhusal N, Poudel RR, Panthi S, Khanal N (2021) Chapter 8—Prospection of heat tolerance in the context of global warming in wheat for food security. In: Sareen S, Sharma P, Singh C, Jasrotia P, Pratap Singh G et al (eds) Woodhead publishing series in food science, technology and nutrition. Woodhead Publishing, Cambridge, pp 123–143

    Google Scholar 

  • Blum A, Sinmena B, Mayer J, Golan G, Shpiler L (1994) Stem reserve mobilisation supports wheat-grain filling under heat stress. Funct Plant Biol 21(6):771–781

    Article  Google Scholar 

  • Bonneau J, Taylor J, Parent B, Bennett D, Reynolds M, Feuillet C, Langridge P, Mather DE (2013) Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126:747–761. https://doi.org/10.1007/s00122-012-2015-3

    Article  CAS  PubMed  Google Scholar 

  • Bougouffa S, Radovanovic A, Essack M, Bajic V B (2014) DEOP: a database on osmoprotectants and associated pathways. Database bau100. https://doi.org/10.1093/database/bau100

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change & crop production. CABI, Wallingford, p 115. https://doi.org/10.1079/9781845936334.0115

    Chapter  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55(407):2447–2460

    Article  CAS  PubMed  Google Scholar 

  • Condorell GE, Newcomb M, Groli EL, Maccaferri M, Forestan C, Babaeian E, Tuberosa R (2022) Genome wide association study uncovers the QTLome for osmotic adjustment and related drought adaptive traits in durum wheat. Genes 13(2):293

    Article  Google Scholar 

  • Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crain J, Mondal S, Rutkoski J, Singh RP, Poland J (2018) Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11(1):1–14. https://doi.org/10.3835/plantgenome2017.05.0043

    Article  Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Danakumara T, Kumari J, Singh AK, Sinha SK, Pradhan AK, Sharma S, Prasad PV (2021) Genetic dissection of seedling root system architectural traits in a diverse panel of hexaploid wheat through multi-locus genome-wide association mapping for improving drought tolerance. Int J Mol Sci 22(13):7188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deva CR, Urban MO, Challinor AJ, Falloon P, Svitákova L (2020) Enhanced leaf cooling is a pathway to heat tolerance in common bean. Front Plant Sci 11:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Devasirvatham V, Tan DK, Trethowan RM (2016) Breeding strategies for enhanced plant tolerance to heat stress. In: Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Cham, pp 447–469

    Chapter  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6(24):6498–6507. https://doi.org/10.1002/pmic.200600367

    Article  CAS  PubMed  Google Scholar 

  • Dunckel S, Crossa J, Wu S, Bonnett D, Poland J (2017) Genomic selection for increased yield in synthetic-derived wheat. Crop Sci 57(2):713–725

    Article  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markersin a commercial breeding program. Crop Sci 47:S154–S163

    Article  Google Scholar 

  • Eichi VR, Okamoto M, Garnett T, Eckermann P, Darrier B, Riboni M, Langridge P (2020) Strengths and weaknesses of national variety trial data for multi-environment analysis: a case study on grain yield and protein content. Agronomy 10:753. https://doi.org/10.3390/agronomy10050753

    Article  CAS  Google Scholar 

  • El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7(12):e52030. https://doi.org/10.1371/journal.pone.0052030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  • Fitter AH, Hay RKM (2002) Environmental physiology of plants, 3rd edn. Academic, London

    Google Scholar 

  • Fokar M, Blum A, Nguyen HT (1998) Heat tolerance in spring wheat. II: grain filling. Euphytica 104:9–15

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. https://doi.org/10.1105/tpc.105.033589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quéré C (2010) Update on CO2 emissions. Nat Geosci 3(12):811–812

    Article  CAS  Google Scholar 

  • Füllner K, Temperton VM, Rascher U, Jahnke S, Rist R, Schurr U, Kuhn AJ (2012) Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley. Plant Cell Environ 35(5):884–892. https://doi.org/10.1111/j.1365-3040.2011.02460.x

    Article  CAS  PubMed  Google Scholar 

  • Gahlaut V, Jaiswal V, Tyagi BS, Singh G, Sareen S, Balyan HS, Gupta PK (2017) QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS One 12(8):e0182857

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajghate R, Chourasiya D, Harikrishna SRK (2020) Plant morphological, physiological traits associated with adaptation against heat stress in wheat and maize. In: Giri B, Sharma MP (eds) Plant stress biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9380-2_3

    Chapter  Google Scholar 

  • Galinski EA (1995) In: Poole RK (ed) Advances in microbial physiology. Elsevier, Amsterdam, pp 273–328

    Google Scholar 

  • Gautam T, Dhillon GS, Saripalli G, Rakhi VPS, Prasad P, Kaur S, Chhuneja P, Sharma PK, Balyan HS, Gupta PK (2020) Marker-assisted pyramiding of genes/QTL for grain quality and rust resistance in wheat (Triticum aestivum L.). Mol Breed 40:49

    Article  CAS  Google Scholar 

  • Gerard GS, Crespo-Herrera LA, José Cross J, Mondal S, Velu G, Juliana P, Huerta-Espino J, Vargas M, Rhandawa MS, Bhavani S, Braun H, Singh RP (2020) Grain yield genetic gains and changes in physiological related traits for CIMMYT’s high rainfall wheat screening nursery tested across international environments. Field Crop Res 249:107742. https://doi.org/10.1016/j.fcr.2020.107742

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Singh K, Grewal S, Nath M (2020) Impact of “omics” in improving drought tolerance in wheat. Crit Rev Plant Sci 39:222–235. https://doi.org/10.1080/07352689.2020.1778924

    Article  CAS  Google Scholar 

  • Golabadi M, Arzani A, Mirmohammadi Maibody SAM, Tabatabaei BES, Mohammadi SA (2011) Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177:207–221

    Article  Google Scholar 

  • Goraya GK, Kaur B, Asthir B, Bala S, Kaur G, Farooq M (2017) Rapid injuries of high temperature in plants. J Plant Biol 60(4):298–305

    Article  CAS  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11–12):377–384

    Article  CAS  PubMed  Google Scholar 

  • Haghighattalab A, Crain J, Mondal S, Rutkoski J, Singh RP, Poland J (2017) Application of geographically weighted regression to improve grain yield prediction from unmanned aerial system imagery. Crop Sci 57(5):2478–2489

    Article  Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49:178–185

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109(37):E2415–E2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque MS, Tanjima U, Sushmoy DR, Hossain AKZM (2019) Heat stress alters chlorophyll fluorescence, photosynthesis and antioxidative enzyme activities in wheat cultivars. Fundam Appl Agric 4(2):858–866

    Google Scholar 

  • Harikrishna (2017) Marker assisted recurrent selection for drought tolerance in wheat. Thesis dissertation. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684. https://doi.org/10.3390/ijms14059643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan AH, Hozzein WN, Mousa AS, Rabie W, Alkhalifah DHM, Selim S, AbdElgawad H (2020) Heat stress as an innovative approach to enhance the antioxidant production in Pseudooceanicola and Bacillus isolates. Sci Rep 10(1):1–13

    Article  CAS  Google Scholar 

  • Hemantaranjan A, Malik CP, Bhanu AN (2018) Physiology of heat stress and tolerance mechanism—an overview. J Plant Sci Res 33(1):55–68

    Google Scholar 

  • Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K (2015) Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep 5(1):1–11

    Article  Google Scholar 

  • Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More on the efficiency of marker-assisted selection. Theor Appl Genet 95:1181–1189

    Article  Google Scholar 

  • Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176(4):583–590

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wu L, Zhao F, Zhang D, Li N, Zhu G, Li C, Wang W (2015) Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Front Plant Sci 6:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Ding Y, Zhu C (2020) Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci 11:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H, Harley C, Hoang A, Kingsolver JG (2002) Plants versus animals: do they deal with stress in different ways? Integr Comp Biol 42(3):415–423

    Article  PubMed  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582

    Google Scholar 

  • Jain N, Singh GP, Singh PK, Ramya P, Krishna H, Ramya KT, Todkar L, Amasiddha B, Kumar KP, Vijay P, Jadon V (2014) Molecular approaches for wheat improvement under drought and heat stress. Indian J Genet Plant Breed 74(4s):578

    Article  Google Scholar 

  • Janska A, Mars P, Zelenkova S, Ovesna J (2009) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12:395–405. https://doi.org/10.1111/j.1438-8677.2009.00299.x

    Article  CAS  Google Scholar 

  • Joshi AK, Mishra B, Chatrath R, Ferrara GO, Singh RP (2007) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157(3):431–446

    Article  Google Scholar 

  • Kalyar T, Rauf S, da Silva JAT, Iqbal Z (2013) Variation in leaf orientation and its related traits in sunflower (Helianthus annuus L.) breeding populations under high temperature. Field Crops Res 150:91–98

    Article  Google Scholar 

  • Kamran A, Iqubal M, Spaner D (2014) Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197:1–26. https://doi.org/10.1007/s10681-014-1075-7

    Article  CAS  Google Scholar 

  • Kang CH, Lee SY, Park JH, Lee Y, Jung HS, Chi YH, Jung YJ, Chae HB, Shin MR, Kim WY, Yun DJ, Lee SY (2015) Stress-driven structural and functional switching of Ypt1p from a GTPase to a molecular chaperone mediates thermo tolerance in Saccharomyces cerevisiae. FASEB J 29(11):4424–4434. https://doi.org/10.1096/fj.15-270140

    Article  CAS  PubMed  Google Scholar 

  • Khadka K, Raizada MN, Navabi A (2020) Recent progress in germplasm evaluation and gene mapping to enable breeding of drought-tolerant wheat. Front Plant Sci 11:1149. https://doi.org/10.3389/fpls.2020.01149

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, Gao ZQ, Noor H, Alam S (2019a) Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants 8(11):508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Anwar S, Yu S, Sun M, Yang Z, Gao Z-Q (2019b) Development of drought-tolerant transgenic wheat: achievement and limitations. Int J Mol Sci 20:3350. https://doi.org/10.3390/ijms20133350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Chatterjee S, Weng Y (2021) Future research for tropical UHI. In: Khan A, Chatterjee S, Weng Y (eds) Urban heat island modeling for tropical climates. Elsevier, Amsterdam, pp 215–230

    Chapter  Google Scholar 

  • Khanna-Chopra R, Viswanathan C (1999) Evaluation of heat stress tolerance in irrigated environment of T. aestivum and related species. I. Stability in yield and yield components. Euphytica 106:169–180

    Article  Google Scholar 

  • Kim WY, Cheong NE, Lee DC, Je DY, Bahk JD, Cho MJ, Lee SY (1995) Cloning and sequencing analysis of a full-length cDNA encoding a G protein alpha subunit, SGA1, from soybean. Plant Physiol 108(3):1315–1316. https://doi.org/10.1104/pp.108.3.1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kumar S, Sehgal SK, Kumar U, Prasad PVV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276

    Article  CAS  Google Scholar 

  • Kumar R, Kaur A, Pandey A, Mamrutha HM, Singh GP (2019) CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Mol Biol Rep 46:3557–3569. https://doi.org/10.1007/s11033-019-04761-3

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma A, Sharma R, Srivastva P, Choudhary A (2021) Exploration of wheat wild relative diversity from Lahaul valley: a cold arid desert of Indian Himalayas. Cereal Res Commun 50:305–320

    Article  Google Scholar 

  • Kumar A, Sharma A, Sharma R, Choudhary A, Srivastava P, Kaur H, Padhy AK (2022) Morpho-physiological evaluation of Elymus semicostatus (Nees ex Steud.) Melderis as potential donor for drought tolerance in Wheat (Triticum aestivum L.). Genet Resour Crop Evol 69(1):411–430

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22. https://doi.org/10.1016/j.geoderma.2004.01.032

    Article  CAS  Google Scholar 

  • Langridge P, Reynolds MP (2015) Genomic tools to assist breeding for drought tolerance. Curr Opin Biotechnol 32:130–135. https://doi.org/10.1016/j.copbio.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  • Langridge P, Reynolds M (2021) Breeding for drought and heat tolerance in wheat. Theor Appl Genet 134(6):1753–1769

    Article  PubMed  Google Scholar 

  • Larcher W (1995) Plant physiological ecology. Springer, Berlin

    Book  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138(2):882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62(10):3387–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D, Ahsan N, Lee S, Kang KY, Bahk JD, Lee I, Lee BA (2007) Proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383. https://doi.org/10.1002/pmic.200700266

    Article  CAS  PubMed  Google Scholar 

  • Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 180:672–678. https://doi.org/10.1016/j.plantsci.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22(1):631–677

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Sukumaran S, Claverie E, Sansaloni C, Dreisigacker S, Reynolds M (2019) Genetic dissection of heat and drought stress QTLs in phenology-controlled synthetic-derived recombinant inbred lines in spring wheat. Mol Breed 39(3):1–18

    Article  Google Scholar 

  • Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63(10):3789–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes MS, Reynolds MP, McIntyre CL, Mathews KL, Jalal Kamali MR, Mossad M, Feltaous Y, Tahir IS, Chatrath R, Ogbonnaya F, Baum M (2013) QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor Appl Genet 126(4):971–984

    Article  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JL, Salem MB, Bort J, DeAmbrogio E, del Moral LF, Demontis A, El-Ahmed A, Maalouf F (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178(1):489–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Abe R, Suzuki A, Nagayama T, Yano K (2012) Comprehensive functional analyses of expressed sequence tags in common wheat (Triticum aestivum). DNA Res 19(2):165–177. https://doi.org/10.1093/dnares/dss001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marwein R, Debbarma J, Sarki YN, Baruah I, Saikia B, Boruah HPD, Velmurugan N, Chikkaputtaiah C (2019) Genetic engineering/genome editing approaches to modulate signaling processes in abiotic stress tolerance. In: Plant signaling molecules. Woodhead Publishing, Cambridge, pp 63–82

    Chapter  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma XF (2018) Genome-wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci 9:1272

    Article  PubMed  PubMed Central  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard M (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51(4):656–669. https://doi.org/10.1111/j.1365-313X.2007.03169.x

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2016) ROS are good. Trends Plant Sci 22:11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. https://doi.org/10.1016/j.tplants.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125. https://doi.org/10.1016/j.tibs.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi VA, Zali AA, Bihamta MR (2008) Mapping QTLs for heat tolerance in wheat. J Agric Sci Technol 10(3):261–267

    Google Scholar 

  • Mohammed YSA, Tahir ISA, Kamal NM, Eltayeb AE, Ali AM, Tsujimoto H (2014) Impact of wheat-Leymus racemosus added chromosomes on wheat adaptation and tolerance to heat stress. Breed Sci 63:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci 100(1):358–363. https://doi.org/10.1073/pnas.252641899

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Tanguay RM (2012) Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 44(10):1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Mujtaba SM, Faisal S, Khan MA, Shirazi MU, Khan MA (2018) Evaluation of drought tolerant wheat genotypes using morpho-physiological indices as screening tools. Pak J Bot 50(1):51–58

    CAS  Google Scholar 

  • Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ (2017) Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS One 12(2):e0171692

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG (2010) Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ J Plant Physiol 57(1):87–95

    Article  CAS  Google Scholar 

  • Nio S, Cawthray G, Wade L, Colmer T (2011) Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiol Biochem 49:1126–1137

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Xiang Y (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9:915

    Article  PubMed  PubMed Central  Google Scholar 

  • Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125(3):561–575

    Article  PubMed  Google Scholar 

  • Panaretou B, Zhai C (2008) The heat shock proteins: their roles as multi-component machines for protein folding. Fungal Biol Rev 22(3–4):110–119

    Article  Google Scholar 

  • Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53(2):101–110. https://doi.org/10.1002/jobm.201100288

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Zeng X, Ding X, Li S, Yu C, Zhu Y (2011) Ectopic expression of a vesicle trafficking gene, OsRab7, from Oryza sativa, confers tolerance to several abiotic stresses in Escherichia coli. Afr J Biotechnol 10(36):6940–6946

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto RS, Lopes MS, Collins NC, Reynolds MP (2016) Modelling and genetic dissection of staygreen under heat stress. Theor Appl Genet 129(11):2055–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorter H, Fiorani F, Pieruschka R, Wojciechowski T, van der Putten WH, Kleyer M, Schurr U, Postma J (2016) Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the feld. New Phytol 212(4):838–855. https://doi.org/10.1111/nph.14243

    Article  CAS  PubMed  Google Scholar 

  • Pour-Aboughadareh A, Ahmadi J, Balouchi HR (2010) Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. Int J Nucl Quantum Eng 4(1):63–73

    Google Scholar 

  • Puttamadanayaka S, Balaramaiah M, Biradar S, Parmeshwarappa SV, Sinha N, Prasad SV, Prabhu KV (2020) Mapping genomic regions of moisture deficit stress tolerance using backcross inbred lines in wheat (Triticum aestivum L.). Sci Rep 10(1):1–17

    Article  Google Scholar 

  • Quarrie SA, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57(11):2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Rabbi SM, Kumar A, Mohajeri Naraghi S, Sapkota S, Alamri MS, Elias EM, Mergoum M (2021) Identification of main-effect and environmental interaction QTL and their candidate genes for drought tolerance in a wheat RIL population between two elite spring cultivars. Front Genet 12:941

    Article  Google Scholar 

  • Rahman M, Davies P, Bansal U, Pasam R, Hayden M, Trethowan R (2020) Marker-assisted recurrent selection improves the crown rot resistance of bread wheat. Mol Breed 40(3):1–14

    Article  Google Scholar 

  • Rai N, Bellundagi A, Kumar PK, Kalasapura Thimmappa R, Rani S, Sinha N, Prabhu KV (2018) Marker-assisted backcross breeding for improvement of drought tolerance in bread wheat (Triticum aestivum L. emThell). Plant Breed 137(4):514–526

    Article  CAS  Google Scholar 

  • Rane J, Pannu RK, Sohu VS, Saini RS, Mishra B, Shoran J, Crossa J, Vargas M, Joshi AK (2007) Performance of yield and stability of advanced wheat genotypes under heat stress environments of the Indo-Gangetic plains. Crop Sci 47:1561–1573

    Article  Google Scholar 

  • Ranjith P, Rao MS (2021) Breeding for drought resistance. In: Plant breeding-current and future views. IntechOpen, London

    Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144(1). https://doi.org/10.1017/S0021859606005867

  • Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Funct Plant Biol 21(6):717–730

    Article  Google Scholar 

  • Reynolds MP, Pierre CS, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47(S3):S172–S189

    Article  Google Scholar 

  • Ristic Z, Bukovnik U, Vara Prasad PV (2007) Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Sci 47:2067–2073

    Article  CAS  Google Scholar 

  • Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10(1):2–11. https://doi.org/10.1111/j.1467-7652.2011.00634.x

    Article  CAS  PubMed  Google Scholar 

  • Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, Reynolds M, Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3 (Bethesda) 6:2799–2808

    Article  PubMed  Google Scholar 

  • Sadat S, Saeid KA, Bihamta MR, Torabi S, Salekdeh SGH, Ayeneh GAL (2013) Marker assisted selection for heat tolerance in bread wheat. World Appl Sci J 21(8):1181–1189

    CAS  Google Scholar 

  • Sadia G, Abdul W, Muhammad A, Muhammad A (2008) Changes in growth and leaf water status of sugarcane (Saccharum officinarum) during heat stress and recovery. Int J Agric Biol 10(2):191–195

    Google Scholar 

  • Salem KFM, Roder MS, Borner (2007) A Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res Commun 35:1367–1374

    Article  Google Scholar 

  • Sallam A, Eltaher S, Alqudah AM, Belamkar V, Baenziger PS (2022) Combined GWAS and QTL mapping revealed candidate genes and SNP network controlling recovery and tolerance traits associated with drought tolerance in seedling winter wheat. Genomics 114(3):110358

    Article  CAS  PubMed  Google Scholar 

  • Samad A, Sajad M, Nazaruddin N, Fauzi IA, Murad A, Zainal Z, Ismail I (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565. https://doi.org/10.3389/fpls.2017.00565

    Article  PubMed  PubMed Central  Google Scholar 

  • Sareen S, Tyagi BS, Tiwari V, Sharma I (2012) Response estimation of wheat synthetic lines to terminal heat stress using stress indices. J Agric Sci 4:97–104

    Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Bai H, Zhu Y, Lv X, Li S, Hui J, Dong J (2021) Mapping and genetic overlapping of QTLs related to drought and heat tolerances in spring wheat

    Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550–561. https://doi.org/10.3389/fpls.2017.00550

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinwari ZK, Jan SA, Nakashima K, Yamaguchi-Shinozaki K (2020) Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol Rep 14:151–162. https://doi.org/10.1007/s11816-020-00598-6

    Article  Google Scholar 

  • Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, Li M (2020) Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants 9(7):845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Singh K, Patil RV, Kadam S, Bharti S, Prasad P, Singh NK, Khanna-Chopra R (2015) Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.). Euphytica 203(2):449–467

    Article  CAS  Google Scholar 

  • Sinha N, Priyanka V, Ramya KT, Leena T, Bhat JA, Harikrishna PKV (2018) Assessment of marker-trait associations for drought and heat tolerance in bread wheat. Cereal Res Commun 46(4):639–649

    Article  CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran S, Jarquin D, Crossa J, Reynolds M (2018) Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. Plant Genome 11(2):1–11. https://doi.org/10.3835/plantgenome2017.12.0112

    Article  CAS  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Rutkoski JE, Poland JA, Crossa J, Jannink JL, Sorrells ME (2017) Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield. Plant Genome 10(2):1–12. https://doi.org/10.3835/plantgenome2016.11.0111

    Article  Google Scholar 

  • Suzuki N, Koussevitzky SHAI, Mittler RON, Miller GAD (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    Article  CAS  PubMed  Google Scholar 

  • Tahara M, Carver BF, Johnson RC, Smith EL (1990) Relationship between relative water content during reproductive development and winter wheat grain yield. Euphytica 49(3):255–262

    Article  Google Scholar 

  • Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL (2016) Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 60(1):26–45

    Article  PubMed  Google Scholar 

  • Tattaris M, Reynolds MP, Chapman SC (2016) A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front Plant Sci 7:1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 807–834

    Google Scholar 

  • Todkar L, Harikrishna GP, Jain N, Singh PK, Prabhu KV (2020) Introgression of drought tolerance QTLs through marker assisted backcross breeding in wheat (Triticum aestivum L.). Indian J Genet 80(2):209–212

    Article  CAS  Google Scholar 

  • Toker C, Canci H, Yildirim T (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54(8):1781–1786

    Article  Google Scholar 

  • Tozzi ES, Easlon HM, Richards JH (2013) Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood. Plant Cell Environ 36(8):1423–1434

    Article  CAS  PubMed  Google Scholar 

  • Tripp J, Mishra SK, Scharf KD (2009) Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. Plant Cell Environ 32(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2009) Signaling through G protein coupled receptors. Plant Signal Behav 4(10):942–947. https://doi.org/10.4161/psb.4.10.9530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144(2):538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang N, Liu B, Liang X, Zhou Y, Song J, Yang J, Yong H, Weng J, Zhang D, Li M, Nair S (2019) Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. Mol Breed 39(8):113–132

    Article  CAS  Google Scholar 

  • Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PV (2000) Temperature variability and the yield of annual crops. Agric Ecosyst Environ 82(1-3):159–167

    Article  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28(1):21–30. https://doi.org/10.1007/s00299-008-0614-x

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhang H, Sun J, Guo Z, Zou C, Li WX, Xie C, Huang C, Xu R, Liao H, Wang J (2018) Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theor Appl Genet 131(8):1699–1714

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527. https://doi.org/10.1051/agro/2009050

    Article  CAS  Google Scholar 

  • Yadav DK, Islam SM, Tuteja N (2012) Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signal Behav 7(7):733–740. https://doi.org/10.4161/psb.20356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen J, Liu Q, Ben C, Todd CD, Shi J, Yang Y, Hu X (2012) Comparative proteomic analysis of the thermotolerant plant Portulaca oleracea acclimation to combined high temperature and humidity stress. J Proteome Res 11(7):3605–3623

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci 41:1321–1329

    Article  Google Scholar 

  • Zampieri M, Ceglar A, Dentener F, Toreti A (2017) Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ Res Lett 12:064008. https://doi.org/10.1088/1748-9326/aa723b

    Article  Google Scholar 

  • Zhang N, Carlucci P, Nguyen J, Hayes-Jackson J W, Tonsor S (2016) Contrasting avoidance-tolerance in heat stress response from thermally contrasting climates in Arabidopsis thaliana. bioRxiv 044461

    Google Scholar 

  • Zhao Y, Mette MF, Gowda M et al (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645. https://doi.org/10.1038/hdy.2014.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Źróbek-Sokolnik A (2012) Temperature stress and responses of plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 113–134

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devate, N.B. et al. (2023). Strategies to Develop Heat and Drought–Tolerant Wheat Varieties Following Physiological Breeding. In: Harohalli Masthigowda, M., Gopalareddy, K., Khobra, R., Singh, G., Pratap Singh, G. (eds) Translating Physiological Tools to Augment Crop Breeding. Springer, Singapore. https://doi.org/10.1007/978-981-19-7498-4_3

Download citation

Publish with us

Policies and ethics