Skip to main content
Log in

Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the “working horse” of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBP, CREB:

binding protein

CS:

cosuppression

HAT:

histone acetyl transferase

hs:

heat stress

HSE:

heat stress promoter elements

HSG:

heat stress granules

HSP:

heat stress protein

NES:

nuclear export signal

NLS:

nuclear localization signal

OE:

overexpression

WT:

wild type

References

  • Alexander L and Grierson D 2002 Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening;J. Exp. Bot. 53 2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Almoguera C, Rojas A, Diaz-Martin J, Prieto-Dapena P, Carranco R and Jordano J 2002 A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower;J. Biol. Chem. 277 43866–43872

    Article  CAS  PubMed  Google Scholar 

  • Bannister A J and Kouzarides T 1996 The CBP co-activator is a histone acetyl transferase;Nature (London) 384 641–643

    Article  CAS  Google Scholar 

  • Barlev N A, Candau R, Wang L, Darpino P, Silverman N and Berger S L 1995 Characterization of physical interaction of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein;J. Biol. Chem. 270 19337–19344

    Article  CAS  PubMed  Google Scholar 

  • Bharti K and Nover L 2002 Heat stress-induced signalling; inPlant signal transduction: Frontiers in molecular biology (eds) D Scheel and C Wasternack (Oxford: Oxford University Press) pp 74–115

    Google Scholar 

  • Bharti K, Schmidt E, Lyck R, Englich G, BublaK-D, Scharf K-D 2000 Structure and function of HsfA3, a new heat stress transcription factor of tomato;Plant. J. 22 355–365

    Article  CAS  PubMed  Google Scholar 

  • Bharti K, von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E and Nover L 2004 Tomato heat stress transcription factor HsfB 1 represents a novel type of general transcription coactivator with a histone-like motif interacting with HAC1/CBP;Plant Cell 16 1521–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordoli L, Netsch M, Lüthi U, Lutz W and Eckner R 2001 Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins;Nucleic Acids Res. 29 589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boscheinen O, Lyck R, Queitsch C, Treuter E, Zimarino V and Scharf K-D 1997 Heat stress transcription factors from tomato can functionally replace HSF1 in the yeastSaccharomyces cerevisiae;Mol. Gen. Genet. 255 322–331

    Article  CAS  PubMed  Google Scholar 

  • Bramley P M 2002 Regulation of carotenoid formation during tomato fruit ripening and development;J. Exp. Bot. 53 2107–2113

    Article  CAS  PubMed  Google Scholar 

  • Braun H P and Schmitz U K 1999 The protein-import apparatus of plant mitochondria;Planta 209 267–274

    Article  CAS  PubMed  Google Scholar 

  • Brunold C, Rüegsegger A and Brändle R (eds) 1996Stress bei Pflanzen (Bern: Verlag PaulHaupt)

    Google Scholar 

  • Bukau B and Horwich A L 1998 The Hsp70 and Hsp60 chaperone machines;Cell 92 351–366

    Article  CAS  PubMed  Google Scholar 

  • Carey M 1998 The enhanceosome and transcriptional synergy;Cell 92 5–8

    Article  CAS  PubMed  Google Scholar 

  • Chan H M and La Thangue N B 2001 p300/CBP proteins: HATs for transcriptional bridges and scaffolds;J. Cell Sci. 114 2363–2373

    CAS  PubMed  Google Scholar 

  • Cherry J H (ed.) 1994Biochemical and cellular mechnisms of stress tolerance in plants (NATO ASI Series H 86)

  • Cicero M P, Hubl S T, Harrison C J, Littlefield O, Hardy J A and Nelson H C M 2001 The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity;Nucleic Acids Res. 29 1715–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnecka-Verner E, Yuan C X, Scharf K-D, Englich G and Gurley W B 2000 Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential;Plant Mol. Biol. 43 459–471

    Article  CAS  PubMed  Google Scholar 

  • Damberger F F, Pelton J G, Harrison C J, Nelson H C M and Wemmer D E 1994 Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy;Protein Sci. 3 1806–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Döring P, Treuter E, Kistner C, Lyck R, Chen A and Nover L 2000 Role of AHA motifs for the activator function of tomato heat stress transcription factors HsfA1 and HsfA2;Plant Cell 12 265–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis R J 2000 Chaperone substrates inside the cell;Trends Biochem. Sci. 25 210–212

    Article  CAS  PubMed  Google Scholar 

  • Feder M E and Hofmann G E 1999 Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology;Annu. Rev. Physiol. 61 243–282

    Article  CAS  PubMed  Google Scholar 

  • Forreiter C and Nover L 1998 Heat stress-induced proteins and the concept of molecular chaperones;J. Biosci. 23 287–302

    Article  CAS  Google Scholar 

  • Frydman J 2001 Folding of newly translated proteins in vivo: The role of molecular chaperones;Annu. Rev. Biochem. 70 603–647

    Article  CAS  PubMed  Google Scholar 

  • Gething M-J (ed.) 1997Guidebook to molecular chaperones and protein-folding catalysts (Oxford: Oxford University Press)

    Google Scholar 

  • Gething M-J and Sambrook J 1992 Protein folding in the cell;Nature (London) 355 33–45

    Article  CAS  Google Scholar 

  • Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A and Briggs S 2002 A draft sequence of the rice genome (Oryza sativa L.ssp.japonica);Science 296 92–100

    Article  CAS  PubMed  Google Scholar 

  • Görlich D and Kutay U 1999 Transport between the cell nucleus and the cytoplasm;Annu. Rev. Cell Dev. Biol. 15 607–660

    Article  PubMed  Google Scholar 

  • Gothel S F and Marahiel M A 1999 Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts;Cell. Mol. Life Sci. 55 423–436

    Article  CAS  PubMed  Google Scholar 

  • Guo Y L, Guettouche T, Fenna M, Boellmann F, Pratt W B, Toft D O, Smith D F and Voellmy R 2001 Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex;J. Biol. Chem. 276 45791–45799

    Article  CAS  PubMed  Google Scholar 

  • Haralampidis K, Milioni D, Rigas S and Hatzopoulos P 2002 Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene;Plant Physiol. 129 1138–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison C J, Bohm A A and Nelson H C M 1994 Crystal structure of the DNA binding domain of the heat shock transcription factor;Science 263 224–227

    Article  CAS  PubMed  Google Scholar 

  • Hartl F U and Hayer-Hartl M 2002 Protein folding — Molecular chaperones in the cytosol: from nascent chain to folded protein;Science 295 1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M 2002 sHsps and their role in the chaperone network;Cell. Mol. Life Sci. 59 1649–1657

    Article  CAS  PubMed  Google Scholar 

  • He Z, Li L and Luan S 2004 Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis;Plant Physiol. 134 1248–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerklotz D, Döring P, Bonzelius F, Winkelhaus S and Nover L 2001 The balance of nuclear import and export determines the intracellular distribution of tomato heat stress transcription factor HsfA2;Mol. Cell. Biol. 21 1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson B M, Drysdale C M, Natarajan K and Hinnebusch A G 1996 Identification of seven hydrophobic clusters in Gcn4 making redundant contributions to transcriptional activation;Mol. Cell. Biol. 16 5557–5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson J L and Craig E A 1997 Protein folding in vivo: Unraveling complex pathways;Cell 90 201–204

    Article  CAS  PubMed  Google Scholar 

  • Kadokura H, Katzen F and Beckwith J 2003 Protein disulfide bond formation in prokaryotes;Annu. Rev. Biochem. 72 111–135

    Article  CAS  PubMed  Google Scholar 

  • Kim B H and Schöffl F 2002 Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins;J. Exp. Bot. 53 371–375

    Article  CAS  PubMed  Google Scholar 

  • Kim S-Y, Sharma S, Hoskins J R and Wickner S 2002 Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA;J. Biol. Chem. 47 44778–44783

    Article  CAS  Google Scholar 

  • Kotak S, Port M, Ganguli A, Bicker F and von Koskull-Döring P 2004 Characterization of C-terminal domains ofArabidopsis heat stress transcription factors (Hsf) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization;Plant J. 39 98–112

    Article  CAS  PubMed  Google Scholar 

  • Lam E 1994 Analysis of tissue-specific elements in the CaMV35S promoter; inPlant promoters and transcription factors (ed.) L Nover (Berlin: Springer) pp 181–196

    Chapter  Google Scholar 

  • Lee G J and Vierling E 2000 A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heatdenatured protein;Plant Physiol. 122 189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemon B and Tjian R 2000 Orchestrated response: a symphony of transcription factors for gene control;Genes Dev. 14 2551–2569

    Article  CAS  PubMed  Google Scholar 

  • Levitt J 1980Responses of plants to environmental stresses Vol. I and II (New York: Academic Press)

    Google Scholar 

  • Lin J, Chen J, Elenbaas B and Levine A J 1994 Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to MDM2 and the adenovirus 5 E1B 55-kD protein;Genes Dev. 8 1235–1246

    Article  CAS  PubMed  Google Scholar 

  • Littlefield O and Nelson H C M 1999 A new use for the ‘wing’ of the ‘winged’ helix-turn-helix motif in the HSF-DNA cocrystal;Nature Struct. Biol. 6 464–470

    Article  CAS  PubMed  Google Scholar 

  • Lohmann C, Eggers-Schumacher G, Wunderlich M and Schöffl F 2004 Two different heat shock factors regulate immediate early expression of stress genes in Arabidopsis;Mol. Gen. Genomics 271 11–21

    Article  CAS  Google Scholar 

  • Lorimer G H 2001 A personal account of chaperonin history;Plant Physiol. 125 38–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyck R, Harmening U, Höhfeld I, Scharf K-D and Nover L 1997 Intracellular distribution and identification of the nuclear localization signals of two tomato heat stress transcription factors;Planta 202 117–125

    Article  CAS  PubMed  Google Scholar 

  • Mattaj I W and Englmeier L 1998 Nucleocytoplasmic transport: The soluble phase;Annu. Rev. Biochem. 67 265–306

    Article  CAS  PubMed  Google Scholar 

  • Melcher K and Johnston S A 1995 Gal4 interacts with TATA-binding protein and coactivators;Mol. Cell. Biol. 15 2839–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S K, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L and Scharf K-D 2002 In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato;Genes Dev. 16 1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto R I 1998 Regulation of the heat shock transcriptional response: cross talk between family of heat shock factors, molecular chaperones, and negative regulators;Genes Dev. 12 3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Müller-Thurgau M 1880 Ueber das Gefrieren und Erfrieren der Pflanzen.Landwirtsch. Jahrb. 9 133–189

    Google Scholar 

  • Näär A M, Lemon B D and Tjian R 2001 Transcriptional coactivator complexes;Annu. Rev. Biochem. 70 475–501

    Article  PubMed  Google Scholar 

  • Nakai A 1999 New aspects in the vertebrate heat shock factor system: HsfA3 and HsfA4;Cell Stress Chap. 4 86–93

    Article  CAS  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K and Taga T 1999 Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300;Science 284 479–482

    Article  CAS  PubMed  Google Scholar 

  • Netzer W J and Hartl F U 1998 Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms;Trends Biochem. Sci. 23 68–73

    Article  CAS  PubMed  Google Scholar 

  • Neupert W and Brunner M 2002 The protein import motor of mitochondria;Nat. Rev. Mol. Cell. Biol. 3 555–565

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg R, Thurow C, Kegler C and Gatz C 2000 Tobacco transcription factor TGA2.2 is the main component ofas-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression ofas-1 -containing target promoters;J. Biol. Chem. 275 19897–19905

    Article  CAS  PubMed  Google Scholar 

  • Nover L (ed.) 1991Heat shock response (Boca Raton: CRC Press)

    Google Scholar 

  • Nover L and Scharf K-D 1997 Heat stress proteins and transcription factors;Cell. Mol. Life Sci. 53 80–103

    Article  CAS  PubMed  Google Scholar 

  • Nover L, Neumann D and Scharf K-D (eds) 1989aHeat shock and other stress response systems of plants (Berlin: Springer)

    Google Scholar 

  • Nover L, Scharf K-D and Neumann D 1989b Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs;Mol. Cell. Biol. 9 1298–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra S K, Ganguli A and Scharf K-D 2001Arabidopsis and the Hsf world: How many heat stress transcription factors do we need?;Cell Stress Chap. 6 177–189

    Article  CAS  Google Scholar 

  • Pelham H R B 1982 A regulatory upstream promoter element in theDrosophila hsp70 heat-shock gene;Cell 30 517–528

    Article  CAS  PubMed  Google Scholar 

  • Peteranderl R, Rabenstein M, Shin Y, Liu C W, Wemmer D E, King D S and Nelson H C M 1999 Biochemical and Biophysical characterization of the trimerization domain from the heat shock transcription factor;Biochemistry 38 3559–3569

    Article  CAS  PubMed  Google Scholar 

  • Port M, Tripp J, Zielinski D, Weber C, Heerklotz D, Winkelhaus S, BublaK-D, Scharf K-D 2004 Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2;Plant Physiol. 135 1457–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regier J L, Shen F and Triezenberg S J 1993 Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator;Proc. Natl. Acad. Sci. USA 90 883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehling P, Pfanner N and Meisinger C 2003 Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane — a guided tour;J. Mol. Biol. 326 639–657

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F 1962 A new puffing pattern induced by heat shock and DNP inDrosophila;Experientia 18 571–573

    Article  CAS  Google Scholar 

  • Ritossa F 1996 Discovery of the heat shock response;Cell Stress Chap. 1 97–98

    Article  CAS  Google Scholar 

  • Rojas A, Almoguera C and Jordano J 1999 Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors;Plant J. 20 601–610

    Article  CAS  PubMed  Google Scholar 

  • Sachs J 1864 Ueber die obere Temperatur-Gränze der Vegetation;Flora 47 5–12, 24–29, 33–39 and 64–75

    Google Scholar 

  • Scharf K-D, Heider H, Höhfeld I, Lyck R, Schmidt E and Nover L 1998b The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules;Mol. Cell. Biol. 18 2240–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharf K-D, Höhfeld I and Nover L 1998a Heat stress response and heat stress transcription factors;J. Biosci. 23 313–329

    Article  CAS  Google Scholar 

  • Scharf K-D, Rose S, Zott W, Schöffl F and Nover L 1990 Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF;EMBO J. 9 4495–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid F X 1995 Protein folding: Prolyl isomerases join the fold;Curr. Biol. 5 993–994

    Article  CAS  PubMed  Google Scholar 

  • Schmitz M L, dos Santo Silva M A, Altman H, Czisch M, Holak T A and Baeuerle P A 1994 Structural and functional analysis of the NF-kappa B p65 C-terminus. An acidic and modular transactivation domain with the potential to adapt an alphahelical conformation;J. Biol. Chem. 269 25613–25620

    CAS  PubMed  Google Scholar 

  • Schöffl F, Prändl R and Reindl A 1998 Regulation of the heat shock response;Plant Physiol. 117 1135–1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultheiss J, Kunert O, Gase U, Scharf K-D, Nover L and Rüterjans H 1996 Solution structure of the DNA-binding domain of the tomato heat stress transcription factor HSF24;Eur. J. Biochem. 236 911–921

    Article  CAS  PubMed  Google Scholar 

  • Soll J and Schleiff E 2004 Protein import into chloroplasts;Nature Rev. Mol. Cell. Biol. 5 198–208

    Article  CAS  Google Scholar 

  • Stern D E and Berger S L 2000 Acetylation of histones and transcription-related factors;Microbiol. Mol. Biol. Rev. 64 435–459

    Article  Google Scholar 

  • Tessari A, Salata E, Ferlin A, Bartoloni L, Slongo M L and Foresta C 2004 Characterization ofHSFY, a novelAZFb gene on the Y chromosome with possible role in human spermatogenesis;Mol. Human Reprod. 10 253–258

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative 2000 Analysis of the genome sequence of the flowering plantArabidopsis thaliana;Nature (London) 408 796–815

    Article  Google Scholar 

  • Tissieres A, Mitchell H K and Tracy U M 1974 Protein synthesis in salivary glands ofD. melanogaster. Relation to chromosome puffs;J. Mol. Biol. 84 389–398

    Article  CAS  PubMed  Google Scholar 

  • Tjian R and Maniatis T 1994 Transcriptional activation — a complex puzzle with few easy pieces;Cell 77 5–8

    Article  CAS  PubMed  Google Scholar 

  • Treuter E, Nover L, Ohme K and Scharf K-D 1993 Promoter specificity and deletion analysis of three heat stress transcription factors of tomato;Mol. Gen. Genet. 240 113–125

    Article  CAS  PubMed  Google Scholar 

  • Tu B P and Weissman J S 2004 Oxidative protein folding in eukaryotes: mechanisms and consequences;J. Cell Biol. 164 341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuister G W, Kim S J, Orosz A, Marquardt J, Wu C and Bax A 1994 Solution structure of the DNA-binding domain ofDrosophila heat shock transcription factor;Nature Struct. Biol. 1 605–614

    Article  CAS  PubMed  Google Scholar 

  • Walter S and Buchner J 2002 Molecular chaperones — Cellular machines for protein folding;Angew. Chem.-Int. Edit. 41 1098–1113

    Article  CAS  Google Scholar 

  • Wegele H, Müller L and Buchner J 2004 Hsp70 and Hsp90 — a relay team for protein folding;Rev. Physiol. Biochem. Pharmacol. (in press)

  • Wiedemann N, Frazier A E and Pfanner N 2004 The protein import machinery of mitochondria;J. Biol. Chem. (in press)

  • Wu C 1995 Heat stress transcription factors;Annu. Rev. Cell Biol. 11 441–469

    Article  CAS  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M and Yamada K 2002 A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein;Proc. Natl Acad. Sci. USA 99 7530–7535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young J C, Barral J M and Hartl U F 2003 More than folding: localized functions of cytosolic chaperones;Trends Biochem. Sci. 28 541–547

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L and Yang H 2002 A draft sequence of the rice genome (Oryza sativa L. ssp.indica);Science 296 79–92

    Article  CAS  PubMed  Google Scholar 

  • Yuan L W and Giordano A 2002 Acetyltransferase machinery conserved in p300/CBP-family proteins;Oncogene 21 2253–2260

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baniwal, S.K., Bharti, K., Chan, K.Y. et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29, 471–487 (2004). https://doi.org/10.1007/BF02712120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02712120

Keywords

Navigation