Skip to main content
Log in

Rapid injuries of high temperature in plants

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Global climate changes particularly high temperature is predicted to have a general negative effect on plant growth and development, that might lead to catastrophic loss of crop productivity. High temperature has a wide range of effect on plant in terms of plant physiological, biochemical processes such as photosynthesis, respiration water relations, and gene regulatory pathways. The injury inflicted on plant tissues under such extremes weakens the cell membrane, which leads to the production of reactive oxygen species that attacks major sites i.e photosynthetic apparatus, the photosystems, mainly photosystem II (PSII) and the respiratory pathways. To cope with rising temperature conditions, plants possess a number of adaptive, avoidance, or acclimation mechanisms. In addition to major tolerance mechanisms, plants also employ ion transporters, proteins, osmoprotectants, antioxidants and many other factors involved in signaling cascades and transcriptional control that are activated to offset stress-induced biochemical and physiological alterations. This article reviews the recent findings on high temperature induced injuries and responses at the cellular, organellar and whole plant levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance of plants in the era of climate change. New York, NY: Springer; p. 297–324

    Book  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Asthir B, Rai PK, Bains NS, Sohu VS (2012) Genotypic Variation for High Temperature Tolerance in Relation to Carbon Partitioning and Grain Sink Activity in Wheat Am J Plant Sci 3:381–390

    CAS  Google Scholar 

  • Bansal M, Kukreja K, Sunita S, Dudeja SS (2014) Symbiotic effectivity of high temperature tolerant mungbean (Vignaradiata) rhizobia under different temperature conditions. Int J Curr Microbiol Appl Sci 3:807–821

    Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Benjamin PT, Jonathan S, Weissman JS (2004) Oxidative protein folding in eukaryotes mechanisms and consequences. J Cell Biol 164:341–346

    Article  Google Scholar 

  • Bindumadhava H, Nair RM, Easdown W (2015) Physiology of mungbean accessions grown under saline and high temperature conditions. AVRDC-Annual report, No.74199. Tainan: Weihai Shanhua Carpet Group Co., Ltd., 1–46

    Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bülow L, Brill Y, Hehl R (2010) AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana Database (Oxford). baq034

    Google Scholar 

  • Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6:43–52

    Article  Google Scholar 

  • Cossani CM, Reynold MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnecka E, Key JL, Gurley WB (1989) Regulatory domains of the Gmhsp 17.5-E heat shock promoter of soybean: a mutational analysis. Mol Cell Biol 9:3457–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delphine D, Declan C, Navin R, Jeff P, Rachel W (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:1–13

    Google Scholar 

  • Doroszewski A, Górski T, Kozyra J (2015) Atmospheric moisture controls far-red irradiation: a probable impact on the phytochrome. Int. Agrophys 29:283–289

    CAS  Google Scholar 

  • Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A, Gibb SW, Loya Y, Ostrande KR, Kramarsky-Winter E (2013) Heat-Stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One 8:771–773

    Article  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    Article  PubMed  PubMed Central  Google Scholar 

  • Du GD, Lü DG, Zhao L, Wang SS, Cai Q (2011) Effects of high temperature on leaf photosynthetic characteristics and photosystem II photochemical activity of kernel-used apricot. Ying Yong Sheng Tai Xue Bao 22:701–706

    CAS  PubMed  Google Scholar 

  • Evandro NS, Sérgio LF, Adilton VF, Rafael VR, Ricardo AV, Joaquim AGS (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164

    Article  Google Scholar 

  • Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agro Crop Sci ISSN:1931–2250

    Google Scholar 

  • Gall H L, Philippe F, Domon J M, Gillet F, Pelloux J, Rayon C (2015) Cell wall metabolism in response to abiotic stress. Plants 4:112–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallie DR, Pitto L (1996) Translational control during recovery from heat shock in the absence of heat shock proteins. Biochem Biophys Res Commun 227:462–467

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Cox KL, Ping He (2014) Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity. Plants (Basel) 3:160–176

    Article  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitisvinifera cv. Semillon) leaves on vines grown in ahotclimate. Plant Cell Environ 35:1050–1064

    Article  PubMed  Google Scholar 

  • Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage TL (2013) High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J Exp Bot 64:2971–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Mahabub A, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemantaranjan A, Bhanu AN, Singh MN, Yadav DK, Patel PK, Singh R, Katiyar D (2014) Heat stress responses and thermotolerance. Adv Plants Agri Res 3:1–10

    Google Scholar 

  • Hui S, Xiangbin Z, Fangfang Z, Yanmei W, Bingxiao Y, Qun L, Genyun C, Bizeng M, Jianjun W, Yangsheng L, Guoying X, Yuke H, Han X, Jianming L, Zuhua H (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature biotechnology. doi:10.1038/nbt.3321

    Google Scholar 

  • Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB (2009) Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. J Cereal Sci 49:12–23

    Article  CAS  Google Scholar 

  • Kamila L, Bokszczanin, Fragkostefanakis, S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315

    Google Scholar 

  • Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R, Bhardwaj R (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Environ Sci 3:13

    Article  Google Scholar 

  • Karuppanapandian T, Moon J C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. AJCS 5:709–725

    CAS  Google Scholar 

  • Kepova KD, Holzer R, Stoilova LS, Feller U (2005) Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, rubisco binding protein and rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  Google Scholar 

  • Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326

    Article  CAS  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato nadph oxidase. Plant Cell 19:1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Rao IU (2013) Indirect injuries include inactivation of enzymes, inhibition of protein synthesis, protein degradation and loss of membrane integrity. Trends Biosci 6:5–13

    Google Scholar 

  • Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33:2091–2101

    Article  CAS  Google Scholar 

  • Li M, Ji L, Yang X, Meng Q, Guo S (2012) The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. Plant Cell Rep 31:1969–1979

    Article  CAS  PubMed  Google Scholar 

  • Lismont C, Nordgren M, Veldhoven PPV, Fransen M (2015) Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 3:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Sci 333:616–620

    Article  CAS  Google Scholar 

  • Mariano CC, Matthew PR (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    Article  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Momcilovic I, Zoran RZ (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol 164:90–99

    Article  CAS  PubMed  Google Scholar 

  • Muhammad F, Helen B, Jairo AP, Kadambot H M, Siddique (2011) Heat Stress in wheat during reproductive and grain-filling phases. Critical Reviews Plant Sci 30:1–17

    Article  Google Scholar 

  • Nordine C, Robert JJ (1995) Heat stress effects on sink activity of developing maize kernels grown in vitro. Physiol Planta 95:59–66

    Article  Google Scholar 

  • Obata T, Witt S, Lisec J, Palacios RN, Florez-Sarasa I, Yousfi S, Luis AJ, Cairns JE, Fernie AR (2015) Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169:2665–2683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot doi:10.1155/2012/803413

    Google Scholar 

  • Parre E, Mohamed AG, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savouré A (2007) Calcium signaling via phospholipase c is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:1503–1512

    Article  Google Scholar 

  • Parrotta L, Faleri C, Cresti M, Cai G (2016) Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta 243:43–63

    Article  CAS  PubMed  Google Scholar 

  • Philippa B, Brendan F, Alison MS, Cristobal U (2015) Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using nam rnai plants. PLoS one 10:0134947

    Google Scholar 

  • Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of blackgram. Int J Pharm. Phytopharmacol. Res 1:194–202

    CAS  Google Scholar 

  • Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2006) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142:1102–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja SP, Duroy AN, Joseph CK, Alberto P, Syamkumar SP (2012) Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol 12–39

    Google Scholar 

  • Ranga ZW, Jagadish SVK, Zhoua QM, Craufurd PQ, Heuer S (2011) Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ Exper Bot 70:58–65

    Article  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Irene S (2011) Day coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki, K, Yamaguchi-Shinozaki, K. (Eds.), Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, Texas, pp. 81–98

    Google Scholar 

  • Scott AM, McAdam Brodribb TJ (2014) Separating active and passive influences on stomatal control of transpiration. Plant Physiol 164:1578–1586

    Article  Google Scholar 

  • Soll J, Schleiff E (2004) Protein import into chloroplasts. Nature Reviews Mol Cell Biol 5:198–208

    Article  CAS  Google Scholar 

  • Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan W, Meng Q W, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Teixeira EI, Fischer G, Van VH, Walter C, Ewert F (2013) Global hotspots of heat stress on agricultural crops due to climate change. Agric Forest Meteorol 170:206–215

    Article  Google Scholar 

  • Telfer A (2014) Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol 55:1216–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi AK (2015) Adaptations and mechanisms of heat stress tolerance of plants. Acad Res J Agric Sci Res 3:151–160

    Google Scholar 

  • Villegas C, Alfaro K, Ammar M M, Catedra J, Crossa LF, Garcıa del M, Royo C (2015) Daylength, temperature and solar radiation effects on the phenology and yield formation of spring durum wheat. J Agro Crop Sci ISSN 0931–2250

    Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exper Bot 61:199–223

    Article  Google Scholar 

  • Wiberley-Bradford AE, Busse JS, Jiming J, Bethke PC (2014) Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of katahdin. BMC Res Notes 7:801

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamashita A, Nijo N, Pospíšil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y (2008) Reactive oxygen species are responsible for the damage to photosystem ii under moderate heat stress. J Biol Chem 17:283:28380–28391

    Article  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Genotypic differences in utilization of assimilate sources during maturation of wheat under chronic heat and heat shock stresses Utilization of assimilate sources by wheat under heat stresses. Euphytica 125:179–188

    Article  CAS  Google Scholar 

  • Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J 69:689–700

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bavita Asthir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goraya, G.K., Kaur, B., Asthir, B. et al. Rapid injuries of high temperature in plants. J. Plant Biol. 60, 298–305 (2017). https://doi.org/10.1007/s12374-016-0365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0365-0

Navigation