Skip to main content
Log in

An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Water stress is the most important adverse factor limiting rice production. Too much water leads to flood and too little leads to drought. Floods and droughts can severely damage crop at different times of the rice life cycle. So the research on submergence tolerance and drought resistance of rice is particularly urgent. In this study, we reported that OsEBP89 (Oryza sativa Ethylene-responsive element binding protein, clone 89), a member of the AP2/ERF subfamily, is involved in a novel signal transduction associated with the tolerance to drought and submergence stress. OsEBP89 was found to be strongly inhibited by drought stress and promoted by submergence. The OsEBP89 protein was located at the nucleus in the rice protoplast. Loss of OsEBP89 was found to improve the seed germination under submerged conditions and also enhanced the tolerance to drought stress throughout growth stage. Additionally, OsEBP89 knockout rice plants increased the accumulation of proline, improved the ability to scavenge ROS compared to overexpression lines and wild type after PEG treatment. Transcriptome data indicates that knockout of OsEBP89 improved the expression of specific genes in response to adverse factors, such as OsAPX1, OsHsfA3, and OsP5CS. Further results indicate that OsEBP89 can interact with and be phosphorylated by SnRK1α (sucrose non-fermenting-1-related protein kinase-1 gene). These findings provide insight into the mechanism of abiotic stress tolerance, and suggest OsEBP89 as a new genetic engineering resource to improve abiotic stress tolerance in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AP2/ERF:

APETALA2/ethylene responsive factor

qRT-PCR:

Quantitative real-time polymerase chain reaction

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

DEGs:

Differentially expressed genes

GO:

Gene ontology

Y2H:

Yeast TWO hybrid

3AT:

3-Aminotriazol

LCI:

Luciferase complementation imaging

IP:

Immunoprecipitation

References

  • Arindam G, Palak C, Wolfram W (2017) Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci 8:757. https://doi.org/10.3389/fpls.2017.00757

    Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417–427

    Article  CAS  Google Scholar 

  • Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou J (2008) Firefly luciferase complementation imaging assay for protein–protein interactions in plants. Plant Physiol 146:368–376

    Article  CAS  Google Scholar 

  • Cho YH, Hong JW, Kim EC, Yoo SD (2012) Regulatory functions of SnRK1α in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964

    Article  CAS  Google Scholar 

  • Cho HY, Wen TN, Wang YT, Shih MC (2016) Quantitative phosphoproteomics of protein kinase SnRK1α regulated protein phosphorylation in Arabidopsis under submergence. J Exp Bot 67:2745–2760

    Article  CAS  Google Scholar 

  • Coello P, Hirano E, Hey SJ, Muttucumaru N, Martinez-Barajas E, Parry MAJ, Halford NG (2012) Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2. J Exp Bot 63:913–924

    Article  CAS  Google Scholar 

  • Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14

    Article  CAS  Google Scholar 

  • Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chern M, Bart R, Chen X, Zhu L, Farmerie WG, Gribskov M, Zhu JK, Fromm ME, Ronald PC, Song W (2009) A rice kinase-protein interaction map. Plant Physiol 149:1478–1492

    Article  CAS  Google Scholar 

  • Fukao T, YeungE B-S (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427

    Article  CAS  Google Scholar 

  • Fukao T, Xiong L (2013) Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol 16:196–204

    Article  CAS  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Takashi Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  Google Scholar 

  • Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Son LV, Roosensa NH (2003) Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci 165:1059–1068

    Article  CAS  Google Scholar 

  • Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R (2015) Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS ONE 10:e0127831. https://doi.org/10.1371/journal.pone.0127831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, Hardie DG, Thomas M (2009) SnRK1α (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J 59:316–328

    Article  CAS  Google Scholar 

  • Jung H, Chung PJ, Park SH, Redillas MCFR, Kim YS, Suh JW, Kim JK (2017) Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J 15:1295–1308

    Article  CAS  Google Scholar 

  • Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM, Mackill DJ, Septiningsih EM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124. https://doi.org/10.1038/nplants.2015.124

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Jung H, Jang G, Jeong JS, Kim YS, Ha SH, Choi YD, Kim JK (2016) Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol 172:575–588

    Article  CAS  Google Scholar 

  • Lima-Melo Y, Carvalho FEL, Martins MO, Passaia G, Sousa RHV, Neto MCL, Margis-Pinheiro M, Silveira JAG (2016) Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. J Integr Plant Biol 58:737–748

    Article  CAS  Google Scholar 

  • Ma X, Liu YG (2016) CRISPR/Cas9-based multiplex genome editing in monocot and dicot plants. Curr Protoc Mol Biol 115:31.6.1–31.6.21. https://doi.org/10.1002/cpmb.10

    Article  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1α kinases, global regulators at the heart of energy control? Trends Plant Sci 12:20–28

    Article  CAS  Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8:476–488

    Article  CAS  Google Scholar 

  • Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, González-Guzmán M, Antoni R, Rodriguez PL, Baena-González E (2013) ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25:3871–3884

    Article  CAS  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406

    Article  CAS  Google Scholar 

  • Singh P, Sinha AK (2016) A positive feedback loop governed by SUB1A1 interaction with MITOGEN ACTIVATED PROTEIN KINASE 3 imparts submergence tolerance in rice. Plant Cell 28:1127–1143

    Article  CAS  Google Scholar 

  • Supratim B, Venkategowda R, Anuj K, Andy P (2016) Plant adaptation to drought stress. J Res 5:1554. https://doi.org/10.12688/f1000research.7678.1

    Article  CAS  Google Scholar 

  • Swamy BPM, Ahmed HU, Henry A, Mauleon R, Dixit S, Vikram P, Tilatto R, Verulkar SB, Perraju P, Mandal NP, Variar M, Robin S, Chandrababu R, Singh ON, Dwivedi JL, Das SP, Mishra KK, Yadaw RB, Aditya TL, Karmakar B, Satoh K, Moumeni A, Kikuchi S, Leung H, Kumar A (2013) Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS ONE 8:e62795. https://doi.org/10.1371/journal.pone.0062795

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866

    Article  CAS  Google Scholar 

  • Toshitsugu N, Kaoru S, Tatsuhito F, Hideaki S (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53

    Article  CAS  Google Scholar 

  • Upadhyay RK, Gupta A, Soni D, Garg R, Pathre UV, Nath P, Sane AP (2017) Ectopic expression of a tomato DREB gene affects several ABA processes and influences plant growth and root architecture in an age-dependent manner. J Plant Physiol 214:97–107

    Article  CAS  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE 6:e25216. https://doi.org/10.1371/journal.pone.0025216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Feng F, Lian X, Teng X, Wei H, Yu H, Xie W, Yan M, Fan P, Li Y, Ma X, Liu H, Yu S, Wang G, Zhou F, Luo L, Mei H (2015) Genome-wide Association Study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol 15:218. https://doi.org/10.1186/s12870-015-0608-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong H, Yu J, Miao J, Li J, Zhang H, Wang X, Liu P, Zhao Y, Jiang C, Yin Z, Li Y, Guo Y, Fu B, Wang W, Li Z, Ali J, Li Z (2018) Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiol 178:451–467

    Article  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biol 65:719–732

    Article  CAS  Google Scholar 

  • Yang HJ, Shen H, Chen L, Xing YY, Wang ZY, Zhang JL, Hong MM (2002) The OsEBP-89 gene of rice encodes a putative EREBP transcription factor and is temporally expressed in developing endosperm and intercalary meristem. Plant Molecular Biol 50:379–391

    Article  CAS  Google Scholar 

  • Yu Y, Yang D, Zhou S, Gu J, Wang F, Dong J, Huang R (2017) The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254:401–408

    Article  CAS  Google Scholar 

  • Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R (2013) EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta 237:1443–1451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hao, D., from College of Agriculture & Biotechnology, Zhejiang University, for substrate phosphorylation assay.

Funding

This study was supported by the Natural Science Foundation of Shanghai (17ZR1425400), the National Key Technologies R&D Program of China (2016ZX08001003), and the Youth Talent Development Project supported by the Shanghai Municipal Agriculture Commission 2017 (1–33).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shunwu Yu or Lijun Luo.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, J., Chen, S. et al. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Genet Genomics 295, 941–956 (2020). https://doi.org/10.1007/s00438-020-01669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01669-7

Keywords

Navigation