Skip to main content

Nano-enabled Agriculture Can Sustain “Farm to Fork” Chain

  • Chapter
  • First Online:
Nanobiotechnology in Agriculture

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The global population will augment to 9.7 billion by 2050, so the agricultural produce needs to boost by 60%. The most significant “grand challenges” we face are achieving and sustaining global food security. Further confounding this effort is the fact that this growth in food production will have to occur in the face of a changing climate, urbanization, decreasing acreage of arable land, sustainable use of natural resources, environmental issues like runoff and accumulation of pesticides and fertilizers. One of the chief shortcomings of contemporary agricultural practices with average loss of 10–75% and a prime target for improvement is elevated inefficiency of agrochemical delivery and utilization. To address these problems, nanotechnology plays an essential role to enhance production yield besides, mitigate negative environmental issues. Nanotechnologies promote food security by enhanced delivery and utilization of nano-agrochemicals and ensure food safety through nanosensors. It involves an interdisciplinary approach to deliver nutrients to agricultural crops against various deficiencies, genetic material via nanoparticle-mediated chloroplast transgene delivery, and less overall environmental impact. Here we describe how nanotechnology plays a vital role to boost the agribusiness and food industry for the sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA (2015) Nanodiagnostic tools in plant breeding. J Nanotech Mater Sci 2(2):1–8

    Google Scholar 

  • Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R et al (2015) Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA 314:1850–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Aguilar-Méndez MA, Martín-Martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloeosporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture: towards 2015/2030: the 2012 revision (Food and Agricultural Organization of the United Nations). http://www.fao.org/docrep/016/ap106e/ap106e.pdf

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  PubMed  Google Scholar 

  • Arshak K, Adley C, Moore E, Cunniffe C, Campion M, Harris J (2007) Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens Actuators B Chem 126:226–231

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier H, Kasamets C, Kahru KA (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae, Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Azeredo HC, Mattoso LH, Wood DF, Williams TG, Avena-Bustillos RD, Mc Hugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74(5):31–35

    Article  CAS  Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363

    Article  CAS  Google Scholar 

  • Boroghani M, Mirnia SK, Vahhabi J, Ahmadi SJ, Charkhi A (2011) Nanozeolite synthesis and the effect on the runoff and erosion control under rainfall simulator. Aust J Basic Appl Sci 5(12):1156–1163

    CAS  Google Scholar 

  • Bouma J, Batjes NH, Sonneveld MPW, Bindraban P (2015) Enhancing soil security for smallholder agriculture. In: Lal R, Stewart BA (eds) Soil management of smallholder agriculture. Advances in soil science series. CRC Press, Taylor & Francis Group, LLC, Boca Raton, pp 17–37

    Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  CAS  PubMed  Google Scholar 

  • Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJL, Furman D, Shen-Orr S, Dekker CL, Swan GE, Butte AJ, Maecker HT, Davis MM (2015) Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH (2008) Scientific status summary. J Food Sci 73:R107–R116

    Article  CAS  PubMed  Google Scholar 

  • Burlaka OM, Pirko YV, Yemets AI, Blume YB (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49:349–357

    Article  Google Scholar 

  • Callejón RM, Rodríguez-Naranjo MI, Ubeda C, Hornedo-Ortega R, Garcia-Parrilla MC, Troncoso AM (2015) Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathog Dis 12(1):32–38. https://doi.org/10.1089/fpd.2014.1821

    Article  PubMed  Google Scholar 

  • Carmen IU, Chithra P, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29

    Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartuprayoon N, Rheem Y, Chen W, Myung N (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. In: Proceedings of the 218th electrochemical society meeting, Las Vegas, Nevada, USA, pp 2278–2278, 10–15

    Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  CAS  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15:15–22

    Article  CAS  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep 7:9754. https://doi.org/10.1038/s41598-017-08571-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Cossins D (2014) Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The scientist, news & opinion, March 16. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions/

  • da Silva AC, Deda DK, Bueno CC, Moraes AS, Da Roz AL, Yamaji FM, Prado RA, Viviani V, Oliveira ON, Leite FL (2014) Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J Nanosci Nanotechnol 14(9):6678–6684

    Article  PubMed  CAS  Google Scholar 

  • De Boodt MF, Hayes MH, Herbillon A (2013) Soil colloids and their associations in aggregates, vol 214. Springer Science & Business Media, New York

    Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ, Staskawicz B, Landry MP (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotech 14:456

    Article  CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS (2016) Fortification of micronutrients for efficient agronomic production: a review. Agron Sustain Dev 36:7

    Article  CAS  Google Scholar 

  • Dimkpa C, Bindraban P, McLean JE et al (2017) Methods for rapid testing of plant and soil nutrients. In: Lichtfouse E (ed) Sustainable agriculture reviews. Springer, Cham, pp 1–43

    Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23(2):285–289

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi A, Galavi M, Ramroudi M, Moaveni P (2016) Effect of TiO2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in pinto bean (Phaseolus vulgaris L.). J Mol Biol Res 6:58–66

    Article  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    Article  CAS  PubMed  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eleftheriadou M, Pyrgiotakis G, Demokritou P (2017) Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Curr Opin Biotechnol 44:87–93. https://doi.org/10.1016/j.copbio.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Scientia Iranica 20(3):1055–1058

    Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5(3):537–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhang B (2009) Nanotechnology and applications in food safety. In: Barbosa-Canovas G, Mortimer A, Lineback D, Spiess W, Buckle K, Colonna P (eds) Global issues in food science and technology. Elsevier Inc., Cambridge, pp 401–410

    Chapter  Google Scholar 

  • FAO (2009) Food Security and Agricultural Mitigation in Developing Countries: Options for Capturing Synergies. Rome, Italy. http://www.fao.org/docrep/012/i1318e/i1318e00.pdf

  • Fernández-Luqueño F, López-Valdez F, González-Rosas A, Miranda-Gómez JM (2016) Bionanotechnology for the food production: challenges and perspectives. In: Bustos-Vázquez MA, del Ángel-del Ángel JA (eds) Tecnología y desarrollo sustentable: avances en el aprovechamiento de recursos agroindustriales. Universidad Autónoma de Tamaulipas y Colofón, Mexico, pp 293–305

    Google Scholar 

  • Fosso-Kankeu E, De Klerk CM, Botha TA, Waanders F, Phoku J, Pandey S (2016) The antifungal activities of multi-walled carbon nanotubes decorated with silver, copper and zinc oxide particles. In: International conference on advances in science, engineering, technology and natural resources (ICASETNR-16), Parys, South Africa, 24–25 November 2016, pp 55–59

    Google Scholar 

  • Fraisse A, Temmam S, Deboosere N, Guillier L, Delobel A, Maris P et al (2011) Comparison of chlorine and peroxyacetic-based disinfectant to inactivate Feline calicivirus, Murine norovirus and Hepatitis A virus on lettuce. Int J Food Microbiol 151(1):98–104. https://doi.org/10.1016/j.ijfoodmicro.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Kwak S, Jain RM, Wong MH, Iverson NM, Ben-Naim M, Strano MS (2015) A ratiometric sensor using single chirality near infrared fluorescent carbon nanotubes: application to in vivo monitoring. Small 32:3973–3984

    Article  CAS  Google Scholar 

  • Gopal MA, Gogoi RO, Srivastava CH, Kumar RA, Singh PK, Nair KK, Yadav SA, Goswami AR (2011) Nanotechnology and its application in plant protection. In: Plant pathology in India: vision 2030. Indian Phytopathological Society, Indian Agricultural Research Institute, New Delhi, pp 224–232

    Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011) The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146(2):144–150

    Article  CAS  PubMed  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  CAS  PubMed  Google Scholar 

  • Harper T (2015) The year of the trillion Dollar nanotechnology market? AZoNetwork UK Ltd., Manchester

    Google Scholar 

  • Henry E, Yadeta KA, Coaker G (2013) Recognition of bacterial plant pathogens: local, systemic and transgene rational immunity. New Phytol 199:908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higueras L, Lopez-Carballo G, Cerisuelo JP, Gavara R, Hernandez-Munoz P (2013) Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydr Polym 97(2):262–268

    Article  CAS  PubMed  Google Scholar 

  • Hirsh S, Schiefer J, Gschwandtner A, Hartmann M (2014) The determinants of firm profitability differences in EU food processing. J Agric Econ 65:703–721

    Article  Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Hooley G, Piercy NF, Nicoulaud B (2014) Marketing strategy and competitive positioning. Prentice Hall/Financial Times, London. (ISBN 9780273740933)

    Google Scholar 

  • Horvitz S, Cantalejo MJ (2014) Application of ozone for the postharvest treatment of fruits and vegetables. Crit Rev Food Sci Nutr 54(3):312–339

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Liu Y, Li X, Li M (2013) Biochemical responses of duckweed (Spirodela polyrhiza) to zinc oxide nanoparticles. Arch Environ Contam Toxicol 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Dian-Qing L, Yan-Jun W, Min David G, Xue ED (2005) Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  CAS  PubMed  Google Scholar 

  • IFRI (2008) Nanotechnology, food, agriculture and development. IFPRI Policy Seminar—18 June 2008. Available at: http://www.ifpriblog.org/ 2008/06/24/nanotech seminar.aspx. Accessed 2 Dec 2008

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165. https://doi.org/10.4172/2157-7439.1000165

    Article  CAS  Google Scholar 

  • Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 305–317

    Chapter  Google Scholar 

  • Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22:321–361. https://doi.org/10.1515/eces-2015-0018

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  CAS  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043. https://doi.org/10.1094/PDIS-93-10

    Article  CAS  PubMed  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Eur Nanotechnol Gateway. ftp://ftp.cordis.europa.eu/pub/nanotechnology/docs/nanotechnology_in_agriculture_and_food.pdf

  • Kabanov AV, Sahay G, Alakhova DY (2015) Endocytosis of nanomedicines. J Control Release 145:182–195

    Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684. https://doi.org/10.1038/s41565-018-0131-1

    Article  CAS  PubMed  Google Scholar 

  • Karaca H, Velioglu YS (2007) Ozone applications in fruit and vegetable processing. Food Rev Intl 23(1):91–106. https://doi.org/10.1080/87559120600998221

    Article  CAS  Google Scholar 

  • Karny A, Zinger A, Kajal A, Shainsky-Roitman J, Schroeder A (2018) Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci Rep 8:7589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231. https://doi.org/10.3923/ppj.2014

    Article  CAS  Google Scholar 

  • Khaydarov RR, Khaydarov RA, Evgrafova S, Estrin Y (2011) Using silver nanoparticles as an antimicrobial agent. In: NATO science for peace and security series a: chemistry and biology. Springer, Dordrecht, pp 169–177

    Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012a) Antifungal effects of silver nanoparticles(AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee S, Lee I (2012b) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223(5):2799–2806

    Article  CAS  Google Scholar 

  • Koseki S, Yoshida K, Isobe S, Itoh K (2004) Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J Food Prot 67(6):1247–1251. http://www.ncbi.nlm.nih.gov/pubmed/15222559

    Article  CAS  PubMed  Google Scholar 

  • Kuswandi B, Restanty A, Abdullah A, Heng LY, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25:184

    Article  CAS  Google Scholar 

  • Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua NH, Strano MS (2019) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnol 14:447. https://doi.org/10.1038/s41565-019-0375-4

    Article  CAS  Google Scholar 

  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619

    Article  CAS  Google Scholar 

  • Lal R (2015) The nexus approach to managing water, soil and waste under changing climate and growing demands on natural resources. In: Kurian M, Ardakanian R (eds) Governing the nexus: water, soil and waste resources considering global change. Springer, Cham, pp 39–61. https://doi.org/10.1007/978-3-319-05747-7_3

    Chapter  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20:848–854

    Article  CAS  Google Scholar 

  • Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS (2018) Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14(44):e1802086. https://doi.org/10.1002/smll.201802086

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cu YT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA based fluorescence nanobarcodes. Nat Biotechnol 23:885–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Shi P, Xu C, Ren JS, Qu XG (2013) Cerium oxide caged metal chelator: antiaggregation and antioxidation integrated H2O2 responsive controlled drug release for potential Alzheimer’s disease treatment. Chem Sci 4:2536–2542

    Article  CAS  Google Scholar 

  • Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv 7:38853–38860

    Article  CAS  Google Scholar 

  • Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sens Actuators B Chem 107(2):849–855

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Huang CH, Lu SH, Kuo IT, Chau LK (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing nano-subnano composites of slow- or controlled release of fertilizers. Sci Agric Sin 39:1598–1604

    CAS  Google Scholar 

  • Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H (2009) Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chemie Int Edn 48:7668–7672

    Article  CAS  Google Scholar 

  • Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    CAS  PubMed  Google Scholar 

  • Mahendra R, Shivaji D, Aniket G, Elsalam KA (2012) Strategic nanoparticle-mediated gene transfer in plants and animals—a novel approach. Curr Nanosci 8:170–179

    Article  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2012) Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma 249:89–98

    Article  CAS  PubMed  Google Scholar 

  • Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29:1–3

    Google Scholar 

  • Martin-Gullon I, Vera J, Conesa JA, González JL, Merino C (2006) Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon 44:1572–1580

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Lin VS, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547

    Article  CAS  PubMed  Google Scholar 

  • McCann HC, Nahal H, Thakur S, Guttman DS (2012) Identification of innate immunity elicitors using molecular signatures of natural selection. Proc Natl Acad Sci 109:4215–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meir R, Motiei M, Popovtzer R (2014) Gold nanoparticles for in vivo cell tracking. Nanomedicine (Lond) 9:2059–2069

    Article  CAS  Google Scholar 

  • Mohammadi S, Khalafi-Nezhad A (2012) Chitosan supported hexa-sulfooxymethyl melamine nanoparticles: a green and recyclable biopolymer catalyst for multicomponent reaction. In: Proceedings of the fourth international conference on nanostructures (ICNS4), 12–14 Mar 2012, Kish Island, Iran

    Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  CAS  PubMed  Google Scholar 

  • Nachay K (2007) Analyzing nanotechnology. Food Technol 61(1):34–36

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nath D (2015) Safer nanoformulation for the next decade. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Cham, pp 327–352. https://doi.org/10.1007/978-3-319-15461-9_12

    Chapter  Google Scholar 

  • Neethirajan S, Freund M, Jayas D, Shafai C, Thomson D, White N (2010) Development of carbon dioxide (CO2) sensor for grain quality monitoring. Biosyst Eng 106(4):395–404

    Article  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Kruse H (2010) Food-borne diseases -the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15

    Article  PubMed  PubMed Central  Google Scholar 

  • Nima ZA, Lahiani MH, Watanabe F, Xu Y, Khodakovskaya MV, Biris AS (2014) Plasmonically active nanorods for delivery of bio-active agents and high-sensitivity SERS detection in planta. RSC Adv 4:64985–64993

    Article  CAS  Google Scholar 

  • Nugaeva N, Gfeller KY, Backmann N, Lang HP, Duggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21:849–856

    Article  CAS  PubMed  Google Scholar 

  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ (2006) Synthesis of Ag and Ag-SiO2 nanoparticles by γ-irradiation and their antibacterial and antifungal efficiency against Salmonella enterica serovar Typhimurium and Botrytis cinerea. Colloids Surf Physicochem Eng Asp 275:228–233

    Article  CAS  Google Scholar 

  • Pal S, Ying W, Alocilja EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99(4):461–468

    Article  Google Scholar 

  • Pao S, Kelsey DF, Khalid MF, Ettinger MR (2007) Using aqueous chlorine dioxide to prevent contamination of tomatoes with Salmonella enterica and Erwinia carotovora during fruit washing. J Food Prot 70(3):629–634. https://doi.org/10.4315/0362-028X-70.3.629

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol App Sci 3:71–84

    Google Scholar 

  • Pehanich M (2006) Small gains in processing, packaging. Food Process 11:46–48

    Google Scholar 

  • Pirzadah TB, Malik B, Maqbool T, Rehman RU (2019) Development of nano-bioformulations of nutrients for sustainable agriculture. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds) Nanobiotechnology in bioformulations. Nanotechnology in the life sciences. Springer, Cham, pp 381–394

    Chapter  Google Scholar 

  • Prasad R, Bagde US, Varma A (2012) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11(73):13746–13752

    Article  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS 109:E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priyanka N, Venkatachalam P (2016) Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv Nat Sci Nanosci Nanotechnol 7:045018. http://iopscience.iop.org/2043-6262/7/4/045018

    Article  CAS  Google Scholar 

  • Pyrgiotakis G, Vasanthakumar A, Gao Y, Eleftheriadou M, Toledo E, DeAraujo A, Demokritou P (2015) Inactivation of foodborne microorganisms using Engineered Water Nanostructures (EWNS). Environ Sci Technol 49(6):3737–3745. https://doi.org/10.1021/es505868a

    Article  CAS  PubMed  Google Scholar 

  • Pyrgiotakis G, Vedantam P, Cirenza C, McDevitt J, Eleftheriadou M, Leonard SS, Demokritou P (2016) Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS). Sci Rep 6:21073. https://doi.org/10.1038/srep21073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomaterials Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rangaraj SR, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Adv 4:8461–8465

    Article  CAS  Google Scholar 

  • Resham S, Khalid M, Gul Kazi A (2015) Nanobiotechnology in agricultural development. In: Barh D et al (eds) PlantOmics: the omics of plant science. Springer, New Delhi, pp 683–698. https://doi.org/10.1007/978-81-322-2172-2_24

    Chapter  Google Scholar 

  • Rico D, Martín-Diana AB, Barat JM, Barry-Ryan C (2007) Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends Food Sci Technol 18(7):373–386. https://doi.org/10.1016/j.tifs.2007.03.011

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate–salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Rubina RS, Vasil’kov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd-Elsalam KA (2017) Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia–forming plant pathogenic fungi. J Nanostruct Chem 7:249–258. https://doi.org/10.1007/s40097–017–0235–4

    Article  CAS  Google Scholar 

  • Ruder AM (2006) Potential health effects of occupational chlorinated solvent exposure. Ann N Y Acad Sci 1076(1):207–227

    Article  CAS  PubMed  Google Scholar 

  • Rudnick SN, McDevitt JJ, First MW, Spengler JD (2009) Inactivating influenza viruses on surfaces using hydrogen peroxide or triethylene glycol at low vapor concentrations. Am J Infect Control 37(10):813–819. https://doi.org/10.1016/j.ajic.2009.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadowski Z (2010) Biosynthesis and application of silver and gold nanoparticles. In: Perez DP (ed) Silver nanoparticles. InTech, Rijeka

    Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683. https://doi.org/10.1016/j.ijbiomac.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  • Salamanca-Buentello F, Persad D, Court E, Martin D, Daar A, Singer P (2005) Nanotechnology and the developing world. PLoS Med 2(5):97

    Article  Google Scholar 

  • Samra JS, Sharma PD (2009) Food security – Indian scenario. In: Proceedings. IPI-OUAT-IPNI international symposium. International Potash Institute/International Plant Nutrition Institute, Horgen/Norcross, pp 15–43

    Google Scholar 

  • Scott N, Chen H (2003) Nano scale science and engineering for agriculture and food systems. In: National Planning Workshop, Washington, DC, USA, 18–19 Nov 2003, pp 1–61. http://www.nseafs.cornell.edu/web.roadmap.pdf

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. J Soc Food Agric 15(2):22–44

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y (2013) Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers. RSC Adv 3(15):4856–4863

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Tokeshi M, Baba Y (2015) Carbon nanotubes and modern nanoagriculture. In: Siddiqui M, Al-Whaibi M, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham, pp 183–201

    Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92. https://doi.org/10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  • Shah MA, Towkeer A (2010) Principles of nanosciences and nanotechnology. Narosa Publishing House, New Delhi

    Google Scholar 

  • Shapira P, Youtie J (2015) The economic contributions of nanotechnology to green and sustainable growth. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Cham, pp 409–434. https://doi.org/10.1007/978-3-319-15461-9_15

    Chapter  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Sharma K, Sharma R, Shit S, Gupta S (2012) Nanotechnological application on diagnosis of a plant disease. In: International conference on advances in biological and medical sciences, Singapore, 15–16 July, pp 149–150

    Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2:83–92

    Google Scholar 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomat Biostruct 3(3):115–122

    Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface Plasmon resonance based immuno sensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immune-dipstick test. Thin Solid Films 519:1156–1159

    Article  CAS  Google Scholar 

  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):99–106

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture-carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:273–275

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137

    Article  CAS  PubMed  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Article  Google Scholar 

  • Teodoro S, Micaela B, David KW (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66(6):577–579

    Google Scholar 

  • Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Process Impacts 15:1830–1843

    Article  CAS  PubMed  Google Scholar 

  • Torney F (2009) Nanoparticle mediated plant transformation. In: Emerging technologies in plant science research. Interdepartmental plant physiology major fall seminar series. Physics 696

    Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Gaur S, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2016) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12. https://doi.org/10.1016/j.plaphy.2016.07.030

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • USDA (2003) Nano-scale science and engineering for agriculture and food systems: a report submitted to cooperative state research, research, education and extension service. National Planning Workshop November 18–19, 2002. Washington, DC Co-Chairs: Dr. Norman Scott, Cornell University, Dr. Hongda Chen, CSREES/USDA

    Google Scholar 

  • USDA (2014) Cost estimates of foodborne illnesses. Retrieved 10 Apr 2019, from https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses/

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853

    Article  CAS  PubMed  Google Scholar 

  • Van Boxstael S, Habib I, Jacxsens L, De Vocht M, Baert L, Van De Perre E et al (2013) Food safety issues in fresh produce: bacterial pathogens, viruses and pesticide residues indicated as major concerns by stakeholders in the fresh produce chain. Food Control 32(1):190–197. https://doi.org/10.1016/j.foodcont.2012.11.038

    Article  Google Scholar 

  • Vaze N, Jiang Y, Lucas M, Zhang Y, Bello D, Leonard SS, Morris AM, Eleftheriadou M, Pyrgiotakis G, Demokritou P (2018) An integrated electrolysis – electrospray – ionization antimicrobial platform using Engineered Water Nanostructures (EWNS) for food safety applications. Food Control 85:151–160. https://doi.org/10.1016/j.foodcont.2017.09.034

    Article  CAS  PubMed  Google Scholar 

  • Verma ML (2017) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 4. Sustainable agriculture reviews, vol 24. Springer, Cham, pp 229–245

    Chapter  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces 80(1):94–102

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wu F, Meng W, White JC, Holden PA, Xing B (2013) Engineered nanoparticles may induce genotoxicity. Environ Sci Technol 47:13212–13214

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ma H, Zheng W, An D, Na C (2014) Multifunctional and recollectable carbon nanotube ponytails for water purification. ACS Appl Mater Interfaces 6:9426–9434

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H (2016) The gene is required for apothecial development. Phytopathology 106(5):484–490

    Article  CAS  PubMed  Google Scholar 

  • WHO (2015) News release. Retrieved 10 Apr 2019, from http://www.who.int/mediacentre/news/releases/2015/foodborne-disease-estimates/en/

  • World Health Organization (2008) Food borne disease outbreaks: Guidelines for investigation and control. http://www.apps.who.int/iris/bitstream/10665/43771/1/ 9789241547222_ eng.pdf

  • Wong MH, Misra R, Giraldo JP, Kwak SY, Son YW, Landry MP et al (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Xing K, Zhu X, Peng X, Qin S (2015) Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron Sustain Dev 35(2):569–588

    Article  CAS  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516

    Article  CAS  Google Scholar 

  • Zarei F, Negahdari B, Eatemadi A (2018) Diabetic ulcer regeneration: stem cells, biomaterials, growth factors. Artif Cells Nanomed Biotechnol 46(1):26–32

    Article  PubMed  Google Scholar 

  • Zhang Y, Niu Y, Lou Y, Ge M, Yang T, Yu L (2014) Fabrication, characterization and antimicrobial activities of thymol-loaded zinc nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers. Food Chem 142:269–275

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphorus pesticides. Biosens Bioelectron 67:287–295

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Li Z, Zhao S, Lu Y (2016) Size-dependent modulation of graphene oxide–aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. Analyst 141:4029–4034

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Qian L, Yuan H, Xiao D, Yang X, Paau MC et al (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82(1):177–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandita, D. (2020). Nano-enabled Agriculture Can Sustain “Farm to Fork” Chain. In: Hakeem, K., Pirzadah, T. (eds) Nanobiotechnology in Agriculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39978-8_3

Download citation

Publish with us

Policies and ethics