Skip to main content
Log in

Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant viruses are the most significant factors associated with massive economical losses in agricultural industries worldwide. Accordingly, many studies are dedicated to making virus-resistant crop varieties each year due to the ever-changing nature of viruses. Recently genome engineering methods have been used to confer interference against eukaryotic viruses. Research results on genome editing technics, in particular, CRISPR-Cas9, promises a feasible solution to make virus-resistant crops. In this research, we explored the possibility of utilizing CRISPR-Cas9 to obtain TYLCV resistant tomato varieties. Moreover, to overcome any potential off-target effects of Cas9, we used an inducible promoter to initiate Cas9 activity in case of the virus attack. Cas9 vector was transformed by the rgsCaM promoter, known as an endogenous silencer of RNAi and overexpressed after a virus attack. The golden gate cloning method was applied to construct sgRNAs. Intergenic region and coat protein-coding sequences of TYLCV were used to design sgRNAs. Infiltrated sensitive Money Maker varieties analyzed by real-time PCR, showed a significant reduction or delayed accumulation of viral DNA compared to the control plants. This result demonstrates the efficiency of using an inducible promoter in CRISPR-Cas9 constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJ, Meredith S, Lakay F, Monjane A, Lett J-M, Varsani A (2010) The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog 6(10):e1001164

    Article  PubMed  PubMed Central  Google Scholar 

  2. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 9(3):e1003399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gafni Y (2003) Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Mol Plant Pathol 4(1):9–15

    Article  CAS  PubMed  Google Scholar 

  4. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71(1–2):123–134

    Article  CAS  PubMed  Google Scholar 

  5. Lapidot M, Legg JP, Wintermantel WM, Polston JE (2014) Management of whitefly-transmitted viruses in open-field production systems. Adv Virus Res 90:147–206

    Article  PubMed  Google Scholar 

  6. Yang Y, Sherwood T, Patte C, Hiebert E, Polston J (2004) Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94(5):490–496

    Article  CAS  PubMed  Google Scholar 

  7. Mori T, Takenaka K, Domoto F, Aoyama Y, Sera T (2013) Inhibition of binding of tomato yellow leaf curl virus rep to its replication origin by artificial zinc-finger protein. Mol Biotechnol 54(2):198–203

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  9. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1(10):15144

    Article  CAS  PubMed  Google Scholar 

  10. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1(10):15145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16(1):238

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13(10):e1525996

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ji X, Si X, Zhang Y, Zhang H, Zhang F, Gao C (2018) Conferring DNA virus resistance with high specificity in plants using virus-inducible genome-editing system. Genome Biol 19(1):197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat Rev Genet 17(5):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujii W, Kawasaki K, Sugiura K, Naito K (2013) Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Research 41(20):e187–e187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9):839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anandalakshmi R, Marathe R, Ge X, HerrJr JM, Mau C, Mallory A, Pruss G, Bowman L, Vance VB (2000) A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290:142–144

    Article  CAS  PubMed  Google Scholar 

  19. Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79(4):2517–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung HY, Lacatus G, Sunter G (2014) Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology 460:108–118

    Article  Google Scholar 

  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3(6):1101

    Article  CAS  PubMed  Google Scholar 

  22. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PloS ONE 6(2):e16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kil E-J, Kim S, Lee Y-J, Byun H-S, Park J, Seo H, Kim C-S, Shim J-K, Lee J-H, Kim J-K (2016) Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sci Rep 6:19013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abhary M, Patil BL, Fauquet CM (2007) Molecular biodiversity, taxonomy, and nomenclature of tomato yellow leaf curl-like viruses. Tomato Yellow Leaf Curl Virus Dis. https://doi.org/10.1007/978-1-4020-4769-5_6

    Article  Google Scholar 

  25. Borrelli VM, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci 9:1245

    Article  PubMed  PubMed Central  Google Scholar 

  26. Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Arshad I, Muhammad H, Hameed MK, Khan MS, Joyia FA (2019) Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci 20(16):4045

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grant Number 950709 of the Biotechnology Development Council of the Islamic Republic of Iran.

Funding

This study was funded by Ferdowsi University of Mashhad (Grant No. 3/41501) and the Biotechnology Council of the Islamic Republic of Iran (Grant No. 950709).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Farsi.

Ethics declarations

Conflict of interest

Author Mohammad Farsi has received research grants from Ferdowsi University. Author Parisa Ghorbani Faal has received research grants from the Biotechnology Development Council of the Islamic Republic of Iran. Author Alireza Seifi declares that he has no conflict of interest. Author Amin Mirshamsi Kakhki declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani Faal, P., Farsi, M., Seifi, A. et al. Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus. Mol Biol Rep 47, 3369–3376 (2020). https://doi.org/10.1007/s11033-020-05409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05409-3

Keywords

Navigation