Skip to main content

Ecology of Arbuscular Mycorrhizae and Influence on Drought Tolerance in Crop Plants

  • Chapter
  • First Online:
Microbial BioTechnology for Sustainable Agriculture Volume 1

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 33))

  • 758 Accesses

Abstract

Drought stress critically affects plant growth and productivity. Alleviation of drought-induced detrimental effects in plants is urgently required to achieve sustainable crop production. Consequently, there is constant demand of controlling strategies that can sustainably promote growth, development, and productivity of plants under limited moisture conditions. Among the proposed strategies, use of arbuscular mycorrhizal fungi (AMF) has gained significant attention due to their multifaceted capabilities. AMF-induced tolerance in plants against abiotic stresses such as heat, salinity, drought, and extreme temperatures is well-known. AMF symbiosis significantly strengthens the host plant against multiple abiotic stresses including drought and improves productivity. This chapter will mainly explore the ecology of AMF, their interaction with host plant and soil microbial communities, and influence of AMF-plant-soil microbiome interactions on plant-drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Latef AA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33:644–653

    Article  CAS  Google Scholar 

  • Abdelhameed RE, Rabab AM (2019) Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int J Phytoremediation 21(7):663–671

    Article  CAS  PubMed  Google Scholar 

  • Abdelmoneim TS, Tarek AA, Almaghrabi OA (2014) Increasing plant tolerance to drought stress by inoculation with arbuscular mycorrhizal fungi. Life Sci J 11:10–17

    Google Scholar 

  • Agnolucci M, Battini F, Cristani C, Giovannetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51:379–389

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    Article  CAS  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiri R, Nikbakht A, Etemadi N, Sabzalian MR (2017) Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis 73:15–25

    Article  CAS  Google Scholar 

  • Armada E, Azcón R, López-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74

    Article  CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon Antirrhinum majus L. plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50:305–316

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bagheri V, Shamshiri MH, Shirani H, Roosta HR (2012) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J Agric Sci Technol 14:1591–1604

    Google Scholar 

  • Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981

    Article  CAS  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bárzana G, Aroca R, Ruiz-Lozano JM (2015) Localized and nonlocalized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environ 38:1613–1627

    Article  CAS  PubMed  Google Scholar 

  • Battini F, Cristani C, Giovannetti M, Agnolucci M (2016) Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 183:68–79

    Article  CAS  PubMed  Google Scholar 

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7:4686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidondo LF, Silvani V, Colombo R, Pérgola M, Bompadre J, Godeas A (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43:1866–1872

    Article  CAS  Google Scholar 

  • Birgitte NB, Leif P (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183

    Google Scholar 

  • Bitla UM, Sorty AM, Meena KK, Singh NP (2017) Rhizosphere signaling cascades: fundamentals and determinants. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 211–226

    Chapter  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  CAS  PubMed  Google Scholar 

  • Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J (2005) Influence of host cultivars and rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol 162:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Brachmann A, Parniske M (2006) The most widespread symbiosis on earth. PLoS Biol 4:1111–1112

    Article  CAS  Google Scholar 

  • Cabral C, Ravnskov S, Tringovska I, Wollenweber B (2016) Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil 408:385–399

    Article  CAS  Google Scholar 

  • Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE (2017) Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis mycorrhizal symbiosis: regulation of plant and fungal transportomes under nitrogen starvation. Plant Cell Physiol 58:1003–1017

    Article  CAS  PubMed  Google Scholar 

  • Calvet C, Barea JM, Pera J (1992) In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol Biochem 24:775–780

    Article  Google Scholar 

  • Calvo-Polanco M, Sánchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC, Martínez-Andújar C, Albacete A, Ruiz-Lozano JM (2016) Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47–57

    Article  CAS  Google Scholar 

  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229

    Article  CAS  Google Scholar 

  • Comas L, Becker S, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132:297–307

    Article  CAS  PubMed  Google Scholar 

  • El Kinany S, Achbani E, Faggroud M, Ouahmane L, El Hilali R, Haggoud A, Bouamri R (2019) Effect of organic fertilizer and commercial arbuscular mycorrhizal fungi on the growth of micropropagated date palm cv. Feggouss J Sau Soc Agri Sci 18:411–417

    Google Scholar 

  • El-Nashar YI (2017) Response of snapdragon Antirrhinum majus L. to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica 55:201–209

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24(3):197–208

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Fernández F, Dellrsquo JM, Angoa MV, de la Providencia IE (2011) Use of a liquid inoculum of the arbuscular mycorrhizal fungi Glomus hoi in rice plants cultivated in a saline Gleysol: a new alternative to inoculate. J Plant Breed Crop Sci 3:24–33

    Google Scholar 

  • Filion M, St Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Fohse D, Claassen N, Jungk A (1988) Phosphorus efficiency of plants. Plant Soil 110:101–109

    Article  Google Scholar 

  • Foo E, Ross JJ, Jones WT, Reid JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  CAS  PubMed  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J (2018) Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 8:1–15

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Article  Google Scholar 

  • Gómez-Bellot MJ, Ortuño MF, Nortes PA, Vicente-Sánchez J, Bañón S, Sánchez-Blanco MJ (2015) Mycorrhizal euonymus plants and reclaimed water: biomass, water status and nutritional responses. Sci Hortic 186:61–69

    Article  CAS  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato Solanum lycopersicum L. plants. Plant and Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hameed A, Wu QS, Abd-Allah EF, Hashem A, Kumar A, Lone HA, Ahmad P (2014) Role of AM fungi in alleviating drought stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 55–75

    Chapter  Google Scholar 

  • Hart MM, Reader RJ (2002a) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36:357–366

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002b) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Hashem A, Abd-Allah E, Alqarawi A, Al-Huqail A, Shah M (2016) Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Biomed Res Int:6294098

    Google Scholar 

  • Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani AB, Singh G, Farooq M, Abd-Allah EF (2019) Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci 26:614–6024

    Article  CAS  PubMed  Google Scholar 

  • He XL, Li YP, Zhao LL (2010) Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. In Mu us sandland, China. Soil Biol Biochem 42:1313–1319

    Article  CAS  Google Scholar 

  • Henderson JC, Davies FT (1990) Drought acclimation and the morphology of mycorrhizal Rosa hybrida L cv Ferdy is independent of leaf elemental content. New Phytol 115:503–510

    Article  CAS  PubMed  Google Scholar 

  • Hijikata N (2010) Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol 186:285–289

    Article  CAS  PubMed  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:161–163

    Article  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci 107:13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impa SM, Nadaradjan S, Jagadish SVK (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, Berlin, pp 131–147

    Chapter  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Klironomos JJ (2000) Host-specificity and functional diversity among arbuscular mycorrhizal fungi. Microb Biosyst New Front:845–851

    Google Scholar 

  • Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A (2015) The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci Total Environ 514:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kos M, Tuijl MA, de Roo J, Mulder PP, Bezemer TM (2015) Plant–soil feedback effects on plant quality and performance of an aboveground herbivore interact with fertilisation. Oikos 124:658–667

    Article  CAS  Google Scholar 

  • Krishnaraj PU, Sreenivasa MN (1992) Increased root colonization by bacteria due to inoculation of vesicular– arbuscular mycorrhizal fungus in chilli (Capsicum annuum). Z Allg Mikrobiol 147:131–133

    Google Scholar 

  • Lee B-R, Muneer S, Avice J-C, Jung W-J, Kim T-H (2012) Mycorrhizal colonization and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza 22:525–534

    Article  CAS  PubMed  Google Scholar 

  • Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W (2019) Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front Plant Sci 10:499. https://doi.org/10.3389/fpls.2019.00499

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao D, Wang S, Cui M, Liu J, Chen A, Xu G (2018) Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int J Mol Sci 19:3146

    Article  CAS  PubMed Central  Google Scholar 

  • Lin J, Wang Y, Sun S, Mu C, Yan X (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 576:234–241

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. Myco Sustain Agric 54:45–70

    Google Scholar 

  • Lioussanne L, Perreault F, Jolicoeur M, St-Arnaud M (2010) The bacterial community of tomato rhizosphere is modified by inoculation with arbuscular mycorrhizal fungi but unaffected by soil enrichment with mycorrhizal root exudates or inoculation with Phytophthora nicotianae. Soil Biol Biochem 42(3):473–483

    Article  CAS  Google Scholar 

  • Liu T, Sheng M, Wang CY, Chen H, Li Z, Tang M (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53:250–258

    Article  CAS  Google Scholar 

  • Liu J, Guo C, Chen ZL, He JD, Zou YN (2016) Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emir J Food Agric 28:251–256

    Article  Google Scholar 

  • Ma WK, Siciliano SD, Germida J (2005) A PCR-DGGE method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biol Biochem 37:1589–1597

    Article  CAS  Google Scholar 

  • Malekzadeh E, Alikhni HA, Savaghebi-Firoozabadi GR, Zarei M (2011) Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on cd uptake and maize growth in cd-polluted soils. Spanish J Agric Res 9:1213–1223

    Article  Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Sharma MP, Jajoo A (2018) Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B 180:149–154

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–174

    Article  CAS  Google Scholar 

  • Meena KK, Kumar M, Kalyuzhnaya M, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2011) Epiphytic pink pigmented methylotrophic bacteria enhance germination and early seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Leeuwenhoek 101(4):777–786

    Article  CAS  PubMed  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishnani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8(172)

    Google Scholar 

  • Meena KK, Shinde AL, Sorty AM, Bitla UM, Meena H, Singh NP (2019) Microbe- mediated biotic and abiotic stress tolerance in crop plants. In: Singh DP, Prabha R (eds) Microbial interventions in agriculture and environment. Springer Nature, Singapore, pp 315–329

    Chapter  Google Scholar 

  • Meena KK, Bitla UM, Sorty AM, Singh DP, Gupta VK, Wakchaure GC, Kumar S (2020) Mitigation of salinity stress in wheat seedlings due to application of phytohormone rich culture filtrate extract of methylotrophic actinobacterium Nocardioides sp. NIMe6. Front Microbiol 11:2099

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AA, Eweda WE, Heggo AM, Hassan EA (2014) Effect of dual inoculation with arbuscular mycorrhizal fungi and Sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under greenhouse conditions. Ann Agric Sci 59:109–118

    Article  Google Scholar 

  • Monokrousos N, Papatheodorou EM, Orfanoudakis M, Jones DG, Scullion J, Stamou GP (2020) The effects of plant type, AMF inoculation and water regime on rhizosphere microbial communities. Eur J Soil Sci 71:265–278

    Article  CAS  Google Scholar 

  • Moradtalab N, Hajiboland R, Aliasgharzad N, Hartmann TE, Neumann G (2019) Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9(1):41

    Article  CAS  Google Scholar 

  • Muthukumar T, Radhika KP, Vaingankar J, D'Souza J, Dessai S, Rodrigues BF (2009) Taxonomy of AM fungi—an update. In: Rodrigues BF, Muthukumar T (eds) Arbuscular mycorrhizae of Goa—a manual of identification protocols. Goa University, Goa

    Google Scholar 

  • Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S (2020) Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal Fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Sci Rep 10:4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) Physiology of plants under stress. In: Abiotic factors. Wiley, New York, p 689

    Google Scholar 

  • Olsson PA, Baath E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microbiol 63:3531–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordoñez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Velez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 1:87–96

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedranzani H, Rodríguezrivera M, Gutiérrez M, Porcel R, Hause B, Ruizlozano JM (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26:141–152. https://doi.org/10.1007/s00572-015-0653-4

    Article  CAS  PubMed  Google Scholar 

  • Peterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Qian K, Wang L, Yin N (2012) Effects of AMF on soil enzyme activity and carbon sequestration capacity in reclaimed mine soil. Int J Min Sci Technol 22:553–557

    Article  CAS  Google Scholar 

  • Qin Z, Xie JF, Quan GM, Zhang JE, Mao DJ, Wang JX (2018) Changes in the soil meso- and micro-fauna community under the impacts of exotic Ambrosia artemisiifolia. Ecol Res 34:265–276

    Article  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, New York, USA pp, pp 299–343

    Chapter  Google Scholar 

  • Rapparini F, Penuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer Science + Business Media New York, 21−42

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Glob Chang Biol 7:333–337

    Article  Google Scholar 

  • Rillig MC, Treseder KK, Allen MF (2002) Global change and mycorrhizal Fungi. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Berlin, pp 135–160

    Chapter  Google Scholar 

  • Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia 49:251–259

    Article  Google Scholar 

  • Robinson Boyer L, Feng W, Gulbis N, Hajdu K, Harrison RJ, Jeffries P, Xu X (2016) The use of arbuscular mycorrhizal Fungi to improve strawberry production in coir substrate. Front Plant Sci 7:1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Franken P, Schneider C (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    Article  CAS  PubMed  Google Scholar 

  • Schimel JP (2018) Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst 49:409–432

    Article  Google Scholar 

  • Schreiner R, Mihara K, McDaniel H, Bethlenfalvay G (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    Article  CAS  Google Scholar 

  • Schußler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Published in libraries at the Royal Botanic Garden Edinburgh, the Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University electronic version freely available online at www.amf-phylogeny.com

  • Singh S, Kapoor KK (1998) Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza 7:249–253

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting Bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline. Appl Biochem Biotechnol 180(5):872–882

    Article  CAS  PubMed  Google Scholar 

  • Sorty AM, Bitla UM, Meena KK, Singh NP (2018) Role of microorganisms in alleviating abiotic stresses. In: Panpatte DG, Jhala YK, Shelat HN, Vyas R (eds) Microorganisms for green revolution. Microorganisms for sustainability, vol 7. Springer Nature, Singapore, pp 115–128

    Chapter  Google Scholar 

  • Tahat MM, Sijam K (2012) Arbuscular mycorrhizal fungi and plant root exudates bio-communications in the rhizosphere. Afr J Microbiol Res 6:7295–7301

    Article  CAS  Google Scholar 

  • Thao HT, George T, Yamakawa T, Widowati LR (2008) Effects of soil aggregate size on phosphorus extractability and uptake by rice (Oryza sativa L.) and corn (Zea mays L.) in two Ultisols from the Philippines. Soil Sci Plant Nutr 54:148–158

    Article  CAS  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Dit Frey NF, Gianinazzi-Pearson V, Gilbert LB (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci 110:20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15(3):0–272. https://doi.org/10.1016/s0929-1393(00)00075-5

    Article  Google Scholar 

  • Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D (2017) Exploiting DELLA signaling in cereals. Trends Plant Sci 22:880–893

    Article  CAS  Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  CAS  PubMed  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcón R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    Article  PubMed  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    Article  CAS  Google Scholar 

  • Wang B, Qui YL (2006) Phylogenetic distribution and evolution of mycorrhizae in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jing H, Gao Y (2012) Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLoS One 7:3161–3164

    Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55:436–442

    Article  CAS  Google Scholar 

  • Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS (2017) Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci Rep 7(1):1–10

    CAS  Google Scholar 

  • Xiao X, Chen H, Chen H, Wang J, Ren C, Wu L (2008) Impact of Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea mays. World J Microbiol Biotechnol 24:1133–1137

    Article  Google Scholar 

  • Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, Kim YM, Zink EM, Engbrecht KM, Wang Y, Gao C (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci U S A 115:e4284–E4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin N, Zhang Z, Wang L, Qian K (2016) Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Environ Sci Pollut Res 23:17840–17849

    Article  CAS  Google Scholar 

  • Yooyongwech S, Samphumphuang T, Tisarum R (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic 198:107–117

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58:186–191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Indian Council of Agricultural Research (ICAR) for their financial support through the network program—Application of Microorganisms in Agriculture and Allied Sectors (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh K. Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, K.K., Kumar, P., Sorty, A.M., Bitla, U., Pathak, H. (2022). Ecology of Arbuscular Mycorrhizae and Influence on Drought Tolerance in Crop Plants. In: Arora, N.K., Bouizgarne, B. (eds) Microbial BioTechnology for Sustainable Agriculture Volume 1. Microorganisms for Sustainability, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-16-4843-4_8

Download citation

Publish with us

Policies and ethics