Skip to main content
Log in

Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 - to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DAT:

Days after treatment

DoS:

Duration of stress

GR:

Glutathione reductase

M:

Mycorrhizal

NM:

Nonmycorrhizal

PX:

Peroxidase

SOD:

Superoxide dismutase

References

  • Abdel Latef AAH, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hort 127:228–233

    Google Scholar 

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aebi H, Lester P (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology, vol 105. Academic, New York, pp 121–126

    Google Scholar 

  • Alguacil MM, Hernandez JA, Caravaca F, Portillo B, Roldan A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    Article  CAS  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell Scientific, London

    Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  CAS  PubMed  Google Scholar 

  • Azevedo Neto AD, Prico JT, Eneas-Filho J, Braga de Abreu CE, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:235–241

    Article  Google Scholar 

  • Basu S, Acharya S, Bandara M, Thomas J (2004) Agronomic and genetic approaches for improving seed quality and yield of fenugreek (Trigonella foenum-graecum L.) in western Canada. In: Proceedings of science of changing climates—impact on agriculture, forests and wetlands. University of Alberta, Edmonton, pp 38

  • Borde M, Dudhane M, Jite P (2011) Growth, photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. Crop Prot 30:265–271

    Article  CAS  Google Scholar 

  • Bothe H (2012) Arbuscular mycorrhiza and salt tolerance. Symbiosis. doi:10.1007/s13199-012-0196-9

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of micro quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Briviba K, Kissner R, Koppenol WH, Sies H (1998) Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Chem Res Toxicol 11:1398–1401

    Article  CAS  PubMed  Google Scholar 

  • Canterll IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  Google Scholar 

  • Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Ma B, Zhang H (2011) Identification and characterization of putative CIPK genes in maize. J Genet Genom 38:77–87

    Article  CAS  Google Scholar 

  • Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. In: Sunkar R (ed) Plant stress tolerance. Methods and protocols, Humana Press, Springer Science + Business Media pp 273–280

  • Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:333–349

    Article  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23:71–86

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feierabend J, Engel S (1986) Photoinactivation of catalase in vitro and in leaves. Arch Biochem Biophys 251:567–576

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1977) Purification and properties of dehydroascorbate reductase from spinach leaves. Phytochemistry 61:1247–1350

    Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Fyfe P, Cogdell RJ, Hunter CN, Jones MR (1995) Study of the carotenoid binding pocket of the photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides. In: Mathis P (ed) Photosynthesis from light to biosphere. Proceeding of 10th international photosynthesis congress, Montpelleir, France, pp 47–50

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Ghorbanli M, Ebrahimzadeh H, Sharifi M (2004) Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biol Plant 48:575–581

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity, mineral nutrient relations in horticultural crops. Sci Hort 78:127–157

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Juan M, Rivero RM, Romero L, Ruiz JM (2005) Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ Exp Bot 54:193–210

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Mycorrhization of coriander to enhance the concentration and quality of oil in seeds. J Sci Food Agric 82:1–4

    Article  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosyst 145:88–97

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Narwal SS, Bogatek R, Zagdanska BM, Sampietro DA, Vattuone MA (2009) Plant biochemistry. Studium Press, Texas

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Longa MA, del Rio LA, Arines J (1993) Superoxide dismutase in vesicular–arbuscular red clover plants. Physiol Plant 87:77–83

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Ramoliya PJ, Patel HM, Pandey AN (2006) Effect of salinization of soil on growth and nutrient accumulation in seedlings of Prosopis cineraria. J Plant Nutr 29:283–303

    Article  CAS  Google Scholar 

  • Reitz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  Google Scholar 

  • Rios-Gonzalez K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (2008) Biochemical methods, 3rd edn. New Age International (P) Limited, New Delhi

  • Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Plant 131:399–411

    Article  CAS  PubMed  Google Scholar 

  • Serbinonva EA, Packer L (1994) Antioxidant properties of tocopherol and tocotrienol. Methods Enzymol 234:354–367

    Article  Google Scholar 

  • Sharma MP, Gour A, Bhatia NP, Adholeya A (1996) Growth responses and dependence of Acacia nilotica var. cupriformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6:169–177

    Article  Google Scholar 

  • Shim IS, Momose Y, Yamamoto A, Kim DW, Usui K (2003) Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul 39:285–292

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–456

    Article  CAS  Google Scholar 

  • Thomas CE, McLean R, Parker RA, Ohlweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550

    Article  CAS  PubMed  Google Scholar 

  • Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2006) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

    CAS  Google Scholar 

  • ZhongQun H, ChaoXing H, Zhibin Z, Zhirong Z, HuaiSong W (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloid Surf B 59:128–133

    Article  Google Scholar 

Download references

Acknowledgments

Heikham Evelin is grateful to the Council of Scientific and Industrial Research, New Delhi, India, and the University of Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kapoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evelin, H., Kapoor, R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24, 197–208 (2014). https://doi.org/10.1007/s00572-013-0529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0529-4

Keywords

Navigation