Skip to main content
Log in

Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the mechanisms underlying alleviation of salt stress by mycorrhization. Solanum lycopersicum L. cultivars Behta and Piazar with different salinity tolerance were cultivated in soil without salt (EC = 0.63 dSm−1), with low (EC = 5 dSm−1), or high (EC = 10 dSm−1) salinity. Plants inoculated with the arbuscular mycorrhizal fungi Glomus intraradices (+AMF) were compared to non-inoculated plants (−AMF). Under salinity, AMF-mediated growth stimulation was higher in more salt tolerant Piazar than in sensitive Behta. Mycorrhization alleviated salt-induced reduction of P, Ca, and K uptake. Ca/Na and K/Na ratios were also better in +AMF. However, growth improvement by AMF was independent from plant P nutrition under high salinity. Mycorrhization improved the net assimilation rates through both elevating stomatal conductance and protecting photochemical processes of PSII against salinity. Higher activity of ROS scavenging enzymes was concomitant with lowering of H2O2, less lipid peroxidation, and higher proline in +AMF. Cultivar differences in growth responses to salinity and mycorrhization could be well explained by differences in ion balance, photochemistry, and gas exchange of leaves. Function of antioxidant defenses seemed responsible for different AMF-responsiveness of cultivars under salinity. In conclusion, AMF may protect plants against salinity by alleviating the salt-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AMF:

Arbuscular mycorrhizal fungi

APX:

Ascorbate peroxidase

CAT:

Catalase

EC:

Electrical conductivity

ETR:

Electron transport rate

MDA:

Malonyldialdehyde

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Alia PSP, Mohanty P (1997) Involvement of proline in protecting thylakoid membrane against free radicals induced photodamage. J Photochem Photobiol B Biol 38:253–257

    Article  CAS  Google Scholar 

  • Aliasgharzadeh N, Rastin NS, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Asghari HR, Marschner P, Smith SE, Smith FA (2005) Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil 273:245–256

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Augé RM (2000) Stomatal behavior of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 201–237

    Google Scholar 

  • Augé RM, Toler HD, Sams CE, Nasim G (2008) Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18:115–121

    Article  PubMed  Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM (2000) Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2009) Sodium-calcium interactions with growth, water, and photosynthetic parameters in salt treated beans. J Plant Nutr Soil Sci 172:637–643

    Article  CAS  Google Scholar 

  • Cramer G (2004) Sodium–calcium interactions under salinity stress. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Springer Verlag, Netherlands, pp 205–227

    Chapter  Google Scholar 

  • Creissen GP, Mullineaux PM (2002) The molecular biology of the ascorbate-glutathione cycle in higher plants. In: Inzé D, Montgan MV (eds) Oxidative stress in plants. Taylor & Francis, UK, pp 247–270

    Google Scholar 

  • Dasgan HY, Aktas H, Abak K, Cakmak I (2002) Determination of screening techniques to salinity tolerance intomatoes and investigation of genotype responses. Plant Sci 163:695–703

    Article  CAS  Google Scholar 

  • Gericke S, Kurmies B (1952) Die kolorimetrische Phosphorsäure-bestimmung mit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Zeitschr Pflanzenern Düngung Bodenk 59:235–247

    CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Hasani BD (2007) Responses of antioxidant defense capacity and photosynthesis of bean (Phaseolus vulgaris L.) plants to copper and manganese toxicity under different light intensities. Act Biol Szeg 51:93–106

    Google Scholar 

  • Hajiboland R, Joudmand A (2009) The K/Na replacement and function of antioxidant defense system in sugar beet (Beta vulgaris L.) cultivars. Acta Agr Scand Section B Soil Plant Sci 59:246–259

    CAS  Google Scholar 

  • Hajiboland R, Joudmand A, Fotouhi K (2009) Mild salinity improves sugar beet (Beta vulgaris) quality. Acta Agr Scand Section B Soil Plant Sci 59:295–305

    CAS  Google Scholar 

  • Hao X, Papadopoulos AP, Dorais M, Ehret DL, Turcotte G, Gosselin A (2000) Improving tomato fruit quality by raising the EC of NFT nutrient solutions and calcium spraying: effects on growth, photosynthesis, yield and quality. Acta Hort 511:213–224

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  • Juan M, Rivero RM, Romero L, Ruiz JM (2005) Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environ Exp Bot 54:193–201

    Article  CAS  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    Article  CAS  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agr Res 1:12–26

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Kylin A, Kuiper PJC (1981) Genotypic differences in the response of sugar beet plants to replacement of potassium by sodium. Physiol Plant 51:239–244

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mehdy MC, Sharma YK, Sathasivan K, Bays NW (1996) The role of activated oxygen species in plant disease resistance. Physiol Plant 98:365–374

    Article  CAS  Google Scholar 

  • Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular of the US department of agriculture 939, USDA. U.S. Govt. Printing Office, Washington, D.C

    Google Scholar 

  • Palma JM, Longa MA, del Rio LA, Arines J (1993) Superoxide dismutase in vesicular-arbuscular red clover plants. Physiol Plant 87:77–83

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pitman M, Läuchli A (2004) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Springer Verlag, Netherlands, pp 3–20

    Chapter  Google Scholar 

  • Porcel R, Barea MJ, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2004) Salinity, osmolytes and compatible solutes. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Springer Verlag, Netherlands, pp 181–204

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants are affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Palma JM (1996) Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol 134:327–333

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Ruíz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Santos CLV, Campos A, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant mechanisms. J Exp Bot 52:351–360

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 13:16–20

    Article  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Yurtseven E, Kesmez GD, Ünlükara A (2005) The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculentum). Agric Water Manage 78:128–135

    Article  Google Scholar 

  • Zushi K, Matsuzoe N (2009) Seasonal and cultivar differences in salt-induced changes in antioxidant system in tomato. Sci Hort 120:181–187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Research Council, University of Tabriz, Iran and in part by the Spanish Ministry of Science and Innovation (DGCIYT project BFU2007-6032/BFI). The helpful comments of the editor and two anonymous reviewers a gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Poschenrieder.

Additional information

Responsible Editor: Thom W. Kuyper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajiboland, R., Aliasgharzadeh, N., Laiegh, S.F. et al. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331, 313–327 (2010). https://doi.org/10.1007/s11104-009-0255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0255-z

Keywords

Navigation