Skip to main content
Log in

Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi

  • Published:
Photosynthetica

Abstract

The influence of arbuscular mycorrhizal (AM) fungus Glomus deserticola (Trappe and John) on plant growth, nutrition, flower yield, water relations, chlorophyll (Chl) contents and water-use efficiency (WUE) of snapdragon (Antirhinum majus cv. butterfly) plants were studied in potted culture under well-watered (WW) and water-stress (WS) conditions. The imposed water stress condition significantly reduced all growth parameters, nutrient contents, flower yield, water relations, and Chl pigment content and increased the electrolyte leakage of the plants comparing to those of nonstressed plants. Regardless of the WS level, the mycorrhizal snapdragon plants had significantly higher shoot and root dry mass (DM), WUE, flower yield, nutrient (P, N, K, Mg, and Ca) and Chl contents than those nonmycorrhizal plants grown both under WW or WS conditions. Under WS conditions, the AM colonization had greatly improved the leaf water potential (Ψw), leaf relative water content (RWC) and reduced the leaf electrolyte leakage (EL) of the plants. Although the WS conditions had markedly increased the proline content of the leaves, this increase was significantly higher in nonmycorrhizal than in mycorrhizal plants. This suggests that AM colonization enhances the host plant WS tolerance. Values of benefit and potential dry matter for AM-root associations were highest when plants were stressed and reduced under WW conditions. As a result, the snapdragon plants showed a high degree of dependency on AM fungi which improve plant growth, flower yield, water relations particularly under WS conditions, and these improvements were increased as WS level had increased. This study confirms that AM colonization can mitigate the deleterious effect of water stress on growth and flower yield of the snapdragon ornamental plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

arbuscular mycorrhizal

AMF:

arbuscular mycorrhizal fungi

DM:

dry mass

DMm :

dry mass of mycorrhizal plants

DMnm :

dry mass of nonmycorrhizal plants

EC1 :

initial electrical conductivity

EC2 :

final electrical conductivity

FN:

flower number

FFM:

flower fresh mass

FDM:

flower dry mass

FM:

fresh mass

EL:

electrolyte leakage

G. :

Glomus

LA:

leaf area

LN:

leaf number

LDM:

leaf dry mass

LFM:

leaf fresh mass

LTM:

leaf turgid mass

MD:

mycorrhizal dependency

RWC:

relative water content

SM:

leaf saturated mass

non-AMF:

nonarbuscular mycorrhizal fungi

Sd:

stem diameter

SH:

shoot height

SN:

spike numbers

WS:

water-stress

WW:

well-watered

WUE:

water-use efficiency

WUEm :

water-use efficiency of mycorrhizal plants

WUEnm :

water-use efficiency of nonmycorrhizal plants

Ψw :

leaf water potential

References

  • Abdel-Fattah, G.M.: Functional activity of VA-mycorrhiza (Glomus mosseae) in the growth and productivity of soybean plants grown in sterilized soil. — Folia Microbiol. 42: 495–502, 1997.

    Article  CAS  Google Scholar 

  • Abdel-Fattah, G.M.: Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. — Microbiol. Res. 156: 359–367, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Fattah, G.M., Asrar, A.A.: Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. — Acta Physiol. Plant. 34: 267–277, 2012.

    Article  CAS  Google Scholar 

  • Abdel-Fattah, G.M., Migahed, F.F., Ibrahim, A.H.: Interactive effects of endomycorrhizal fungus Glomus etunicatum and phosphorus fertilization on growth and metabolic activities of broad bean plants under drought stress conditions. — Pakist. J. Biol. Sci. 5: 835–841, 2002.

    Article  Google Scholar 

  • Aboul-Nasr, A.: Effects of vesicular-arbuscular mycorrhizal on Tagetes erecta and Zinnia elegans. — Mycorrhiza 6: 61–64, 1996.

    Article  Google Scholar 

  • Al-Karaki, G.N.: Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. — Mycorrhiza 8: 41–45, 1998.

    Article  Google Scholar 

  • Al-Karaki, G.N., Al-Raddad, A.: Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. — Mycorrhiza 7: 83–88, 1997.

    Article  CAS  Google Scholar 

  • Allen, E.B., Cunningham, G.L.: Effects of vesicular mycorrhiza on Distichlis spicata under three salinity levels. — New Phytol. 93: 227–236, 1983.

    Article  Google Scholar 

  • Allen, M.F.: Influence of vesicular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) lag ex Steud. — New Phytol. 91: 191–196, 1982.

    Article  Google Scholar 

  • Allen, S.E.: Chemical Analysis of Ecological Materials. 2nd Ed. — Blackwell Sci. Publ., Osney 1989.

    Google Scholar 

  • Al-Qarawi, A.A.: Efficiency of arbuscular mycorrhizal (AM) fungi for improving growth, root system architecture, nutrient uptake, leaf hydraulic conductance and photosynthetic pigments of maize and pea plants. — J. Environ. Sci. 39: 67–82, 2010.

    CAS  Google Scholar 

  • Asrar, A.A., Elhindi, K.M.: Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. — Saudi J. Biol. Sci. 19: 38–46, 2011.

    Google Scholar 

  • Auge, R.M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. — Mycorrhiza 11: 3–42, 2001.

    Article  Google Scholar 

  • Auge, R.M., Schekel, K.A., Wample, R.L.: Osmotic adjustment in leaves of VA mycorrhizal rose plants in response to drought stress. — Plant Physiol. 82: 765–770, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Auge, R.M., Schekel, K.A., Wample, R.L.: leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. — Plant Soil 99: 291–302, 1987.

    Article  CAS  Google Scholar 

  • Auge, R.M., Toler, H.D., Sams, C.E., Nasim, G.: Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. — Mycorrhiza 18: 115–121, 2008.

    Article  PubMed  Google Scholar 

  • Azcon-Aguilar, C., Barcelo, A., Vidal, M.T., de la Vina, G.: Further studies in the growth and development of microprogated avocado plants. — Agronomie 12: 837–840, 1992.

    Article  Google Scholar 

  • Azcón, R., Gomez, M., Tobar, R.: Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus fertilized plants of Lactuca sativa L. — New Phytol. 121: 227–234, 1992.

    Article  Google Scholar 

  • Berta, G., Fusconi, A., Trotta, A.: VA mycorrhizal infection and the morphology and function of root systems. — Environ. Exp. Bot. 33: 159–173, 1993.

    Article  Google Scholar 

  • Bethlenfalvay, G.J., Brown, M.S., Ames, R.N., Thomas, R.S.: Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. — Physiol. Plant. 72: 565–571, 1988.

    Article  CAS  Google Scholar 

  • Bryla, D.R., Duniway, J.M.: Growth, phosphorus uptake and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. — New Phytol. 136: 581–590, 1997.

    Article  Google Scholar 

  • Bulir, P.: Testing method applied for evaluation of ornamental trees in the Czech Republic. — Hort. Sci. 36: 154–161, 2009.

    Google Scholar 

  • Chapman, H.D., Pratt, P.F.: Ammonium vandate-molybdate method for determenation of phosphorus. — In: Methods of Analysis for Soils, Plants and Water. 1st Ed. Pp. 184–203. California Univ., California 1961.

    Google Scholar 

  • Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J., Moore, J., Auge, R.: Mycorrhizal symbiosis and responses of sorghum plants to combined drought and salinity stresses. — J. Plant Physiol. 163: 517–528, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Davies, F.T., Potter, J.R., Linderman, R.G.: Mycorrhiza and repeated drought exposure affect drought reistance and extraradical hyphae of pepper plants independent of plant size and nutrient content. — J. Plant Physiol. 139: 289–294, 1992.

    Article  Google Scholar 

  • Davies, F.T., Svenson, S.E., Cole, J.C., Phavaphutanon, L., Duray, S.A., Olalde-Portugal, V., Meier, C.E., Bo, S.H.: Nonnutritional stress acclimation of mycorrhizal woody plants exposed to drought. — Tree Physiol. 16: 985–993, 1996.

    Article  Google Scholar 

  • Davies, W.J., Tardieu, F., Trejo, C.L.: How do chemical signals work in plants that grow in drying soil? — Plant Physiol. 104: 309–314, 1994.

    PubMed  CAS  Google Scholar 

  • De Miranda, J.C.C., Harris, P.J.: The effect of soil phosphorus on the external mycelium growth of arbuscular-mycorrhizal fungi during early stages of mycorrhiza formation. — Plant Soil 166: 271–280, 1994.

    Article  Google Scholar 

  • Dionisio-Sese, M.L., Tobita, S.: Antioxidant responses of rice seedlings to salinity stress. — Plant Sci. 135: 1–9, 1998.

    Article  CAS  Google Scholar 

  • Ellis. J.R., Larsen, H.J., Boosalis, M.G.: Drought resistance of wheat plants inoculated with vesicular-arbuscular mycorrhizae. — Plant Soil 86: 369–378, 1985.

    Article  Google Scholar 

  • Faber, B.A., Zasoski, R.J., Munns, D.N., Shackel, K.: A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. — Can. J. Bot. 96: 87–94, 1991.

    Article  Google Scholar 

  • Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C., Rengel, Z.: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. — Mycorrhiza 12: 185–190, 2002.

    Article  PubMed  CAS  Google Scholar 

  • George, E., Haussler, K., Vetterrlein, D., Gorgus, E., Marschner, H.: Water nutrient translocation by hyphae of Glomus mosseae. — Can. J. Bot. 70: 2130–2137, 1992.

    Article  Google Scholar 

  • Giri, B., Kapoor, R., Mukerji, K.G.: Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K:Na ratios in root and shoot tissues. — Microbial Ecol. 54: 753–760, 2007.

    Article  CAS  Google Scholar 

  • Goicoechea, N., Dolezal, K., Antolin, M.C., Sanchez-Diaz, M.: Root cytokinins, acid phosphorus and nodule activity in drought-stressed mycorrhizal or nitrogen-fixing alfalfa plants. — J. Exp. Bot. 47: 683–686, 1996.

    Article  CAS  Google Scholar 

  • Hanson, A.D., Hitz, W.D.: Metabolic responses of mesophytes to plant water deficits. Annuals review — Plant Physiol. 33: 161–203, 1982.

    Google Scholar 

  • Hiscox, J.D., Israelstam, G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. — Can. J. Bot. 57: 1332–1234, 1979.

    Article  CAS  Google Scholar 

  • Hoque, M.D.A., Arima, S.: Evaluation of salt damage through cell membrane stability monitored by electrolyte leakage in water chestnut (Trapa sp.). — Bull. Fac. Agric. Saga Univ. 85: 141–146, 2000.

    CAS  Google Scholar 

  • Ibrahim, H.A., Abdel-Fattah, G.M., Eman, F.M., Abd El-Aziz. M.H., Shohr, A.E.: Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. — Phyton-Ann. Rei Bot. 51: 261–276, 2011.

    Google Scholar 

  • Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A., Cullu, M.: The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. — Sci. Hort. 121: 1–6, 2009.

    Article  CAS  Google Scholar 

  • Kaya, C., Higgs, D.: Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. — Sci. Hort. 93: 53–64, 2002.

    Article  CAS  Google Scholar 

  • Kaya, C., Higgs, D., Kirnak, H., Tas, I.: Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrulus lanatus Thunb.) grown under well-watered and water-stressed conditions. — Plant Soil 254: 287–292, 2003.

    Article  Google Scholar 

  • Koide, R., Ellitott, G.: Cost, benefit and efficiency of vesiculararbuscular mycorrhizal symbiosis. — Func. Ecol. 3: 252–255, 1989.

    Google Scholar 

  • Lee, B.R., Kim, K.Y., Jung, W.J., Avice, J.C., Ourry, A., Kim, T.H.: Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). — J. Exp. Bot. 6: 1271–1279, 2007.

    Article  Google Scholar 

  • Levitt, J.: Responses of plants to environmental stress. — In: Levitt, J.: Water, Radiation, Salt and Other Stresses. Vol. II. 2nd Ed., Pp. 3–53, Acad. Press, New York 1980.

    Google Scholar 

  • Levy, Y., Krikun, J.: Effect of vesicular-arbuscular mycorrhizal on Citrus jambhiri water relations. — New Phytol. 85: 25–31, 1980.

    Article  Google Scholar 

  • Li, H.S.: Principles and Techniques of Plant Physiological Biochemical Experiment. — Higher Education Press, Beijing 2000.

    Google Scholar 

  • Linderman, R.G., Davis, E.: varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. — Sci. Hort. 99: 67–78, 2004.

    Article  Google Scholar 

  • Liu, G.H., Nada, K., Honda, C., Kitashiba, H., Wen, X., Pang, X., Moriguchi, T.: Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. — J. Exp. Bot. 57: 2589–2599, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, A., Reddy, M.P., Joly, R.J.: leaf gas exchange and soluble accumulation in the halophyte Salvadora persica grown at moderate salinity. — Environ. Exp. Bot. 44: 31–38, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Menge, J.A., Johnson, E.L.V., Platt, R.G.: Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. — New Phytol. 81: 553–559, 1978.

    Article  CAS  Google Scholar 

  • Morte, A., Lovisolo, C., Schubert, A.: Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense — Terfezia claveryi. — Mycorrhiza 10: 115–119, 2000.

    Article  CAS  Google Scholar 

  • Munns, R., James, R.A., Lauchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. Exp. Bot. 57: 1025–1043, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D.W., Sommers, L.E.: Determination of total nitrogen in plant material. — Agron. J. 65: 109–112, 1973.

    Article  CAS  Google Scholar 

  • Phillips, J.M., Hayman, D.S.: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. — Trans. Brit. Mycol. Soc. 55: 158–161, 1970.

    Article  Google Scholar 

  • Porcel, R., Ruiz-Lozano, J.M.: Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. — J. Exp. Bot. 55: 1743–1750, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Raju, P.S., Clark, R.B., Ellis, J.R.: Benefit and cost analysis and phosphorus mycorrhizal fungi colonization with sorghum (Sorghum bicolor) genotypes grown at varied phosphorus levels. — Plant Soil 124: 199–204, 1990.

    Article  CAS  Google Scholar 

  • Richert, D.H., Sancho, F.O., Ananth, S.: Vesicular-arbuscular endomycorrhizal colonization of wetland plants. — J. Environ. Quality 23: 913–916, 1994.

    Google Scholar 

  • Ruiz-Lozano, J.M., Azcon, R.: Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. — Physiol. Plant. 95: 472–478, 1995.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano, J.M., Azcon, R., Gomez, M.: Effects of arbuscular mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. — Appl. Environ. Microbiol. 61: 456–460, 1995.

    PubMed  CAS  Google Scholar 

  • Sadasivam, S., Manickam, A.: Biochemical methods. 2nd Ed. — Int. Publ. Ltd., New Delhi 1996.

    Google Scholar 

  • Safir, G.R., Boyer, J.S. Gerdemann, J.W.: Mycorrhizal enhancement of water transport in soybean. — Science 172: 581–583, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, F.J., Manzanares, M., Andres, E.F., Tenorio, J.L., Averbe, L.: Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. — Field Crops Res. 59: 225–235, 1998.

    Article  Google Scholar 

  • Stevens, K.J., Wall, C.B., Jansen, J.A.: Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. — Mycorrhiza 21: 279–288, 2011.

    Article  PubMed  Google Scholar 

  • Subramanian, K.S., Charest, C.: Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. — Mycorrhiza 5: 273–278, 1995.

    Google Scholar 

  • Subramanian, K.S., Charest, C.: Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. — Physiol. Plant. 102: 285–296, 1998.

    Article  CAS  Google Scholar 

  • Subramanian, K.S., Santhanakrishnan, P., Balasubramanian, P.: Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. — Sci. Hort. 107: 245–253, 2006.

    Article  Google Scholar 

  • Tang, M., Chen, H., Huang, J.C., Tian, Z.Q.: AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. — Soil Biol. Biochem. 41: 936–940, 2009.

    Article  CAS  Google Scholar 

  • Tarafdar, J.C.: Role of a VA mycorrhizal fungus on growth and water relations in wheat in presence of organic and inorganic phosphates. — J. Ind. Soc. Soil Sci. 43: 197–203, 1995.

    Google Scholar 

  • Tobar, R.M., Azcon, R., Barea J.M.: Improved nitrogen uptake and transport from N15-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. — New Phytol. 126: 119–122, 1994.

    Article  Google Scholar 

  • Trouvelot, A., Kough, J., Gianinazzi-Pearson, V.: Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance. — In: Gianinazzi-Pearson, V., Gianinazzi, S. (ed.): Physiological and Genetical Aspects of Mycorrhizae. Pp. 217–221. INRA Press, Paris 1986.

    Google Scholar 

  • Wu, Q., Xia, R.X.: Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. — J. Plant physiol. 163: 417–425, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Q.S., Xia, R.X., Zou, Y.N.: Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. — Eur. J. Soil Biol. 44: 122–128, 2008.

    Article  Google Scholar 

  • Zandavalli, R.B., Dillenburg, L.R., de Souza, P.V.: Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. — Appl. Soil Ecology 25: 245–255, 2004.

    Article  Google Scholar 

  • Zhang, Q., Xu, L., Tang, J., Bai, M., Chen, X.: Arbuscular mycorrhizal mediation of biomass-density relationship of Medicago sativa L. under two water conditions in a field experiment. — Mycorrhiza 21: 269–277, 2011.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Abdel-Fattah.

Additional information

Acknowledgements: Authors wish to thank College of Food and Agricultural Research Center and Deanship of Scientific Research, King Saud University, Saudi Arabia for supporting this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asrar, A.A., Abdel-Fattah, G.M. & Elhindi, K.M. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50, 305–316 (2012). https://doi.org/10.1007/s11099-012-0024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0024-8

Additional key words

Navigation