Skip to main content

Rhizosphere Signaling Cascades: Fundamentals and Determinants

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Molecular interactions among the plants and microbes represent an important microecological phenomenon. The cross talk involves multiple ecological aspects like exchange of metabolites, signaling and chemotaxis, etc. These bilateral interactions are crucial for the health and development of both the plant and colonizing microbes. The signal molecules play major role as inducers of different pathways that contribute indispensable role for the survival of the participants under adverse circumstances and development of symbiotic associations as well. Though the recent high-throughput techniques have generated considerable data regarding the molecular exchanges happening in the rhizosphere microbes and the host, our current knowledge in this area is still in infancy. It is thus critical to get deeper insights of such interactions so as to develop next-generation strategies relating to the sustainable agriculture under the changing climate scenario. We describe herewith the major aspects concerning the contributors and their role in rhizosphere signaling cascades and the consequent post-signaling responses given by the host and the colonizing microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189

    Article  Google Scholar 

  • Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aloni R, Aloni E, Langhans M et al (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkhipova TN, Veselov SU, Melantiev AI et al (2005) Ability of bacterium Bacillus to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT et al (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P et al (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66:3001–3010. doi:10.1093/jxb/erv155

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Balachandar D, Sandhiya GS, Sugitha TCK et al (2006) Flavonoids and growth hormones influence endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp in rice. World J Microbiol Biotechnol 22:707–712

    Article  CAS  Google Scholar 

  • Barriuso J, Solano BR, Fray RG et al (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452. doi:10.1111/j.1467-7652.2008.00331.x

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424. 15

    Article  CAS  PubMed  Google Scholar 

  • Bastian F, Cohen A, Piccoli P, Luna V et al (1998) Production of indole 3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S et al (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Benhamou N, Gagné S, Quéré DL et al (2000) Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Biochem Cell Biol 90:45–56

    CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM et al (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plantmicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632. doi:10.1128/AEM.02756-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleeker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plant. Annu Rev Cell Dev Biol 16:1–18

    Article  Google Scholar 

  • Blom D, Fabbri C, Connor EC et al (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. PMID:21933319; http://dx.doi.org/10.1111/j.1462-2920.2011.02582.x

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? Trends Plant Sci 20:150–154. doi:10.1016/j.tplants.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassán F, Piccoli P et al (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Boukhalfa H, Lack J, Reilly SD, Hersman L, Neu MP et al (2003) Siderophore production and facilitated uptake of iron and plutonium in P. putida. AIP Conf Proc 673:343–344

    Article  CAS  Google Scholar 

  • Bressan M, Roncato MA, Bellvert F et al (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257. doi:10.1038/ismej.2009.68

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anolles G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Park E, Glick BRet al. (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Cleason A (2006) Volatile organic compounds from microorganisms. Ph.D. thesis, Umeå University, Umeå

    Google Scholar 

  • Corral-Lugo A, Daddaoua A, Ortega A et al (2016) Rosmarinic acid is a homo-serine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 409(9):ra1

    Article  CAS  Google Scholar 

  • d’Angelo-Picard C, Faure D, Penot I et al (2005) Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796–1808. doi:10.1111/j.1462- 2920.2005.00886.x

    Article  PubMed  CAS  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K et al (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant-Microbe Interact 12:450–458

    Article  PubMed  Google Scholar 

  • De Vleesschauwer D, Hofte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Article  CAS  Google Scholar 

  • De Vleesschauwer D, Höfte M, Loon LCV et al (2009) Rhizobacteria induced systemic resistance. In: Van Loon LC (ed) Advances in botanical research. Academic, New York, pp 223–281

    Google Scholar 

  • DeAngelis KM, Lindow SE, Firestone MK et al (2008) Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol 66:197–207. doi:10.1111/j.1574-6941.2008.00550.x

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96. doi:10.1016/j.chembiol.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097. doi:10.1105/tpc.7.7.1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Xu JL, Li XZ et al (2000) AiiA, an enzyme that inactivates the acyl homoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong YH, Wang LH, Xu JL et al (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. doi:10.1038/35081101

    Article  CAS  PubMed  Google Scholar 

  • Eberl L (1999) N-acyl-homoserine lactone mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 22:493–506. doi:10.1016/S0723-2020(99)80001-0

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kalderás J, Warnke R et al (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P et al (2001) Acyl homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209. doi:10.1128/AEM.67.3.1198-1209.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Bano S et al (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Article  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium plant signal exchange. Nature 357:655–660

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Teplitski M, Robinson JB et al (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834. doi:10.1094/MPMI.2003.16.9.827

    Article  CAS  PubMed  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S et al (2014) Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:289. doi:10.3389/fmicb.2014.00289

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 252:1–7

    Article  CAS  Google Scholar 

  • Goh C-H, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39(7):826–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenhagen U, Baumgartner R, Bailly A et al (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906. doi:10.1007/s10886-013-0315-y

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Mittal D, Negi M, Lavania D et al (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 20:38–47. doi:10.1016/j.plantsci.2013.01.005

    Article  CAS  Google Scholar 

  • Gutierrez-Luna FM, Lopez-Bucio J, tamirano-Hernandez J et al (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83. doi:10.1007/s13199-010-0066-2

    Article  CAS  Google Scholar 

  • Gutiérrez-Manero FJ, Ramos B, Probanza A et al (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Guttman DS, McHardy AC, Schulze-Lefert P et al (2014) Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet 15:797–813. doi:10.1038/nrg3748

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant – microbe interactions. J Exp Bot 63:3429–3444. doi:10.1093/jxb/err430

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JP, de-Bashana LE, Rodriguez DJ et al (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45:88–93

    Article  CAS  Google Scholar 

  • Jacometti MA, Wratten SD, Walter M et al (2010) Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine Res 16:154–172

    Article  CAS  Google Scholar 

  • Jing YD, He ZL, Yang XE et al (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ (Sci) 8(3):192–207

    Article  CAS  Google Scholar 

  • Joo GJ, Kim YM, Lee KIJ et al (2004) Growth promotion of red pepper seedlings and the production of gibberellins by Bacillus cereus, Bacillus mycoides, Bacillus pumilus. Biotechnol Lett 26:487–491

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F et al (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kakkar A, Nizampatnam NR, Kondreddy A et al (2015) Xanthomonas campestris cell–cell sig-nalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66:6697–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondorsi A, Schultze M (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    Article  Google Scholar 

  • Lamers LP, van Diggelen JM, den Camp HJ et al (2012) Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 3:156. doi:10.3389/fmicb.2012.00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U et al (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. PNAS 99:7070–7077. doi:pnas.orgcgidoi 10.1073pnas.092016999

    Article  CAS  Google Scholar 

  • Lazdunski AM, Ventre I, Sturgis JN et al (2004) Regulatory circuits and communication in Gram negative bacteria. Nat Rev Microbiol 2:581–592

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB et al (2012) Induced resistance by a long chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7:e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee s, Yap M, Behringer G, Hung R et al (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7. doi:10.1186/s40694-016-0025-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Bimerew M, Ma Y et al (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305. doi:10.1111/j.1574-6968.2007.00681.x

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S et al (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci Ö et al (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G (ed) CRC handbook of microbial iron chelates. CRC Press, Boca Raton, pp 15–64

    Google Scholar 

  • Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:868. doi:10.3389/fpls.2017.00172

    Article  Google Scholar 

  • Meziane H, Van Der Sluis I, Van Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Mimmo T, Hann S, Jaitz L et al (2011) Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L. Plant Physiol Biochem 49:1272–1278. doi:10.1016/j.plaphy.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  • Monnet V, Juillard V, Gardan R et al (2014) Peptide conversations in gram-positive bacteria. Crit Rev Microbiol 42:339–351. doi:http://dx.doi.org/10.3109/1040841X.2014.948804

    PubMed  Google Scholar 

  • Moore BD, Andrew RL, Kühlheim C et al (2014) Explaining intra specific diversity in plant secondary metabolites in an ecological context. New Phytol 201(733):750. doi:10.1111/nph.12526

    Google Scholar 

  • Morrissey JP, Walsh UF, O’Donnell A, Moenne-Loccoz Y, O’Gara F et al (2002) Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81:599–606

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL et al (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109(10):4553–4567. doi:10.1021/cr900112r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagoba B, Vedpathak D (2011) Medical applications of siderophores. Eur J Gen Med 8:229–235

    Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. doi:10.1146/annurev-genet-102108-134304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J et al (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang Y, Liu X, Ma Y et al (2009) Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268. doi:10.1007/s10658- 008-9411-1

    Article  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C et al (2003) Tales from the underground: molecular. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Phillips DA, Torrey JG (1972) Studies on cytokinin production by Rhizobium. Plant Physiol 49:11–15. doi:10.1104/pp.49.1.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Ton J et al (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134

    Article  CAS  Google Scholar 

  • Pieterse CM, Van Der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. doi:10.1146/annurevcellbio-092910-154055

    Article  CAS  PubMed  Google Scholar 

  • Postma J, Montanari M, van den Boogert PHJF et al (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163

    Article  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG et al (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343. doi:10.1146/annurevphyto-073009-114447

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol 278:1–9. doi:10.1111/j.1574-6968.2007.00918

    Article  CAS  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS et al (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi:10.1007/s11104-009-0001-6

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. http://dx.doi.org/10.1104/pp.103.026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Arshad M, Hussain S et al (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Salmeron V, Martinez-Toledo MV, Gonzalez-Lopez J et al (1990) Nitrogen fixation and production of auxins gibberellins and cytokinins by an Azotobacter chroococcum strain isolated from the root of Zea mays in the presence of insoluble phosphate. Chemosphere 20:417–422

    Article  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. PMID: 17653361; http://dx.doi.org/10.1039/b507392h

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30. doi:10.3389/fpls.2013.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Simões M, Simões LC, Cleto S, Machado I, Pereira MO, Vieira MJ (2007) Antimicrobial mechanisms ofortho - phthalaldehyde action. J Basic Microbiol 47(3):230–242

    Article  PubMed  CAS  Google Scholar 

  • Singh UB, Malviya D, Wasiullah et al (2016) Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.) Microbiol Res 192:300–312

    Article  CAS  PubMed  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia l) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180(5):872–882

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, Fernandez-Aparicio MN, Castellanos-Morales V et al (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438. doi:10.1101/cshperspect.a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I et al (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306. doi:10.3390/12071290

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Miller RV, Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Dirksie E, Sears J, Markworth C et al (2001) Volatile antimicrobials from a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome – from an agriculture perspective front. Plant Sci 6:909. doi:10.3389/fpls.2015.00909

    Google Scholar 

  • Supanekar SV, Sorty AM (2013) Siderophoregenic Klebsiella pneumoniae SUP II from wheat (Triticum aestivum) rhizoplane. PARIPEX-Indian J Res 7:243–245

    Google Scholar 

  • Supanekar S, Sorty A, Raut A (2013a) Study of catethol siderophore from a newly isolated Azotobacter sp. for its antimicrobial property. J Microbiol Biotechnol Food Sci 3:270–273

    Google Scholar 

  • Supanekar SV, Sorty AM, Raut AA (2013b) Catechol siderophore produced by Klebsiella pneumoniae isolated from rhizosphere of Saccharum Officinarum L. Int J Sci Res 5:423–425

    Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Tjamos SE, Flemetakis E, Paplomatas EJ et al (2005) Induction of resistance to Verticillium dahlia in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant-Microbe Interact 18:555–561

    Article  CAS  PubMed  Google Scholar 

  • Van de Mortel JE, De Vos RCH, Dekkers E et al (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ et al (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F et al (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Webster G, Jain V, Davey MR et al (1998) The flavonoid naringenin stimulates the intercellular colonization of wheat roots by Azorhizobium caulinodans. Plant Cell Environ 21:373–383

    Article  CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J et al (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda M, Isawa T, Shinozaki S et al (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150. doi:10.1094/MPMI-06-11- 0179

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y et al (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe 21:737–744

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance from Indian Council of Agricultural Research (ICAR), Govt. of India, under Application of Microorganisms in Agriculture and Allied Sectors (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh K. Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bitla, U.M., Sorty, A.M., Meena, K.K., Singh, N.P. (2017). Rhizosphere Signaling Cascades: Fundamentals and Determinants. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_11

Download citation

Publish with us

Policies and ethics