Skip to main content

Pretreatment Process and Its Synergistic Effects on Enzymatic Digestion of Lignocellulosic Material

  • Chapter
  • First Online:
Fungal Cellulolytic Enzymes

Abstract

In this chapter, the progress of pretreatment for enhancing the enzymatic digestion of lignocellulosic material is introduced. Furthermore, the pretreatment process and its synergistic effects on enzymatic digestion of lignocellulosic material are discussed. In general, the lignocellulose structure is mainly composed by three major components (hemicellulose, cellulose, and lignin). Cellulose microfibrils are coated with amorphous hemicellulose matrices building holocellulose structures and severely protected by non-sugar lignin outside. To overcome the inherent structural recalcitrance and enhance the sequential enzymatic saccharification of lignocellulosic materials, pretreatment is an indispensable step to be developed for making cellulose more accessible to cellulases. Enzymatic hydrolysis that bioconverts the pretreated lignocellulosic material with cellulases into fermentable sugars is known as the most complex step in this biological process due to enzyme-related and substrate-related effects and substrate-enzyme interactions. Thus, topics are summarized including characteristics of cellulose (e.g., degree of polymerization, crystallinity, and accessible surface area) and other components (e.g., oligomeric xylan and lignin) released from the pretreatment of lignocellulosic material and their effects on the effectiveness of enzymatic saccharification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah R, Ueda K, Saka S (2014) Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. J Wood Sci 60:278–286

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  PubMed  Google Scholar 

  • Aguiar A, Ferraz A (2008) Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. Int Biodeter Biodegr 61:182–188

    Article  CAS  Google Scholar 

  • Aguiar A, Souza-Cruz PB, Ferraz A (2006) Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzym Microb Technol 38:873–878

    Article  CAS  Google Scholar 

  • Aguiar A, Gavioli D, Ferraz A (2013) Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. Int Biodeter Biodegr 82:187–191

    Article  CAS  Google Scholar 

  • Aita GA, Salvi DA, Walker MS (2011) Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane. Bioresour Technol 102:4444–4448

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 121–124:1133

    Article  PubMed  Google Scholar 

  • Alvira P, Tomáspejó E, Ballesteros M, Negro MJ, Pandey A (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Andanson JM, Costa Gomes MF (2015) Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chem Commun 51:4485–4487

    Article  CAS  Google Scholar 

  • Arvaniti E, Bjerre AB, Schmidt JE (2012) Wet oxidation pretreatment of rape straw for ethanol production. Biomass Bioenergy 39:94–105

    Article  CAS  Google Scholar 

  • Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health Part B 24:421–433

    Article  Google Scholar 

  • Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2015) The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33:1680–1686

    Article  CAS  Google Scholar 

  • Banerjee S, Sen R, Mudliar S, Pandey RA, Chakrabarti T, Satpute D (2011) Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk. Biotechnol Prog 27:691–697

    Article  CAS  PubMed  Google Scholar 

  • Benghedalia D, Dror GSY (1983) Chemical treatments for increasing the digestibility of cotton straw: 1. Effect of ozone and sodium hydroxide treatments on rumen metabolism and on the digestibility of cell walls and organic matter. J Agric Sci 100:393–400

    Article  CAS  Google Scholar 

  • Ben-Ghedalia D, Miron J (1981) The effect of combined chemical and enzyme treatments on the saccharification and in vitro digestion rate of wheat straw. Biotechnol Bioeng 23:823–831

    Article  CAS  Google Scholar 

  • Bhatt SM, Shilpa (2014) Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – a review. Biofuels 5:633–649

    Article  CAS  Google Scholar 

  • Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose-N-methy morpholine N-oxide-water solutions. Cellulose 16:179–188

    Article  CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  CAS  PubMed  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787–532

    Article  CAS  Google Scholar 

  • Cadoche L, López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30:153–157

    Article  CAS  Google Scholar 

  • Cao WX, Sun C, Liu RH, Yin RZ, Wu XW (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour Technol 111:215–221

    Article  CAS  PubMed  Google Scholar 

  • Case PA, Truong C, Wheeler MC, DeSisto WJ (2015) Calcium-catalyzed pyrolysis of lignocellulosic biomass components. Bioresour Technol 192:247–252

    Article  CAS  PubMed  Google Scholar 

  • Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. Humana Press, Totowa

    Book  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. Biotech 3:415–431

    Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chong GG, He YC, Liu QX, Kou XQ, Qing Q (2017a) Sequential aqueous ammonia extraction and LiCl/N,N-dimethyl formamide pretreatment for enhancing enzymatic saccharification of winterbamboo shoot shell. Appl Biochem Biotechnol 182:1341–1357

    Google Scholar 

  • Chong GG, He YC, Liu QX, Kou XQ, Huang XJ, Di JH, Ma CL (2017b) Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system. Bioresour Technol 241:726–734

    Article  CAS  PubMed  Google Scholar 

  • Chong G, Di J, Ma C, Wang D, Wang C, Wang L, Zhang P, Zhu J, He Y (2018a) Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment. Bioresour Technol 261:196–205

    Google Scholar 

  • Chong G, Di J, Qian J, Wang C, He Y, Huo X, Wu C, Zhang L, Zhang L, Tang Y, Ma C (2018b) Efficient pretreatment of sugarcane bagasse via dilute mixed alkali salts (K2CO3 /K2SO3) soaking for enhancing its enzymatic saccharification. Process Biochem 68:121–130

    Google Scholar 

  • Chong GG, Huang XJ, Di JH, Xu DZ, He YC, Pei YN, Tang YJ, Ma CL (2018c) Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioprocess Biosyst Eng 41:501–510

    Article  CAS  PubMed  Google Scholar 

  • Cianchetta S, Maggio BD, Burzi PL, Galletti S (2014) Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol 173:609–623

    CAS  PubMed  Google Scholar 

  • Clough MT, Geyer K, Hunt PA, Son S, Vagt U, Welton T (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem 17:231–243

    Article  CAS  Google Scholar 

  • Dai YZ, Si MY, Chen YH, Zhang NL, Zhou M, Liao Q, Shi DQ, Liu YN (2015) Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresour Technol 198:725–731

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Zhang HS, Huan B, He YC (2017) Enhancing the enzymatic saccharification of bamboo shoot shell by sequential biological pretreatment with Galactomyces sp. CCZU11-1 and deep eutectic solvent extraction. Bioprocess Biosyst Eng 40:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira HF, Rinaldi R (2015) Understanding cellulose dissolution: energetics of interactions of ionic liquids and cellobiose revealed by solution microcalorimetry. ChemSusChem 8:1577

    Article  CAS  PubMed  Google Scholar 

  • Di J, Ma C, Qian J, Liao X, Peng B, He Y (2018) Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. Bioresour Technol 262:52–58

    Google Scholar 

  • Dunlap CE, Chiang LC (1980) Cellulose degradation-a common link. In: Shuler ML (ed) Utilization and recycle of agricultural wastes and residues. CRC Press, Boca Raton, pp 19–65

    Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis. Biotechnology monographs, vol 3. Springer, New York

    Book  Google Scholar 

  • Fatih Demirbas M (2009) Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:S151–S161

    Article  CAS  Google Scholar 

  • Foston M, Katahira R, Gjersing E, Davis MF, Ragauskas AJ (2012) Solid-state selective 13C excitation and spin diffusion NMR to resolve spatial dimensions in plant cell walls. J Agric Food Chem 60:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Springer, Berlin

    Book  Google Scholar 

  • Godden B, Ball AS, Helvenstein P, Mccarthy AJ, Penninckx MJ (1992) Towards elucidation of the lignin degradation pathway in actinomycetes. J Gen Microbiol 138:2441–2448

    Article  CAS  Google Scholar 

  • Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166:1066–1082

    Article  CAS  Google Scholar 

  • Gong W, Liu C, Mu X, Du H, Lv D, Li B, Han S (2015) Hydrogen peroxide-assisted sodium carbonate pretreatment for the enhancement of enzymatic saccharification of corn stover. ACS Sustain Chem Eng 3:3477–3485

    Article  CAS  Google Scholar 

  • Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Technol 8:274–280

    Article  CAS  Google Scholar 

  • Guerra A, Mendonça R, Ferraz A (2003) Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzym Microb Technol 33:12–18

    Article  CAS  Google Scholar 

  • Gupta R, Lee YY (2010) Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour Technol 101:8185

    Article  CAS  PubMed  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Biorefin 5:215–225

    Article  CAS  Google Scholar 

  • Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472

    Article  CAS  Google Scholar 

  • Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    Article  CAS  Google Scholar 

  • He YC, Xia DQ, Ma CL, Gong L, Gong T, Wu MX, Zhang Y, Tang YJ, Xu JH, Liu YY (2013) Enzymatic saccharification of sugarcane baggage by N-methylmorpholine-N-oxide-tolerant cellulase from a newly isolated Galactomyces sp. CCZU11-1. Bioresour Technol 135:18–22

    Article  CAS  PubMed  Google Scholar 

  • He YC, Ding Y, Xue YF, Yang B, Liu F, Wang C, Zhu ZZ, Qing Q, Wu H, Zhu C, Tao ZC, Zhang DP (2015a) Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresour Technol 193:324–330

    Article  CAS  PubMed  Google Scholar 

  • He YC, Liu F, Gong L, Zhu ZZ, Ding Y, Wang C, Xue YF, Rui H, Tao ZC, Zhang DP, Ma CL (2015b) Significantly improving enzymatic saccharification of high crystallinity index’s corn stover by combining ionic liquid [Bmim]Cl–HCl–water media with dilute NaOH pretreatment. Bioresour Technol 189:421–425

    Article  CAS  PubMed  Google Scholar 

  • He YC, Liu F, Gong L, Lu T, Ding Y, Zhang DP, Qing Q, Zhang Y (2015c) Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Appl Biochem Biotechnol 175:1306–1317

    Article  CAS  PubMed  Google Scholar 

  • He YC, Liu F, Di JH, Ding Y, Tao ZC, Zhu ZZ, Wu YQ, Chen L, Wang C, Xue YF, Chong GG, Ma CL (2016a) Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Ind Crop Prod 81:129–138

    Article  CAS  Google Scholar 

  • He YC, Liu F, Gong L, Di JH, Ding Y, Ma CL, Zhang DP, Tao ZC, Wang C, Yang B (2016b) Enzymatic in situ saccharification of chestnut shell with high ionic liquid-tolerant cellulases from Galactomyces sp. CCZU11-1 in a biocompatible ionic liquid-cellulase media. Bioresour Technol 201:133–139

    Article  CAS  PubMed  Google Scholar 

  • He YC, Tao ZC, Di JH, Chen L, Zhang LB, Zhang DP, Chong GG, Liu F, Ding Y, Jiang CX, Ma CL (2016c) Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6–hydrolyzate media. Bioresour Technol 214:414–418

    Google Scholar 

  • He YC, Zhang DP, Di JH, Wu YQ, Tao ZC, Liu F, Zhang ZJ, Chong GG, Ding Y, Ma CL (2016d) Effective pretreatment of sugarcane bagasse with combination pretreatment and its hydrolyzates as reaction media for the biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by whole cells of E. coli CCZU-K14. Bioresour Technol 211:720–726

    Article  CAS  PubMed  Google Scholar 

  • He YC, Ding Y, Ma CL, Di JH, Jiang CL, Li AT (2017a) One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chem 19:3844–3850

    Article  CAS  Google Scholar 

  • He YC, Li XL, Ben HX, Xue XY, Yang B (2017b) Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustain Chem Eng 5:2302–2311

    Article  CAS  Google Scholar 

  • He YC, Jiang CX, Jiang JW, Di JH, Liu F, Ding Y, Qing Q, Ma CL (2017c) One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. Bioresour Technol 238:698–705

    Article  CAS  PubMed  Google Scholar 

  • He YC, Jiang CX, Chong GG, Di JH, Wu YF, Wang BQ, Xue XX, Ma CL (2017d) Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO4 2−/SnO2-Kaoline and E. coli CCZU-T15 cells in toluene–water media. Bioresour Technol 245:841–849

    Article  CAS  PubMed  Google Scholar 

  • He YC, Jiang CX, Jiang JW, Di JH, Liu F, Ding Y, Qing Q, Ma CL (2017e) One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. Bioresour Technol 238:698–705

    Article  CAS  PubMed  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100:2706–2711

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369–378

    Article  CAS  Google Scholar 

  • Idrees M, Adnan A, Qureshi FA (2013) Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production. Biomed Res Int 2013:934171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacquet N, Vanderghem C, Danthine S, Quiévy N, Blecker C, Devaux J, Paquot M (2012) Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresour Technol 121:221–227

    Article  CAS  PubMed  Google Scholar 

  • Janu KU, Sindhu R, Binod P, Kuttiraja M, Sukumaran RK, Pandey A (2011) Studies on physicochemical changes during alkali pretreatment and optimization of hydrolysis conditions to improve sugar yield from bagasse. J Sci Ind Res 70:952–958

    CAS  Google Scholar 

  • Jiang CX, He YC, Chong GG, Di JH, Tang YJ, Ma CL (2017) Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. J Biotechnol 259:73–82

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134

    Article  CAS  Google Scholar 

  • Kanbayashi T, Miyafuji H (2015) Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide. Planta 242:509–518

    Article  CAS  PubMed  Google Scholar 

  • Kandhola G, Djioleu A, Carrier DJ, Kim JW (2017a) Pretreatments for enhanced enzymatic hydrolysis of pinewood: a review. Bioenergy Res 10:1138–1154

    Article  CAS  Google Scholar 

  • Kandhola G, Djioleu A, Carrier DJ, Kim J-W (2017b) Pretreatments for enhanced enzymatic hydrolysis of pinewood: a review. Bioenergy Res 5:1–17

    Google Scholar 

  • Kapoor K, Garg N, Garg RK, Varshney L, Tyagi AK (2017) Study the effect of gamma radiation pretreatment of sugarcane bagasse on its physcio-chemical morphological and structural properties. Radiat Phys Chem 141:190–195

    Article  CAS  Google Scholar 

  • Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210

    Article  CAS  PubMed  Google Scholar 

  • Keshwani DR, Cheng JJ (2010) Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Prog 26:644–652

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee YY (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol 124:1119–1131

    Article  Google Scholar 

  • Kim HJ, Chang JH, Jeong BY, Jin HL (2013) Comparison of milling modes as a pretreatment method for cellulosic biofuel production. J Clean Energy Technol 1:45–48

    Article  CAS  Google Scholar 

  • Koo BW, Min BC, Gwak KS, Lee SM, Choi JW, Yeo H, Choi IG (2012) Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenergy 42:24–32

    Article  CAS  Google Scholar 

  • Koray Gulsoy S, Eroglu H (2011) Biokraft pulping of European black pine with Ceriporiopsis subvermispora. Int Biodeter Biodegr 65:644–648

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kumar L, Chandra R, Saddler J (2011) Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol Bioeng 108:2300–2311

    Article  CAS  PubMed  Google Scholar 

  • Kuo CH, Lee CK (2009) Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour Technol 100:866–871

    Article  CAS  PubMed  Google Scholar 

  • Kyoungheon K, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77:139–144

    Article  Google Scholar 

  • Larran A, Jozami E, Vicario L, Feldman SR, Podestá FE, Permingeat HR (2015) Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresour Technol 194:320–325

    Article  CAS  PubMed  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin−carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6:3467–3473

    Article  CAS  PubMed  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot Fungi. Fungal Genet Biol 27:175–185

    Article  CAS  PubMed  Google Scholar 

  • Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ji GS, Tang YB, Gu XD, Fei JJ, Jiang HQ (2012) Ultrasound-assisted compatible in situ hydrolysis of sugarcane bagasse in cellulase-aqueous–N-methylmorpholine-N-oxide system for improved saccharification. Bioresour Technol 107:251–257

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J (2010) Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 162:1872–1880

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Takada R, Karita S, Watanabe T, Honda Y, Watanabe T (2010) Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresour Technol 101:9355–9360

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Padmanabhan S, Cheng K, Schwyter P, Pauly M, Bell AT, Prausnitz JM (2013) Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresour Technol 135:23–29

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Pang B, Zhou J, Han Y, Lu J, Li H, Wang H (2016) Comparative study of pretreated corn Stover for sugar production using cotton pulping black liquor (CPBL) instead of sodium hydroxide. Ind Crop Prod 84:97–103

    Article  CAS  Google Scholar 

  • Lu X, Bo X, Zhang Y, Angelidaki I (2011) Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency. Bioresour Technol 102:7937

    Article  CAS  PubMed  Google Scholar 

  • Lucas M, Hanson SK, Wagner GL, Kimball DB, Rector KD (2012) Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst. Bioresour Technol 119:174–180

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Ruan Z (2015) Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour Technol 175:586–593

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Liu WW, Chen X, Wu Y, Yu Z (2009) Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour Technol 100:1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä MR, Donofrio N, de Vries RP (2014) Plant biomass degradation by fungi. Fungal Genet Biol 72:2–9

    Article  PubMed  Google Scholar 

  • Martín C, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB (2008) Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover–ryegrass mixtures. Bioresour Technol 99:8777–8782

    Article  CAS  PubMed  Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In Enzymatic conversion of biomass for fuels production. American Chemical Society, vol 566, pp 292–324

    Google Scholar 

  • Mendes FM, Siqueira G, Carvalho W, Ferraz A, Milagres AM (2011) Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnol Prog 27:395–401

    Article  CAS  PubMed  Google Scholar 

  • Mendes FM, Heikkilä E, Fonseca MB, Milagres AMF, Ferraz A, Fardim P (2015) Topochemical characterization of sugar cane pretreated with alkaline sulfite. Ind Crop Prod 69:60–67

    Article  CAS  Google Scholar 

  • Mesa L, González E, Cara C, González M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162

    Article  CAS  Google Scholar 

  • Millett MA, Baker AJ, Satter LD (1976) Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnol Bioeng Symp 6:125

    CAS  Google Scholar 

  • Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzym Microb Technol 49:472–477

    Article  CAS  Google Scholar 

  • Montalbo-Lomboy M, Johnson L, Khanal SK, Leeuwen JV, Grewell D (2010) Sonication of sugary-2 corn: a potential pretreatment to enhance sugar release. Bioresour Technol 101:351–358

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Daidai M, Kobayashi F (2004) Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced. Water Sci Technol 50:167

    Article  CAS  PubMed  Google Scholar 

  • Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26:59–65

    Article  CAS  PubMed  Google Scholar 

  • Novo LP, Gurgel LVA, Marabezi K, da Silva Curvelo AA (2011) Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol 102:10040–10046

    Article  CAS  PubMed  Google Scholar 

  • Ostovareh S, Karimi K, Zamani A (2015) Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Ind Crop Prod 66:170–177

    Article  CAS  Google Scholar 

  • Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205

    Article  CAS  PubMed  Google Scholar 

  • Pérez J, Muñozdorado J, De lRT, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  CAS  PubMed  Google Scholar 

  • Procentese A, Johnson E, Orr V, Campanile AG, Wood JA, Marzocchella A, Rehmann F (2015) Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour Technol 92:31–36

    Article  CAS  Google Scholar 

  • Pryor SW, Karki B, Nahar N (2012) Effect of hemicellulase addition during enzymatic hydrolysis of switchgrass pretreated by soaking in aqueous ammonia. Bioresour Technol 123:620–626

    Article  CAS  PubMed  Google Scholar 

  • Pu Y, Kosa M, Kalluri UC, Tuskan GA, Ragauskas AJ (2011) Challenges of the utilization of wood polymers: how can they be overcome? Appl Microbiol Biotechnol 91:1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Qing Q, Zhou LL, Guo Q, Huang MZ, He YC, Wang LQ, Zhang Y (2016) A combined sodium phosphate and sodium sulfide pretreatment for enhanced enzymatic digestibility and delignification of corn stover. Bioresour Technol 218:209–216

    Article  CAS  PubMed  Google Scholar 

  • Qing Q, Zhou LL, Guo Q, Gao XH, Zhang Y, He YC, Zhang Y (2017) Mild alkaline presoaking and organosolv pretreatment of corn stover and their impacts on corn stover composition, structure, and digestibility. Bioresour Technol 233:284–290

    Article  CAS  PubMed  Google Scholar 

  • Quesada J, Rubio M, Gómez D (1999) Ozonation of lignin rich solid fractions from corn stalks. J Wood Chem Technol 19:115–137

    Article  CAS  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484

    Article  CAS  PubMed  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  • Ramesh D, Muniraj IK, Thangavelu K, Karthikeyan S (2018) Chapter 2: pretreatment of lignocellulosic biomass feedstocks for biofuel production. IGI Global

    Google Scholar 

  • Rehman MSU, Kim I, Chisti Y, Han JI (2013) Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Educ Sci Technol 30:1391–1410

    Google Scholar 

  • Rosgaard L, Pedersen S, Meyer AS (2007) Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Appl Biochem Biotechnol 143:284–296

    Article  CAS  PubMed  Google Scholar 

  • Roy P, Dias G (2017) Prospects for pyrolysis technologies in the bioenergy sector: a review. Renew Sust Energ Rev 77:59–69

    Article  CAS  Google Scholar 

  • Ryu S-H, Cho M-K, Kim M, Jung S-M, Seo J-H (2013) Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips. Appl Biochem Biotechnol 171:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Saha BC, Cotta MA (2007) Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb Technol 41:528–532

    Article  CAS  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  PubMed  Google Scholar 

  • Salvachúa D, Karp EM, Nimlos CT, Vardon DR, Beckham GT (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem 17:4951–4967

    Article  CAS  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  PubMed  Google Scholar 

  • Saratale GD, Chien LJ, Chang JS (2010) Enzymatic treatment of lignocellulosic wastes for anaerobic digestion and bioenergy production. Environ Anaerob Technol Appl New Dev:279–308

    Google Scholar 

  • Schilling JS, Tewalt JP, Duncan SM (2009) Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Appl Microb Biotechnol 84:465

    Article  CAS  Google Scholar 

  • Shi Y, Huang C, Rocha KC, El-Din MG, Liu Y (2015) Treatment of oil sands process-affected water using moving bed biofilm reactors: with and without ozone pretreatment. Bioresour Technol 192:219–227

    Article  CAS  PubMed  Google Scholar 

  • Silva ASD, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409

    Article  CAS  PubMed  Google Scholar 

  • Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  CAS  PubMed  Google Scholar 

  • Sindu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Singh R, Krishna BB, Kumar J, Bhaskar T (2016) Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour Technol 199:398–407

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan N, Ju LK (2010) Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresour Technol 101:9785–9791

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Wang L, Hong J, Ren J, Du F, Hu J, Zhang Z, Zhou B (2015) The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresour Technol 187:354–361

    Article  CAS  PubMed  Google Scholar 

  • Szijártó N, Kádár Z, Varga E, Thomsen AB, Costaferreira M, Réczey K (2009) Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Appl Biochem Biotechnol 155:83–93

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Keikhosro K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang A, Zhang H, Gang C, Xie G, Liang W (2005) Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose. Ultrason Sonochem 12:467

    Article  CAS  Google Scholar 

  • Teramoto Y, Lee SH, Endo T (2008) Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresour Technol 99:8856–8863

    Article  CAS  PubMed  Google Scholar 

  • Tye YY, Lee KT, Abdullah WNW, Leh CP (2016) The world availability of nonwood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sustain Energy Rev 60:155–172

    Article  CAS  Google Scholar 

  • Varga E, Schmidt AS, Réczey K, Thomsen AB (2003) Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Appl Biochem Biotechnol 104:37–50

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123

    Article  CAS  PubMed  Google Scholar 

  • Veluchamy C, Kalamdhad AS (2017) Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: a review. Bioresour Technol 245:1206–1219

    Article  CAS  PubMed  Google Scholar 

  • Vidal PF, Molinier J (1988) Ozonolysis of lignin—improvement of in vitro digestibility of poplar sawdust. Biomass 16:1–17

    Article  CAS  Google Scholar 

  • Wright JD (1988) Ethanol from biomass by enzymatic hydrolysis. Chem Eng Prog 84:8

    Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005a) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn Stover. Bioresour Technol 96:2026–2032

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005b) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Xu ZY, Huang F (2014) Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 174:43–62

    Article  CAS  PubMed  Google Scholar 

  • Xu JX, Xiong P, He BF (2016a) Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. Bioresour Technol 200:961–970

    Article  CAS  PubMed  Google Scholar 

  • Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y (2016b) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Li B, Mu X (2016c) Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Ind Eng Chem Res 55:8691–8705

    Article  CAS  Google Scholar 

  • Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bioenergy 3:25–31

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98

    Article  CAS  PubMed  Google Scholar 

  • Yang CP, Shen ZQ, Yu GC et al (2008) Effect and aftereffect of gamma radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour Technol 99:6240–6245

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Cao J, Mao J, Jin Y (2013) Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Ind Crop Prod 43:711–717

    Article  CAS  Google Scholar 

  • Ye S, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. ChemInform 83:1–11

    Google Scholar 

  • Yoo CG, Nghiem NP, Hicks KB, Kim TH (2011) Pretreatment of corn Stover using low-moisture anhydrous ammonia (LMAA) process. Bioresour Technol 102:10028–10034

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang JB, He J, Liu ZD, Yu ZN (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908

    Article  CAS  PubMed  Google Scholar 

  • Zakaria MR, Fujimoto S, Hirata S, Hassan MA (2014) Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Appl Biochem Biotechnol 173:1778–1789

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhou YJ, Liu DL, Petrus L (2007) Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresour Technol 98:1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhuang J, Lin L, Liu S, Zhang Z (2012) Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass Bioenergy 39:73–77

    Article  CAS  Google Scholar 

  • Zhang DS, Yang Q, Zhu JY, Pan XJ (2013) Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresour Technol 129:127–134

    Article  CAS  PubMed  Google Scholar 

  • Zhang WC, Xia SQ, Ma PS (2016) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009a) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009b) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Lin HM, Wen J, Cao N, Yu X, Tsao GT (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850

    Article  CAS  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–2418

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, YC., Ma, CL., Yang, B. (2018). Pretreatment Process and Its Synergistic Effects on Enzymatic Digestion of Lignocellulosic Material. In: Fang, X., Qu, Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore. https://doi.org/10.1007/978-981-13-0749-2_1

Download citation

Publish with us

Policies and ethics