Skip to main content

Somatic Embryogenesis in Long-Term Cultures of Gentiana lutea L. in the Presence of Osmotic Stress

  • Chapter
  • First Online:
The Gentianaceae - Volume 2: Biotechnology and Applications

Abstract

Somatic embryogenesis (SE) represents the most efficient way to regenerate plants , providing material for preservation and basic research. Biotechnological approaches are suitable to produce and to preserve plant material in reduced spaces with the protection against biotic and abiotic factors. Recurrent SE was developed in long-term cultures of Gentiana lutea , in the presence of moderate osmotic stress induced by sugar alcohols, without any growth factor. The efficiency of SE in long-term cultures in the presence of mannitol or sorbitol produced better results compared to those in the presence of plant growth regulators. SE can occur as a continuous process, and embryos can be maturated and converted on the same culture medium. The absence of plant growth regulators has a beneficial effect on the quality of the regenerants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WE, Ammirato PV, Yamada Y (eds) Handbook of plant culture, vol 1. MacMillan, New York, pp 82–133

    Google Scholar 

  • Anandarajah K, McKersie BD (1990) Enhanced vigor of dry somatic embryos of Medicago sativa L. with increased sucrose. Plant Sci 71:261–266

    Article  CAS  Google Scholar 

  • Aoshima Y (2005) Efficient embryogenesis in the callus of tea (Camellia sinensis) enhanced by the osmotic stress or antibiotics treatment. Plant Biotech 22:277–280

    Article  CAS  Google Scholar 

  • Atree SM, Fowke LC (1993) Embryogeny of Gymnosperms: advances in synthetic seed technology of Conifers. Plant Cell Tiss Org Cult 35:1–35

    Article  Google Scholar 

  • Bach A, Pawłowska B (2003) Somatic embryogenesis in Gentiana pneumonanthe L. Acta Biol Crac s Bot 45:79–86

    Google Scholar 

  • Begun Y, Roy S, Bandyopadhyay S, Bandyopadhyay S, Dasygupta U, Chakrabarty A, Raychandhury SS (2007) Radiation induced alteration in Vigna radiata during somatic embryogenesis. Intl J Rad Biol 84:165–175

    Article  Google Scholar 

  • Belmonte MF, Macez J, Teung EC, Stasolla C (2005) The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development. Plant Physiol Biochem 43:337–346

    Article  CAS  PubMed  Google Scholar 

  • Benson E (1999) Plant conservation biotechnology. Univ. of Albertay, Dundee

    Google Scholar 

  • Butiuc-Keul A, Bindea G, Deliu MC, Deliu C (1999) Regenerarea de plante din explant nodal si calus la Gentiana cruciata. In: Cachiţă-Cosma D, Ardelean A, Crăciun C (eds) Culturi “in vitro” la Cormophyte, Lucr.reunite ale celui de al VII-lea şi al VIII-lea Simp. Nat de Cult. şi Ţes. Veg, Arad 1997 şi Buzias 1998, Risoprint, Cluj Napoca, pp 79–86

    Google Scholar 

  • Butiuc-Keul A, Suteu A, Deliu C (2005) In vitro organogenesis of Gentiana punctata. Not Bot Hort Agrobot 33:38–41

    CAS  Google Scholar 

  • Chakrabarty D, Yu KW, Paek KY (2003) Detection of methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci 165:61–68

    Google Scholar 

  • Charriérre F, Sotta B, Miginiac E, Hahne G (1999) Induction of adventitious shoots and somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: variation of endogenous hormone levels. Plant Physiol 37:751–757

    Google Scholar 

  • Concepción M, Sánchez M, Martínez MT, Valladares S, Ferro E, Viéitez AM (2003) Maturation and germination of oak somatic embryos originated from leaf and stem explants: RAPD markers for genetic analysis of regenerants. J Plant Physiol 60:699–707

    Article  Google Scholar 

  • Corredoira E, Ballester A, Vieitez AM (2003) Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Ann Bot 92:129–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davletova S, Mészáros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D, Deák M (2001) Auxin and heat shock activation of calmodulin like protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    Article  CAS  PubMed  Google Scholar 

  • Deliu C, Halmágyi A (2008) Embriogeneza somatica, Ed. Todesco srl. Cluj-Napoca

    Google Scholar 

  • Dodeman VL, Vrie L, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Dudits D, Györgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  • Dudits D, Györgyey J, Bögre L, Bakó L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogensis in plants. Kluwer Academic Publishers, Dordrecht, pp 267–308

    Chapter  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In vitro Cell Dev Biol-Plant 4:5–16

    Article  Google Scholar 

  • Fehér A (2005) Why somatic cells start to form embryos? In: Mujd A, Samaj J (eds) Somatic embryogenesis. Plant cell monograph. Springer, Berlin, vol 2, pp 85–101

    Google Scholar 

  • Fehér A (2008) The initiation phase of somatic embryogenesis: what we know and what we don’t know. Act Biot Szegedensis 52:53–56

    Google Scholar 

  • Fehér A, Pasternak T, Dudits D (2003) Transition of somatic plant cells to an embryonic state. Plant Cell Tiss Org Cult 74:201–228

    Article  Google Scholar 

  • Fiuk A, Rybczyński JJ (2008a) Morphogenic capability of Gentiana kurroo (Royle) seedling and leaf explants. Acta Physiol Plant 30:157–166

    Article  Google Scholar 

  • Fiuk A, Rybczyński JJ (2008b) Factors influencing efficiency of somatic embryogenesis of Gentiana kurroo (Royle) cell suspension. Plant Biotech Rep 2:33–39

    Article  Google Scholar 

  • Fiuk A, Rybczyński JJ (2008c) Genotype and plant growth regulator-dependent response of somatic embryogenesis from Gentiana spp. leaf explants. In Vitro Cell Dev Biol-Plant 44:90–99

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Physiol Plant 15:473–497

    Google Scholar 

  • Grafi G (2004) How cells dedifferentiated: a lesson from plants. Dev Biol 268:1–6

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011) Plant response to stress meets differentiation. Planta 233:433–438

    Article  CAS  PubMed  Google Scholar 

  • Grossman K (2000) Mode of action of auxinic herbicides a new ending to a long drawn out story. Trends Plant Sci 5:506–508

    Article  Google Scholar 

  • Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology 28:74–81

    Google Scholar 

  • Harada H, Kiyosue T, Kamada H, Kobayashi T (1990) Stress-induced carrot somatic embryogenesis and its application to synthetic seed. In: Sangwan RS, Sangwan-Norreel BS (eds) The impact of biotechnology in agriculture. Kluwer Academic Publishers, Dordrecht, pp 129–157

    Chapter  Google Scholar 

  • Holobiuc I (2006) Ex situ endangered plant conservation using in vitro techniques. Acta Horti Bot Bucharestiensis 33:5–16

    Google Scholar 

  • Holobiuc I, Blîndu R (2006) In vitro culture of the protected rare species Gentiana lutea L. for conservative purpose. Contributii Botanice 43:125–134

    Google Scholar 

  • Holobiuc I, Cătana R (2012) Recurrent somatic embryogenesis in log-term cultures of Gentiana lutea L. as a source for synthetic seed production for medium-term preservation. Arch Biol Sci Belgrade 64:817–825

    Article  Google Scholar 

  • Holobiuc I, Blîndu R, Brezeanu A (2008) Ex situ conservation of Gentiana lutea L. through somatic embryogenesis. In: Proceedings of international symposium “new research in biotechnology”, Special volume Series F, Bucharest, pp 325–334

    Google Scholar 

  • Ikeda-Iwai M, Umevara M (2003) Stress-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasil Fisiol Veg 3:196–223

    Article  Google Scholar 

  • Jimenez VM, Thomas C (2005) Participation of plants hormones in determination and progression of somatic embryogenesis. In: Mujda A, Samaj J (eds) Somatic embryogenesis. Springer, Berlin, pp 103–118

    Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol Plant 122:159–168

    Article  CAS  Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tiss Cult Lett 10:38–44

    Article  CAS  Google Scholar 

  • Karami O, Saidi A (2009) The molecular basis for stress induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  PubMed  Google Scholar 

  • Karami O, Deljou A, Esna-Ashari M, Ostad Ahmidi P (2006) Effect of sucrose concentration on somatic embryogenesis in carnation Dianthus caryophyllus L. Sci Hort 110:340–344

    Article  CAS  Google Scholar 

  • Kikuchi A, Samuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    Article  CAS  PubMed  Google Scholar 

  • Kiyosue T, Kamada H, Harada H (1989) Induction of somatic embryogenesis by salt stress in carrot. Plant Tiss Cult Lett 6:162–164

    Article  Google Scholar 

  • Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot 68:2301–2303

    Article  CAS  Google Scholar 

  • Koh WL, Loh CS (2000) Direct somatic embryogenesis, plant regeneration and in vitro flowering in rapid cycling Brassica napus. Plant Cell Rep 19:1177–1183

    Article  CAS  Google Scholar 

  • Lamproye A, Crevecoeur M, Kevers C, Gaspar T (1987) Multiplication vegetative in vitro de Gentiana lutea et de Gentiana pneumonanthe. Med Fac Land Bouw Rijksuniv Gent 52:1255–1257

    Google Scholar 

  • Ledwoń A, Gaj MD (2011) LEAFY COTYLEDON1, FUSCA3 expression and auxin treatment in relation to somatic embryogenesis induction in Arabidopsis. Plant Growth Reg 65:157–167

    Article  Google Scholar 

  • Leljak-Levanic D, Bauer N, Mihaljewie S, Jelanka S (2004) Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 23:120–127

    Article  CAS  PubMed  Google Scholar 

  • Lincy A, Ramashree A, Scsikumar B (2009) Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc). Acta Bot Croatica 68:93–103

    CAS  Google Scholar 

  • McKersie BD, Brown DCW (1996) Somatic embryogenesis and artificial seeds in forage legumes. Seed Sci Res 6:109–126

    Article  Google Scholar 

  • McKersie BD, Senaratna T, Bowley SR (1990) Drying somatic embryos for use as artificial seeds. In: Hodgson RH (ed) Proceedings of the Plant Growth Regulator Society of America 17th annual Meeting, pp 199–207

    Google Scholar 

  • Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 155–203

    Chapter  Google Scholar 

  • Mikuła A, Rybczyński JJ (2001) Somatic embryogenesis of Gentiana genus. I. The effect of preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata (L.), G. pannonica (Scop) and G. tibetica (King). Acta Physiol Plant 23:15–25

    Article  Google Scholar 

  • Mikuła A, Wesołowska M, Kapusta J, Skrzypczak L, Rybczyński JJ (1996) Cytomorphological studies on somatic embryogenesis of Gentiana tibetica (King) and G. cruciata (L.). Acta Soc Bot Pol 65:47–51

    Article  Google Scholar 

  • Mikuła A, Fiuk A, Rybczyński JJ (2005a) Induction, maintenance and preservation of embryogenic competence of Gentiana cruciata L. culture. Acta Biol Crac s Bot 47:227–236

    Google Scholar 

  • Mikuła A, Rybczyński JJ, Skierski J, Latkowska MJ, Fiuk A (2005b) Somatic embryogenesis of Gentiana genus IV: characterisation of Gentiana cruciata and Gentiana tibetica embryogenic cell suspensions. In: Hvolsef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 345–358

    Chapter  Google Scholar 

  • Mikuła A, Tykarska T, Kuraś M, Rybczyński JJ (2005c) Somatic embryogenesis of Gentiana cruciata (L.) histological and ultrastructural changes in seedling hypocotyl explant. In Vitro Cell Dev Biol-Plant 41:686–694

    Article  Google Scholar 

  • Momčilović I, Grubišić D, Nešković M (1997) Micropropagation of four Gentiana species (G. lutea, G. cruciata, G. purpurea and G. acaulis). Plant Cell Tiss Org Cult 49:141–144

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishiwaki V, Fujino K, Masuda K, Kikuda Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  CAS  PubMed  Google Scholar 

  • Osuga K, Masuda H, Komamine A (1999) Synchronization of somatic embryogenesis at high frequency using carrot suspension cultures: model systems and application in plant development. Methods Cell Sci 21:129–140

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Vasil IK (1988) In vitro regeneration and genetic manipulation of grasses. Physiol Plant 73:565–569

    Article  Google Scholar 

  • Pasternak TP, Prinsen EA, Ayadin F, Miskolskczi P, Potters G, Van Onckelen Asard H, Dudits D, Feher A (2002) The role of auxin, pH and stress in the activation of cell division in leaf protoplast-derived cell alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patnaik D, Mahakshmi A, Khurana P (2005) Effect of water stress and heavy metals on induction on induction of somatic embryogenesis in wheat leaf base cultures. Ind J Exp Biol 43:740–745

    CAS  Google Scholar 

  • Pawłowska B, Bach A (2003) In vitro propagation of protected species Gentiana pneumonanthe L. for ornamental horticultural use. Folia Horticult 15:113–122

    Google Scholar 

  • Petrova M, Zagorska N, Tasheva L, Evstatieva L (2006) In vitro propagation of Gentiana lutea L. Gen Breed 35:63–68

    Google Scholar 

  • Petrova M, Zagorska N, Vitkova A (2011) Effect of silver nitrate on in vitro root formation of Gentiana lutea. Rom Biotech Lett 16:53–58

    CAS  Google Scholar 

  • Potters G, Pasternak T, Guisez Y, Palme KJ, Jansen M (2007) Stress-induced morphogenic response growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Raghavan V (2004) Role of 2, 4-D (dichlorophenoxyacetic acid) in somatic embryogenesis in cultures of zygotic embryos of Arabidopsis: cell expansion, cell cycling and morphogenesis during continuous exposure of embryos to 2, 4-D. Am J Bot 91:1743–1756

    Article  CAS  PubMed  Google Scholar 

  • Raghavan C, Ong EK, Dalling MJ, Stevens TW (2006) Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomic 6:60–70

    Article  CAS  Google Scholar 

  • Reed BM, Sarasan V, Kane M, Bunn E, Pence VC (2011) Biodiversity conservation and conservation biotechnology tools. In Vitro Cell Dev Biol-Plant 47:1–4

    Article  CAS  Google Scholar 

  • Rybczyński J, Mikuła A (2006) Engagement of biotechnology in protection of threatened plant species in Poland. Biodiv Res Conserv 3–4:361–368

    Google Scholar 

  • Santos D, Fervereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tiss Org Cult 70:155–161

    Article  CAS  Google Scholar 

  • Sarasan V, Cripps R, Ramsay M, Atherton C, Mcmichen M, Prendergast G, Rowntree JK (2006) Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell Dev Biol-Plant 42:206–214

    Article  Google Scholar 

  • Senaratna T, McKersie BD, Bowley SR (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos. Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci 65:253–259

    Article  CAS  Google Scholar 

  • Senger S, Morc HP, Conrad U, Manteuffel R (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep 20:112–120

    Article  CAS  Google Scholar 

  • Sharma N, Chandel KPS, Paul A (1993) In vitro propagation of Gentiana kurroo—an indigenous threatened plant of medicinal importance. Plant Cell Tiss Org Cult 34:307–309

    Article  CAS  Google Scholar 

  • Skrzypczak L, Wesołowska M, Skrzypczak E (1993) Gentiana species: in vitro culture, regeneration and production of secoiridoid glucosides. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Medicinal and aromatic plants IV, vol 21, Springer, Berlin, pp 172–186

    Google Scholar 

  • Skrzypczak-Pietraszek E, Skrzypczak L, Wesołowska M (1993) Gentiana tibetica (King) from tissue culture. Sci Pharm 61:287–296

    Google Scholar 

  • Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suprasanna AP, Bapat VA (2005) Differential gene expression during somatic embryogenesis. In: Mujib A, Samaj J (eds) Somatic embryogenesis. Plant cell monographs, vol 2. Springer, Berlin, pp 305–320

    Google Scholar 

  • Tereso T, Zoglauer K, Milhinhos A, Miguel C, Oliveira M (2007) Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study. Tree Physiol 27:661–669

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Jimenez VM (2005) Mode of actions of plant hormones during induction of somatic embryogenesis: molecular aspects. In: Mujib A, Samaj J (eds) Somatic embryogenesis. Plant cell monographs, vol 2. Springer, Berlin, pp 157–175

    Google Scholar 

  • Viji M, Maheswari P, Karuppanapandian T, Manoharan K (2012) Effect of polyethylene glycol and mannitol on somatic embryogenesis of pigeonpea, Cajanus cajan (L.) Millsp. Afr J Biotech 11:10340–10349

    Article  Google Scholar 

  • Vinterhalter B, Vinterhalter D (1998) In vitro propagation of spotted gentian Gentiana punctata L. Arch Biol Sci 50:177–182

    Google Scholar 

  • Viola U, Franz C (1989) In vitro propagation of Gentiana lutea. Planta Med 55:690

    Article  Google Scholar 

  • Walbot V (1978) Control mechanism for plant embryogeny. In: Clutter ME (ed) Dormancy and developmental arrest. Academic Press, New York, pp 113–166

    Chapter  Google Scholar 

  • Wesołowska M, Skrzypczak E (1993) XII Gentiana species: In vitro culture, regeneration, and production of secoirioid glucosides. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, medicinal and aromatic plants IV, vol 21. Springer, Berlin, pp 172–186

    Google Scholar 

  • Wesołowska M, Kapusta J, Skrzypczak L (1994) Micropropagation via somatic embryogenesis of Gentiana cruciata L. abstracts of the VIIIth international congress of plant tissue and cell culture. Florenza, Italy, p 176

    Google Scholar 

  • Xu N, Coulter KM, Bewley JD (1990) Abscisic acid and osmoticum prevent germination of developing alfalfa embryos but only osmoticum maintains the synthesis of developmental proteins. Planta 182:382–390

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Shoyama Y, Nishioka I, Kohda H, Namera A, Okamoto T (1991) Clonal micropropagation of Gentiana scabra Bunge var. buergeri Maxim. and examination of the homogenity concerning the gentiopicroside content. Chem Pharm Bull 39:204–206

    Article  CAS  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publisher, Dordrecht, pp 205–247

    Chapter  Google Scholar 

  • Yu TA, Yeh S-D, Yang J-S (2001) Effect of carbenicilin and cephotaxime on callus growth and somatic embryogenesis from adventitious roots of papaya. Bot Bull Acad Sinica 42:281–286  

    CAS  Google Scholar 

  • Zavattieri M, Frederico A, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotech, North America, 13(1) http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v13n1-4/1082

  • Zeleznik A, Baricevic D, Vodnik D (2002) Micropropagation and acclimatization of yellow gentian (Gentiana lutea L.). Zbornik Biotehniske Fakultete Univerze V Ljublijani (Slovenia) 79:253–259

    Google Scholar 

  • Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90:620–628

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Leung DWM (2002) Factors influencing the growth of micropropagated shoots and in vitro flowering of gentian. Plant Growth Reg 36:245–251

    Article  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Holobiuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holobiuc, I. (2015). Somatic Embryogenesis in Long-Term Cultures of Gentiana lutea L. in the Presence of Osmotic Stress. In: Rybczyński, J., Davey, M., Mikuła, A. (eds) The Gentianaceae - Volume 2: Biotechnology and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54102-5_6

Download citation

Publish with us

Policies and ethics