Skip to main content

Advertisement

Log in

Use of biotechnologies for the conservation of plant biodiversity

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In vitro techniques are very useful for conserving plant biodiversity, including (a) genetic resources of recalcitrant seed and vegetatively propagated species, (b) rare and endangered plant species and (c) biotechnology products such as elite genotypes and genetically engineered material. Explants from recalcitrant seed and vegetatively propagated species can be efficiently collected under field conditions using in vitro techniques. In vitro culture techniques ensure the production and rapid multiplication of disease-free material. Medium-term conservation is achieved by reducing growth of plant material, thus increasing intervals between subcultures. For long-term conservation, cryopreservation (liquid nitrogen, −196°C) allows storing plant material without modification or alteration for extended periods, protected from contaminations and with limited maintenance. Slow growth storage protocols are routinely employed for a large number of species, including numerous endangered plants, from temperate and tropical origin. Cryopreservation is well advanced for vegetatively propagated species, and techniques are ready for large-scale experimentation in an increasing number of cases. Research is much less advanced for recalcitrant species due to their seed characteristics, viz., very high sensitivity to desiccation, structural complexity and heterogeneity in terms of developmental stage and water content at maturity. However, various technical approaches should be explored to develop cryopreservation techniques for a larger number of recalcitrant seed species. A range of analytical techniques are available, which allow understanding physical and biological processes taking place in explants during cryopreservation. These techniques are extremely useful to assist in the development of cryopreservation protocols. In comparison with crop species, only limited research has been performed on cryopreservation of rare and endangered species. Even though routine use of cryopreservation is still limited, an increasing number of examples where cryopreservation is used on a large scale can be found both in genebanks for crops and in botanical gardens for endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashmore S. Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. International Plant Genetic Resources Institute, Rome; 1997.

    Google Scholar 

  • Assy-Bah B.; Engelmann F. Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. CryoLetters 13: 117–126; 1992.

    Google Scholar 

  • Banerjee N.; De Langhe E. A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantain). Plant Cell Rep 4: 351–354; 1985.

    Article  CAS  Google Scholar 

  • Berjak P.; Farrant J. M.; Mycock D. J.; Pammenter N. W. Homoiohydrous (recalcitrant) seeds: the enigma of their desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186: 249–261; 1989.

    Google Scholar 

  • Bunn E.; Turner S. R.; Panaia M.; Dixon K. W. The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust J Bot 55: 345–355; 2007.

    Article  Google Scholar 

  • Chandel K. P. S.; Chaudhury R.; Radhamani J.; Malik S. K. Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Ann Bot 76: 443–450; 1995.

    Article  Google Scholar 

  • Côte F. X.; Goue O.; Domergue R.; Panis B.; Jenny C. In-field behavior of banana plants (Musa AA sp.) obtained after regeneration of cryopreserved embryogenic cell suspensions. CryoLetters 21: 19–24; 2000.

    PubMed  Google Scholar 

  • Cyr D. R. Cryopreservation: roles in clonal propagation and germplasm conservation of conifers. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 261–268; 2000.

    Google Scholar 

  • Dereuddre J.; Hassen M.; Blandin S.; Kaminski M. Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen: 2. Thermal analysis. CryoLetters 12: 135–148; 1991.

    Google Scholar 

  • Dulloo M. E.; Ebert A. W.; Dussert S.; Gotor E.; Astorga C.; Vasquez N.; Rakotomalala J. J.; Rabemiafara A.; Eira M.; Bellachew B.; Omondi C.; Engelmann F.; Anthony F.; Watts J.; Qamar Z.; Snook L. Cost efficiency of cryopreservation as a long term conservation method for coffee genetic resources. Crop Sci 49: 2123–2138; 2009.

    Article  Google Scholar 

  • Dumet D. Cryoconservation des massifs d’embryons somatiques de palmier à huile (Elaeis guineensis Jacq.) par déshydratation-vitrification. Etude du rôle du saccharose pendant le prétraitement. Ph.D. thesis, Université Paris 6, Paris, France; 1994

  • Dumet D.; Engelmann F.; Chabrillange N.; Duval Y. Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12: 352–355; 1993.

    Article  CAS  Google Scholar 

  • Dussert S.; Chabrillange N.; Anthony F.; Engelmann F.; Recalt C.; Hamon S. Variability in storage response within a coffee (Coffea spp.) core collection under slow growth conditions. Plant Cell Rep 16: 344–348; 1997a.

    CAS  Google Scholar 

  • Dussert S.; Chabrillange N.; Engelmann F.; Anthony F.; Hamon S. Cryopreservation of coffee (Coffea arabica L.) seeds: importance of the precooling temperature. CryoLetters 18: 269–276; 1997b.

    Google Scholar 

  • Dussert S.; Engelmann F. New determinants of coffee (Coffea arabica L.) seed tolerance to liquid nitrogen exposure. CryoLetters 27: 169–178; 2006.

    PubMed  CAS  Google Scholar 

  • Dussert S.; Engelmann F.; Noirot M. Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. CryoLetters 24: 149–160; 2003.

    PubMed  Google Scholar 

  • Ellis R. E.; Hong T.; Roberts E. H. An intermediate category of seed storage behaviour? I. Coffee. J Exp Bot 41: 1167–1174; 1990.

    Article  Google Scholar 

  • Ellis R. H.; Hong T.; Roberts E. H.; Soetisna U. Seed storage behaviour in Elaeis guineensis. Seed Sci Res 1: 99–104; 1991.

    Google Scholar 

  • Engelmann F. In vitro conservation of tropical plant germplasm—a review. Euphytica 57: 227–243; 1991.

    Article  Google Scholar 

  • Engelmann F. Cryopreservation of embryos. In: Dattée Y.; Dumas C.; Gallais A. (eds) Reproductive biology and plant breeding. Springer, Berlin, pp 281–290; 1992.

    Google Scholar 

  • Engelmann F. Importance of desiccation for the cryopreservation of recalcitrant seed and vegetatively propagated species. Plant Genet Resour Newsl 112: 9–18; 1997a.

    Google Scholar 

  • Engelmann F. In vitro conservation methods. In: Ford-Lloyd B. V.; Newburry J. H.; Callow J. A. (eds) Biotechnology and plant genetic resources: conservation and use. CABI, Wellingford, pp 119–162; 1997b.

    Google Scholar 

  • Engelmann F. Management of field and in vitro germplasm collections. Proceedings of a consultation meeting—15–20 January 1996, CIAT, Cali, Colombia. International Plant Genetic Resources Institute, Rome; 1999.

  • Engelmann F. Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 8–20; 2000.

    Google Scholar 

  • Engelmann F. Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40: 427–433; 2004.

    Article  Google Scholar 

  • Engelmann F.; Dumet D.; Chabrillange N.; Abdelnour-Esquivel A.; Assy-Bah B.; Dereuddre J.; Duval Y. Factors affecting the cryopreservation of coffee, coconut and oil palm embryos. Plant Genet Resour Newsl 103: 27–31; 1995.

    Google Scholar 

  • Engelmann F.; Gonzalez-Arnao M. T.; Wu W. J.; Escobar R. E. Development of encapsulation–dehydration. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 59–76; 2008.

    Chapter  Google Scholar 

  • Engelmann F.; Takagi H. Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba; 2000.

    Google Scholar 

  • Engels J. M. M.; Engelmann F. Botanic gardens and agricultural genebanks: building on complementary strengths for more effective global conservation of plant genetic resources. Proc. Fifth international botanic gardens conservation congress, Kirstenbosch, South Africa, 14–18 September; 1998.

  • Fahy G. M.; MacFarlane D. R.; Angell C. A.; Meryman H. T. Vitrification as an approach to cryopreservation. Cryobiology 21: 407–426; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Fay M. F. Conservation of rare and endangered plants using in vitro methods. In Vitro Cell Dev Biol Plant 28: 1–4; 1992.

    Google Scholar 

  • Florin B.; Brulard E.; Lepage B. Establishment of a cryopreserved coffee germplasm bank. In: Abstracts Cryo’99, World Congress of the Society for Cryobiology, Marseilles, France, 167, 12–15 July; 1999.

  • Forsline P. L.; McFerson J. R.; Lamboy W. F.; Towill L. E. Development of base and active collections of Malus germplasm with cryopreserved dormant buds. Acta Hort 484: 75–78; 1999.

    Google Scholar 

  • Ganeshan S.; Rajashekaran P. E. Current status of pollen cryopreservation research: relevance to tropical agriculture. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 360–365; 2000.

    Google Scholar 

  • George E. F. Plant propagation by tissue culture. Part 2—in practice. 2nd ed. Exegetics, Edington; 1996.

    Google Scholar 

  • Golmirzaie A.; Panta A. Advances in potato cryopreservation at the International Potato Center, Peru. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 250–254; 2000.

    Google Scholar 

  • Gonzalez-Arnao M. T. Desarollo de una tecnica para la crioconservacion de meristemos apicales de caña de azucar. Tesis presentada en opcion al grado de Doctor en ciencias tecnicas. Centro Nacional de Investigaciones Cientificas, La Habana, Cuba; 1996

  • Gonzalez-Arnao M. T.; Engelmann F. Cryopreservation of plant germplasm using the encapsulation–dehydration technique: review and case study on sugarcane. CryoLetters 27: 155–168; 2006.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Arnao M. T.; Panta A.; Roca W. M.; Escobar R. H.; Engelmann F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Org Cult 92: 1–13; 2008.

    Article  Google Scholar 

  • Gonzalez-Benito M. E.; Perez C. Cryopreservation of nodal explants of an endangered plant species (Centaurium rigualii Esteve) using the encapsulation–dehydration method. Biodivers Conserv 6: 583–590; 1997.

    Article  Google Scholar 

  • Guarino L.; Rao R.; Reid R. Collecting plant genetic diversity, technical guidelines. CAB International, Wallingford; 1995.

    Google Scholar 

  • Hamilton K. N.; Ashmore S. E.; Pritchard H. W. Thermal analysis and cryopreservation of seeds of Australian wild Citrus species (Rutaceae): Citrus australasica, C. inodora and C. garrawayi. CryoLetters 30: 268–279; 2009.

    PubMed  CAS  Google Scholar 

  • Harvengt L.; Meier-Dinkel A.; Dumas E.; Collin E. Establishment of a cryopreserved gene bank of European elms. Can J Forest Res 34: 43–55; 2004.

    Article  Google Scholar 

  • Hirano T.; Ishikawa K.; Mii M. Advances in orchid cryopreservation. In: da Silva JA Teixeira (ed) Floriculture, ornamental and plant biotechnology, advances and topical issues, vol. II. Global Science Books, Ikenobe, pp 410–414; 2006.

    Google Scholar 

  • Hummer K. E.; Reed B. M. Establishment and operation of a temperate clonal field genebank. In: Engelmann F. (ed) Management of field and in vitro germplasm collections. Proceedings of a consultation meeting—15–20 January, 1996, CIAT, Cali, Colombia. International Plant Genetic Resources Institute, Rome, pp 29–31; 2000.

    Google Scholar 

  • IUCN. IUCN Red List of Threatened Species. www.iucnredlist.org; 2004.

  • Kartha K. K.; Engelmann F. Cryopreservation and germplasm storage. In: Vasil I. K.; Thorpe T. A. (eds) Plant cell and tissue culture. Kluwer, Dordrecht, pp 195–230; 1994.

    Google Scholar 

  • Keller E. R. J.; Grübe M.; Senula A. Cryopreservation in the Gatersleben genebank—state of the art in potato, garlic and mint. Mem. Congresso Internacional Biotecnología y Agricultura (Bioveg 2005), Centro de Bioplantas, Ciego de Avila, Cuba; 2005.

  • Keller E. R. J.; Senula A.; Leunufna S.; Grübe M. Slow growth storage and cryopreservation—tools to facilitate germplasm maintenance of vegetatively propagated crops in living plant collections. Int Refrig J 29: 411–417; 2006.

    Article  Google Scholar 

  • Kim H. H.; Shin D. J.; No N. Y.; Yoon M. K.; Choi H. S.; Lee J. S.; Engelmann F. Cryopreservation of garlic germplasm collections using the droplet–vitrification technique. In: Abst. 1st international symposium on cryopreservation in horticultural species, Leuven, Belgium, 39, 5–8 April; 2009.

  • Konan E. K.; Durand-Gasselin T.; Koadio Y. J.; Niamké A. C.; Dumet D.; Duval Y.; Rival A.; Engelmann F. Field development of oil palms (Elaeis guineensis Jacq.) originating from cryopreserved stabilized polyembryonic cultures (SPCs). CryoLetters 28: 377–386; 2007.

    PubMed  CAS  Google Scholar 

  • Lambardi M.; Halmagyi A.; Benelli C.; Carlo A.; de Vettori C. Seed cryopreservation for conservation of ancient Citrus germplasm. Adv Hortic Sci 21: 198–202; 2007.

    Google Scholar 

  • Li B. L.; Zhang Y. L.; Wang H.; Song C. H.; Liu Y. Pollen cryo-bank establishment and application of traditional Chinese flowers. In: Abst. CRYO ’09. Annual meeting of the Society for Cryobiology, Tsukuba, Japan, 108, 21–26 July; 2009.

  • Malik S. K.; Chaudhury R. The cryopreservation of embryonic axes of two wild and endangered Citrus species. Plant Genet Res: Charact Utiliz 4: 204–209; 2006.

    Google Scholar 

  • Mandal B. B. Cryopreservation research in India: current status and future perspectives. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 282–286; 2000.

    Google Scholar 

  • Maneerattanarungroj P.; Bunnag S.; Monthatong M. In vitro conservation of Cleisostoma areitinum (Rchb. f.) Garay, rare Thai orchid species by an encapsulation–dehydration method. Asian J Plant Sci 6: 1235–1240; 2007.

    Article  CAS  Google Scholar 

  • Mazur P. Freezing of living cells: mechanisms and applications. Amer J Physiol 247(Cell Physiol 16): C125–C142; 1984.

    PubMed  CAS  Google Scholar 

  • Meryman H. T.; Williams R. J.; Douglas M. S. J. Freezing injury from solution effects and its prevention by natural or artificial cryoprotection. Cryobiology 14: 287–302; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Mix-Wagner G.; Schumacher H. M.; Cross R. J. Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters 24: 33–41; 2003.

    PubMed  CAS  Google Scholar 

  • Niino T. Cryopreservation of germplasm of mulberry. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry vol 32. Cryopreservation of plant germplasm I. Springer, Berlin, pp 102–113; 1995.

    Google Scholar 

  • Niino T.; Sakai A.; Yakuwa H.; Nojiri K. Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Org Cult 28: 261–266; 1992.

    Article  Google Scholar 

  • Nikishina T. V.; Popova E. V.; Vakhrameeva M. G.; Varlygina T. I.; Kolomeitseva G. L.; Burov A. V.; Popovich E. A.; Shirokov A. I.; Shumilov V.; Yu V.; Popov A. S. Cryopreservation of seeds and protocorms of rare temperate orchids. Russ J Plant Physiol 54: 121–127; 2007.

    Article  CAS  Google Scholar 

  • Niu Y. L.; Luo Z. R.; Zhang Y. F. Studies on cryopreservation of two Diospyros spp. germplasm by modified droplet vitrification. J Wuhan Bot Res 27: 451–454; 2009.

    CAS  Google Scholar 

  • Normah M. N.; Makeen A. M. Cryopreservation of excised embryos and embryonic axes. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 211–240; 2008.

    Chapter  Google Scholar 

  • Panis B.; Strosse H.; Van den Henda S.; Swennen R. Sucrose preculture to simplify cryopreservation of banana meristem cultures. CryoLetters 23: 375–384; 2002.

    PubMed  CAS  Google Scholar 

  • Panis B.; Van den Houwe I.; Piette B.; Swennen R. Cryopreservation of the banana germplasm collection at the ITC (INIBAP Transit Centre). In: Proc. 1st Meeting of COST 871 Working Group 2: Technology, application and validation of plant cryopreservation, Florence, Italy, 34–35, 10–13 May; 2007.

  • Pence V. C. Cryopreservation of seeds of Ohio native plants and related species. Seed Sci Technol 19: 235–251; 1991.

    Google Scholar 

  • Pence V. C. Cryopreservation of recalcitrant seeds. In: Bajaj Y. P. S. (ed) Biotechnology in agriculture and forestry vol 32. Cryopreservation of plant germplasm I. Springer, Berlin, pp 29–52; 1995.

    Google Scholar 

  • Pence V. C. Cryopreservation of bryophytes and ferns. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 117–140; 2008.

    Chapter  Google Scholar 

  • Pence V. C.; Clark J. R.; Plair B. L. Wild and endangered species. In: Pence V. C.; Sandoval J.; Villalobos V.; Engelmann F. (eds) In vitro collecting techniques for germplasm conservation. IPGRI technical bulletin N7. IPGRI, Rome, pp 76–82; 2002a.

    Google Scholar 

  • Pence V. C.; Sandoval J.; Villalobos V.; Engelmann F. In vitro collecting techniques for germplasm conservation. IPGRI technical bulletin N 7. IPGRI, Rome; 2002b.

    Google Scholar 

  • Ramsay M. M.; Jackson A. D.; Porley R. D. A pilot study for the ex situ conservation of UK bryophytes. In: BGCI (ed) Eurogard 2000—II European botanic garden congress. EBGC, Las Palmas de Gran Canaria, pp 52–57; 2000.

    Google Scholar 

  • Razdan M. K.; Cocking E. C. Conservation of plant genetic resources in vitro. Volume 1: general aspects. Science, Enfield; 1997.

    Google Scholar 

  • Reed B. M. Plant cryopreservation: a practical guide. Springer, Berlin; 2008.

    Book  Google Scholar 

  • Reed B. M.; DeNoma J.; Chang Y. Application of cryopreservation protocols at a clonal genebank. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 246–249; 2000.

    Google Scholar 

  • Reed B. M.; Engelmann F.; Dulloo M. E.; Engels J. M. M. Technical guidelines for the management of field and in vitro germplasm collections. Handbook for Genebanks N 7. IPGRI/SGRP, Rome; 2004.

    Google Scholar 

  • Reed B. M.; Uchendu E. Controlled rate cooling. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 77–92; 2008.

    Chapter  Google Scholar 

  • Roberts H. F. Predicting the viability of seeds. Seed Sci Technol 1: 499–514; 1973.

    Google Scholar 

  • Roca W. M.; Reyes R.; Beltran J. Effect of various factors on minimal growth in tissue culture storage of cassava germplasm. In: Proc. sixth symposium of the international society for tropical root crops. Lima, Peru, 441–446, 21–26 February; 1984.

  • Sakai A.; Engelmann F. Vitrification, encapsulation–vitrification and droplet–vitrification: a review. CryoLetters 28: 151–172; 2007.

    PubMed  CAS  Google Scholar 

  • Sakai A.; Hirai D.; Niino T. Development of PVS-based vitrification and encapsulation–vitrification protocols. In: Reed B. M. (ed) Plant cryopreservation: a practical guide. Springer, Berlin, pp 33–58; 2008.

    Chapter  Google Scholar 

  • Sakai A.; Kobayashi S.; Oiyama I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9: 30–33; 1990.

    Article  Google Scholar 

  • Sarasan V.; Cripps R.; Ramsay M. M.; Atherton C.; McMichen M.; Prendergast G.; Rowntree J. K. Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell Dev Biol—Plant 42: 206–214; 2006.

    Article  Google Scholar 

  • Spencer M. The challenges of developing cryopreservation strategies to suit the requirements of a large industrial in vitro plant cell collection. In: Abstracts Cryo’99, World Congress of Cryobiology, Marseilles, France, 245, 12–15 July; 1999.

  • Tanaka D.; Niino T.; Tsuchiya Y.; Shirata K.; Uemura M. Cryopreservation of shoot tips of endangered Hayachine-usuyukiso (Leontopodium hayachinense (Takeda) Hara et Kitam.) using a vitrification protocol. Plant Genet Res Charact Util 6: 164–166; 2009.

    Google Scholar 

  • Touchell D. H.; Dixon K. W. Cryopreservation of seed of Western Australia native species. Biodivers Conserv 2: 594–602; 1993.

    Article  Google Scholar 

  • Touchell D. H.; Dixon K. W. Cryopreservation for seedbanking of Australian species. Ann Bot 40: 541–546; 1994.

    Article  Google Scholar 

  • Towill L. E.; Walters C. Cryopreservation of pollen. In: Engelmann F.; Takagi H. (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 115–129; 2000.

    Google Scholar 

  • Turner S. R.; Senaratna T.; Bunn E.; Tan B.; Dixon K. W.; Touchell D. H. Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot 87: 371–378; 2001.

    Article  CAS  Google Scholar 

  • UNEP. Global biodiversity assessment. Cambridge University Press, Cambridge; 1995.

    Google Scholar 

  • Uragami A.; Sakai A.; Magai M. Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9: 328–331; 1990.

    Article  Google Scholar 

  • Wang Q.; Panis B.; Engelmann F.; Lambardi M.; Valkonen J. P. T. Elimination of plant pathogens by cryotherapy of shoot tips: a review. Ann Appl Biol 154: http://www3.interscience.wiley.com/journal/119879031/issue; 2008.

  • Wesley-Smith J.; Vertucci C. W.; Berjak P.; Pammenter N. W.; Crane J. Cryopreservation of desiccation-sensitive axes of Camellia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. J Plant Physiol 140: 596–604; 1992.

    Google Scholar 

  • Withers L. A. In vitro methods for germplasm collecting in the field. FAO/IBPGR Plant Genet Resour Newsl 69: 2–6; 1987.

    Google Scholar 

  • Withers L. A. Collecting in vitro for genetic resources conservation. In: Guarino L.; Rao R.; Reid R. (eds) Collecting plant genetic diversity. CAB International, Wallingford, pp 511–515; 1995.

    Google Scholar 

  • Withers L. A.; Engelmann F. In vitro conservation of plant genetic resources. In: Altman A. (ed) Biotechnology in agriculture. Marcel Dekker, New York, pp 57–88; 1998.

    Google Scholar 

  • Yoon J. W.; Kim H. H.; Cho E. G.; Ko H. C.; Hwang H. S.; Park Y. E.; Engelmann F. Cryopreservation of cultivated and wild potato varieties by droplet vitrification procedure. Acta Hortic 760: 203–208; 2007.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Engelmann.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell.Dev.Biol.-Plant 47, 5–16 (2011). https://doi.org/10.1007/s11627-010-9327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-010-9327-2

Keywords

Navigation