Skip to main content

Nuclear Transformation and Toolbox Development

  • Chapter
  • First Online:
Chlamydomonas: Molecular Genetics and Physiology

Part of the book series: Microbiology Monographs ((MICROMONO,volume 30))

Abstract

More than 99% of all genes of C. reinhardtii are encoded in the nuclear DNA. Over the past decades, classical genetic techniques and molecular biological strategies have been established that allow manipulation of the nuclear DNA for fundamental research and applied tasks. The nuclear genome is haploid during the vegetative stage of the green microalga’s life cycle, a feature promoting the elucidation of specific genotype–phenotype interrelations in genetic studies. Supported by the general progress of molecular technologies, the toolbox for C. reinhardtii nuclear genome transformation and engineering has been greatly expanded, and, today, a substantial arsenal of tools and techniques is available which can be utilized to approach individual molecular research tasks.

Several important aspects of nuclear genetic engineering with C. reinhardtii will be addressed in this chapter. Since in many cases, the prerequisite for genetic engineering is the transformation of DNA, strategies for nuclear DNA delivery will be introduced within the historical context. Furthermore, established DNA elements, transformation selection markers, strategies to achieve modulation of gene expression, and examples of versatile vectors will be summarized. Finally, cell line-specific considerations will be addressed before future perspectives are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4(2):277–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baba M, Hanawa Y, Suzuki I, Shiraiwa Y (2011) Regulation of the expression of H43/Fea1 by multi-signals. Photosynth Res 109(1–3):169–177

    Article  CAS  PubMed  Google Scholar 

  • Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barahimipour R, Strenkert D, Neupert J, Schroda M, Merchant SS, Bock R (2015) Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J. doi:10.1111/tpj.13033

  • Barahimipour R, Neupert J, Bock R (2016) Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol. doi:10.1007/s11103-015-0425-8

  • Bell SA, Shen C, Brown A, Hunt AG (2016) Experimental genome-wide determination of RNA polyadenylation in Chlamydomonas reinhardtii. PLoS One 11(1):e0146107. doi:10.1371/journal.pone.0146107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bellafiore S, Ferris P, Naver H, Gohre V, Rochiax JD (2002) Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14(9):2303–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger H, Blifernez-Klassen O, Ballottari M, Bassi R, Wobbe L, Kruse O (2014) Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii. Mol Plant 7(10):1545–1559

    Article  CAS  PubMed  Google Scholar 

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153(4):401–412

    Article  CAS  PubMed  Google Scholar 

  • Blankenship JE, Kindle KL (1992) Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2-strain. Mol Cell Biol 12(11):5268–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blowers AD, Bogorad L, Shark KB, Sanford JC (1989) Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell 1(1):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11(4):2328–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12(7):894–902

    Article  CAS  Google Scholar 

  • Brunke KJ, Anthony JG, Sternberg EJ, Weeks DP (1984) Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardi. Mol Cell Biol 4(6):1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butanaev AM (1994) Use of the hygromycin phosphotransferase gene as the dominant selective marker for Chlamydomonas reinhardtii transformation. Mol Biol 28(5):1061–1068

    CAS  Google Scholar 

  • Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA, Fernandez E, Galvan A (2007) Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19(11):3491–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu DL, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304(5674):1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics 145(1):97–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438(7064):90–93

    Article  CAS  PubMed  Google Scholar 

  • Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci USA 104(52):20770–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JP, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the beta-2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 20(12):2959–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis IW, Benninger C, Benfey PN, Elich T (2012) POWRS: position-sensitive motif discovery. PLoS One 7(7):e40373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day A, Debuchy R, Vandillewijn J, Purton S, Rochaix JD (1990) Studies on the maintenance and expression of cloned DNA fragments in the nuclear genome of the green alga Chlamydomonas reinhardtii. Physiol Plant 78(2):254–260

    Article  CAS  Google Scholar 

  • de Hostos EL, Schilling J, Grossman AR (1989) Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet 218(2):229–239

    Article  PubMed  Google Scholar 

  • Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8(10):2803–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng XD, Yang JH, Wu XX, Li YJ, Fei XW (2014) A C2H2 zinc finger protein FEMU2 is required for fox1 expression in Chlamydomonas reinhardtii. PLoS One 9(12). doi:10.1371/journal.pone.0112977

  • Dent RM, Han M, Niyogi KK (2001) Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. Trends Plant Sci 6(8):364–371

    Article  CAS  PubMed  Google Scholar 

  • Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137(2):545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dent RM, Sharifi MN, Malnoe A, Haglund C, Calderon RH, Wakao S, Niyogi KK (2015) Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. doi:10.1111/tpj.12806

  • Diaz-Santos E, de la Vega M, Vila M, Vigara J, Leon R (2013) Efficiency of different heterologous promoters in the unicellular microalga Chlamydomonas reinhardtii. Biotechnol Prog 29(2):319–328

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Li XM, Hu HY (2012) Systematic prediction of cis-regulatory elements in the Chlamydomonas reinhardtii genome using comparative genomics. Plant Physiol 160(2):613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon-carbide whiskers. BioTechniques 15(3):452–460

    CAS  PubMed  Google Scholar 

  • Dutcher SK, Li L, Lin H, Meyer L, Giddings TH Jr, Kwan AL, Lewis BL (2012) Whole-genome sequencing to identify mutants and polymorphisms in Chlamydomonas reinhardtii. G3 Genes Genomes Genetics 2(1):15–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebersold WT (1956) Crossing over in Chlamydomonas reinhardi. Am J Bot 43(6):408–410

    Article  Google Scholar 

  • Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4):873–883

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JD, Patron NJ, Marillonnet S (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3(11):839–843

    Article  CAS  PubMed  Google Scholar 

  • Fei XW, Deng XD (2007) A novel Fe deficiency-responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinhardtii. Plant Cell Physiol 48(10):1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Fei XW, Eriksson M, Yang JH, Deng XD (2009) An Fe deficiency responsive element with a core sequence of TGGCA regulates the expression of FEA1 in Chlamydomonas reinhardtii. J Biochem 146(2):157–166

    Article  CAS  PubMed  Google Scholar 

  • Fei XW, Eriksson M, Li YJ, Deng XD (2010) A novel negative Fe-deficiency-responsive element and a TGGCA-type-like FeRE control the expression of FTR1 in Chlamydomonas reinhardtii. J Biomed Biotechnol. doi:10.1155/2010/790247

  • Fernandez E, Schnell R, Ranum LPW, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 86(17):6449–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante P, Diener DR, Rosenbaum JL, Giuliano G (2011) Nickel and low CO2-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters. BMC Plant Biol 11. doi:10.1186/1471-2229-11-22

  • Ferris PJ (1995) Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics 141(2):543–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris PJ, Armbrust EV, Goodenough UW (2002) Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. Genetics 160(1):181–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Gen Genomics 265(5):888–894

    Article  CAS  Google Scholar 

  • Franklin S, Ngo B, Efuet E, Mayfield SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30(6):733–744

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19(3):353–361

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114(21):3857–3863

    CAS  PubMed  Google Scholar 

  • Fuhrmann M, Hausherr A, Ferbitz L, Schodl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55(6):869–881

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Gonzalez-Ballester D, Fernandez E (2007) Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas. In: Leon R, Galvan A, Fernandez E (eds) Transgenic microalgae as green cell factories, vol 616. Landes Bioscience, pp 77–89

    Google Scholar 

  • Gao H, Wright DA, Li T, Wang YJ, Horken K, Weeks DP, Yang B, Spalding MH (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 5:52–60

    Article  Google Scholar 

  • Gao H, Wang Y, Fei X, Wright DA, Spalding MH (2015) Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Plant J. doi:10.1111/tpj.12788

  • Garcia-Echauri SA, Cardineau GA (2015) TETX: a novel nuclear selection marker for Chlamydomonas reinhardtii transformation. Plant Methods 11:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldschmidt-Clermont M, Rahire M (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191(3):421–432

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, de Montaigu A, Higuera JJ, Prior M, Galvan A, Fernandez E, Grossman AR (2011) Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner A (2014) CRISPR/Cas9 und Zinkfinger-Nukleasen für die gezielte Genstilllegung in Chlamydomonas reinhardtii. Dissertation, Humboldt University Berlin, Berlin

    Google Scholar 

  • Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtii. Plant Cell 26(4):1598–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilley H, Dudley RK, Jonard G, Balazs E, Richards KE (1982) Transcription of Cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30(3):763–773

    Article  CAS  PubMed  Google Scholar 

  • Gumpel NJ, Purton S (1994) Playing tag with Chlamydomonas. Trends Cell Biol 4(8):299–301

    Article  CAS  PubMed  Google Scholar 

  • Gumpel NJ, Rochaix JD, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26(5–6):438–442

    Article  CAS  PubMed  Google Scholar 

  • Hahn D, Kück U (1999) Identification of DNA sequences controlling light- and chloroplast-dependent expression of the lhcb1 gene from Chlamydomonas reinhardtii. Curr Genet 34(6):459–466

    Article  CAS  PubMed  Google Scholar 

  • Hall LM, Taylor KB, Jones DD (1993) Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 124(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Hallmann A, Wodniok S (2006) Swapped green algal promoters: aphVIII-based gene constructs with Chlamydomonas flanking sequences work as dominant selectable markers in Volvox and vice versa. Plant Cell Rep 25(6):582–591

    Article  CAS  PubMed  Google Scholar 

  • Harris EH (2009) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use, 2nd edn. Academic Press, Oxford

    Google Scholar 

  • Hasnain SE, Manavathu EK, Leung WC (1985) DNA-mediated transformation of Chlamydomonas reinhardtii cells: use of aminoglycoside 3′-phosphotransferase as a selectable marker. Mol Cell Biol 5(12):3647–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Hirono M, Kamiya R (2001) Recovery of flagellar dynein function in a Chlamydomonas actin/dynein-deficient mutant upon introduction of muscle actin by electroporation. Cell Motil Cytoskeleton 49(3):146–153

    Article  CAS  PubMed  Google Scholar 

  • Heitzer M, Zschoernig B (2007) Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system. BioTechniques 43(3):324–332

    Article  CAS  PubMed  Google Scholar 

  • Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. In: Leon R, Galvan A, Fernandez E (eds) Transgenic microalgae as green cell factories, vol 616. Landes Bioscience, pp 46–53

    Google Scholar 

  • Helliwell KE, Scaife MA, Sasso S, Araujo AP, Purton S, Smith AG (2014) Unraveling vitamin B12-responsive gene regulation in algae. Plant Physiol 165(1):388–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennig S, van de Linde S, Lummer M, Simonis M, Huser T, Sauer M (2015) Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett 15(2):1374–1381

    Article  CAS  PubMed  Google Scholar 

  • Hu JL, Deng X, Shao N, Wang GH, Huang KY (2014) Rapid construction and screening of artificial microRNA systems in Chlamydomonas reinhardtii. Plant J 79(6):1052–1064

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J 12(6):808–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WZ, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13(11):1465–1469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  Google Scholar 

  • Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J. doi:10.1111/tpj.12801

  • Joint Genome Institute (2015) Phytozome v10.1, Chlamydomonas reinhardtii v5.5, US Department of Energy. http://phytozome.jgi.doe.gov.

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87(3):1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109(6):2589–2601

    Article  CAS  PubMed  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic-acids into living cells. Nature 327(6117):70–73

    Article  CAS  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature

    Google Scholar 

  • Koblenz B, Lechtreck KF (2005) The NIT1 promoter allows inducible and reversible silencing of centrin in Chlamydomonas reinhardtii. Eukaryot Cell 4(11):1959–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong F, Yamasaki T, Kurniasih SD, Hou L, Li X, Ivanova N, Okada S, Ohama T (2015) Robust expression of heterologous genes by selection marker fusion system in improved Chlamydomonas strains. J Biosci Bioeng. doi:10.1016/j.jbiosc.2015.01.005

  • Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29(1):109–117

    Article  CAS  PubMed  Google Scholar 

  • Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 25(2):158–170

    Article  CAS  PubMed  Google Scholar 

  • Kucho K, Ohyama K, Fukuzawa H (1999) CO2-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. Plant Physiol 121(4):1329–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166(3):731–738

    Article  CAS  Google Scholar 

  • Ladygin VG, Butanaev AM (2002) Transformation of Chlamydomonas reinhardtii CW-15 with the hygromycin phosphotransferase gene as a selective marker. Genetika 38(9):1196–1202

    CAS  PubMed  Google Scholar 

  • Lambertz C, Hemschemeier A, Happe T (2010) Anaerobic expression of the ferredoxin-encoding FDX5 gene of Chlamydomonas reinhardtii is regulated by the Crr1 transcription factor. Eukaryot Cell 9(11):1747–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Lauersen KJ, Kruse O, Mussgnug JH (2015) Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl Microbiol Biotechnol 99:3491–3503

    Article  CAS  PubMed  Google Scholar 

  • Lauersen KJ, Willamme R, Coosemans N, Joris M, Kruse O, Remacle C (2016) Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res 16:266–274

    Article  Google Scholar 

  • Leisinger U, Rufenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJB, Eggen RIL (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol 46(4):395–408

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC (2016) An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28(2):367–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodha M, Schulz-Raffelt M, Schroda M (2008) A new assay for promoter analysis in Chlamydomonas reveals roles for heat shock elements and the TATA box in HSP70A promoter-mediated activation of transgene expression. Eukaryot Cell 7(1):172–176

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447

    Article  CAS  Google Scholar 

  • Matsuo T, Onai K, Okamoto K, Minagawa J, Ishiura M (2006) Real-time monitoring of chloroplast gene expression by a luciferase reporter: evidence for nuclear regulation of chloroplast circadian period. Mol Cell Biol 26(3):863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayfield SP, Kindle KL (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA 87(6):2087–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayfield SP, Schultz J (2004) Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 37(3):449–458

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457

    Article  CAS  PubMed  Google Scholar 

  • McCarthy SS, Kobayashi MC, Niyogi KK (2004) White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics 168(3):1249–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant S, Hill K, Howe G (1991) Dynamic interplay between two copper-titrating components in the transcriptional regulation of cyt c6. EMBO J 10(6):1383–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren QH, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meir I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan JM, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang PF, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo YG, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou KM, Grigoriev IV, Rokhsar DS, Grossman AR, Annotation C, Team JA (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meslet-Cladiere L, Vallon O (2011) Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryot Cell 10(12):1670–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minko I, Holloway SP, Nikaido S, Carter M, Odom OW, Johnson CH, Herrin DL (1999) Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 262(3):421–425

    Article  CAS  PubMed  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58(1):165–174

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug JH (2015) Genetic tools and techniques for Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 99(13):5407–5418

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, Nixon PJ, Kruse O (2005) NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant Cell 17(12):3409–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814

    Article  CAS  PubMed  Google Scholar 

  • Nelson JAE, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15(10):5762–5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JAE, Savereide PB, Lefebvre PA (1994) The Cry1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 14(6):4011–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57(6):1140–1150

    Article  CAS  PubMed  Google Scholar 

  • Nichols KM, Rikmenspoel R (1978) Control of flagellar motion in Chlamydomonas and Euglena by mechanical microinjection of Mg2+ and Ca2+ and by electric current injection. J Cell Sci 29:233–247

    CAS  PubMed  Google Scholar 

  • Nickelsen J, van Dillewijn J, Rahire M, Rochaix JD (1994) Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J 13(13):3182–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nybom N (1953) Some experiences from mutation experiments in Chlamydomonas. Hereditas 39(1–2):317–324

    Google Scholar 

  • Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31(3):264–271

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690

    Article  CAS  PubMed  Google Scholar 

  • Pape M, Lambertz C, Happe T, Hemschemeier A (2012) Differential expression of the Chlamydomonas [FeFe]-hydrogenase-encoding HYDA1 gene is regulated by the COPPER RESPONSE REGULATOR1. Plant Physiol 159(4):1700–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Lee Y, Lee JH, Jin E (2013) Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta 238(6):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Porto MS, Pinheiro MPN, Batista VGL, dos Santos RC, Melo PD, de Lima LM (2014) Plant promoters: an approach of structure and function. Mol Biotechnol 56(1):38–49

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Kropat J, Merchant S (2003) Copper response element and Crr1-dependent Ni2+-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. Eukaryot Cell 2(5):995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramundo S, Rahire M, Schaad O, Rochaix JD (2013) Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in Chlamydomonas. Plant Cell 25(1):167–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu XB, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW, Boynton JE (1998) Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. Plant Mol Biol 38(5):839–859

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123(3):227–239

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Lee PA, Shen ZX, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7(8). doi:10.1371/journal.pone.0043349

  • Rasala BA, Barrera DJ, Ng J, Plucinak TM, Rosenberg JN, Weeks DP, Oyler GA, Peterson TC, Haerizadeh F, Mayfield SP (2013) Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J 74(4):545–556

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4). doi:10.1371/journal.pone.0094028

  • Remacle C, Cline S, Boutaffala L, Gabilly S, Larosa V, Barbieri MR, Coosemans N, Hamel PP (2009) The ARG9 gene encodes the plastid-resident N-acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 8(9):1460–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhaese HJ, Boetker NK (1973) The molecular basis of mutagenesis by methyl and ethyl methanesulfonates. Eur J Biochem 32(1):166–172

    Article  CAS  PubMed  Google Scholar 

  • Rochaix JD, van Dillewijn J (1982) Transformation of the green alga Chlamydomonas reinhardtii with yeast DNA. Nature 296(5852):70–72

    Article  CAS  PubMed  Google Scholar 

  • Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40(4):611–621

    Article  CAS  PubMed  Google Scholar 

  • Ruecker O, Zillner K, Groebner-Ferreira R, Heitzer M (2008) Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Gen Genomics 280(2):153–162

    Article  CAS  Google Scholar 

  • Sawyer AL, Hankamer BD, Ross IL (2015) Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. Planta. doi:10.1007/s00425-015-2249-9

  • Scaife MA, Nguyen GT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. doi:10.1111/tpj.12781

  • Schierenbeck L, Ries D, Rogge K, Grewe S, Weisshaar B, Kruse O (2015) Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 16(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmollinger S, Strenkert D, Schroda M (2010) An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance. Curr Genet 56(4):383–389

    Article  CAS  PubMed  Google Scholar 

  • Schnell RA, Lefebvre PA (1993) Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics 134(3):737–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49(2):69–84

    Article  CAS  PubMed  Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11(6):1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Scranton MA, Ostrand JT, Georgianna DR, Lofgren SM, Li D, Ellis RC, Carruthers DN, Dräger A, Masica DL, Mayfield SP (2016) Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal Res 15:135–142

    Article  Google Scholar 

  • Shao N, Bock R (2008) A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 53(6):381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YJ, Liu YS, Liu L, Liang C, Li QSQ (2008) Unique features of nuclear mRNA Poly(A) signals and alternative polyadenylation in Chlamydomonas reinhardtii. Genetics 179(1):167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sizova IA, Lapina TV, Frolova ON, Alexandrova NN, Akopiants KE, Danilenko VN (1996) Stable nuclear transformation of Chlamydomonas reinhardtii with a Streptomyces rimosus gene as the selective marker. Gene 181(1–2):13–18

    Article  CAS  PubMed  Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88

    Article  CAS  PubMed  Google Scholar 

  • Smart EJ, Selman BR (1993) Complementation of a Chlamydomonas reinhardtii mutant defective in the nuclear gene encoding the chloroplast coupling factor 1 (CF1) gamma-subunit (atpC). J Bioenerg Biomembr 25(3):275–284

    Article  CAS  PubMed  Google Scholar 

  • Sodeinde OA, Kindle KL (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 90(19):9199–9203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specht EA, Nour-Eldin HH, Hoang KT, Mayfield SP (2014) An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering in Chlamydomonas. Biotechnol J 10(3):473–479

    Article  PubMed  CAS  Google Scholar 

  • Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251(1):23–30

    CAS  PubMed  Google Scholar 

  • Strauss C, Mussgnug JH, Kruse O (2001) Ligation-mediated suppression-PCR as a powerful tool to analyse nuclear gene sequences in the green alga Chlamydomonas reinhardtii. Photosynth Res 70(3):311–320

    Article  CAS  PubMed  Google Scholar 

  • Strenkert D, Schmollinger S, Schroda M (2013) Heat shock factor 1 counteracts epigenetic silencing of nuclear transgenes in Chlamydomonas reinhardtii. Nucleic Acids Res 41(10):5273–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104(44):17548–17553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang DKH, Qiao SY, Wu M (1995) Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem Mol Biol Int 36(5):1025–1035

    CAS  PubMed  Google Scholar 

  • Tardif M, Atteia A, Specht M, Cogne G, Rolland N, Brugiere S, Hippler M, Ferro M, Bruley C, Peltier G, Vallon O, Cournac L (2012) PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 29(12):3625–3639

    Article  CAS  PubMed  Google Scholar 

  • Terashima M, Freeman ES, Jinkerson RE, Jonikas MC (2015) A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Plant J 81(1):147–159

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Diaz-Santos E, de la Vega M, Rodriguez H, Vargas A, Leon R (2012) Promoter trapping in microalgae using the antibiotic paromomycin as selective agent. Mar Drugs 10(12):2749–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voytsekh O, Seitz SB, Iliev D, Mittag M (2008) Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information. Plant Physiol 147(4):2179–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker TL, Becker DK, Collet C (2005) Characterisation of the Dunaliella tertiolecta RbcS genes and their promoter activity in Chlamydomonas reinhardtii. Plant Cell Rep 23(10–11):727–735

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J. doi:10.1111/tpj.13307

  • Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 Is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Lefebvre PA (1997) FAR1, a negative regulatory locus required for the repression of the nitrate reductase gene in Chlamydomonas reinhardtii. Genetics 146(1):121–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC (2014) High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26(4):1398–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Wang W, Bai X, Qi YJ (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58(1):157–164

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZX, Wu XH, Kumar PKR, Dong M, Ji GL, Li QSQ, Liang C (2014) Bioinformatics analysis of alternative polyadenylation in green alga Chlamydomonas reinhardtii using transcriptome sequences from three different sequencing platforms. G3 Genes Genomes Genetics 4(5):871–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zorin B, Hegemann P, Sizova I (2005) Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4(7):1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorin B, Lu YH, Sizova I, Hegemann P (2009) Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene. Gene 432(1–2):91–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Lutz Wobbe for critical comments on the manuscript and the German state North Rhine-Westphalia for funding.

Conflict of Interest

I declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan H. Mussgnug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mussgnug, J.H. (2017). Nuclear Transformation and Toolbox Development. In: Hippler, M. (eds) Chlamydomonas: Molecular Genetics and Physiology. Microbiology Monographs, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-66365-4_2

Download citation

Publish with us

Policies and ethics