Skip to main content

Advertisement

Log in

Strategies to facilitate transgene expression in Chlamydomonas reinhardtii

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The unicellular green alga Chlamydomonas reinhardtii has been identified as a promising organism for the production of recombinant proteins. While during the last years important improvements have been developed for the production of proteins within the chloroplast, the expression levels of transgenes from the nuclear genome were too low to be of biotechnological importance. In this study, we integrated endogenous intronic sequences into the expression cassette to enhance the expression of transgenes in the nucleus. The insertion of one or more copies of intron sequences from the Chlamydomonas RBCS2 gene resulted in increased expression levels of a Renilla-luciferase gene used as a reporter. Although any of the three RBCS2 introns alone had a positive effect on expression, their integration in their physiological number and order created an over-proportional stimulating effect observed in all transformants. The secretion of the luciferase protein into the medium was achieved by using the export sequence of the Chlamydomonas ARS2 gene in a cell wall deficient strain and Renilla-luciferase could be successfully concentrated with the help of attached C-terminal protein tags. Similarly, a codon adapted gene variant for human erythropoietin (crEpo) was expressed as a protein of commercial relevance. Extracellular erythropoietin produced in Chlamydomonas showed a molecular mass of 33 kDa probably resulting from post-translational modifications. Both, the increased expression levels of transgenes by integration of introns and the isolation of recombinant proteins from the culture medium are important steps towards an extended biotechnological use of this alga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17:251–256

    Article  PubMed  CAS  Google Scholar 

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7′′ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412

    Article  PubMed  CAS  Google Scholar 

  • Bollig K, Lamshoft M, Schweimer K, Marner FJ, Budzikiewicz H, Waffenschmidt S (2007) Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii—conservation of the inner core in Chlamydomonas and land plants. Carbohydr Res 342:2557–2566

    Article  PubMed  CAS  Google Scholar 

  • Chapman BS, Thayer RM, Vincent KA, Haigwood NL (1991) Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Res 19:3979–3986

    Article  PubMed  CAS  Google Scholar 

  • Cheetham JC, Smith DM, Aoki KH, Stevenson JL, Hoeffel TJ, Syed RS, Egrie J, Harvey TS (1998) NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol 5:861–866

    Article  PubMed  CAS  Google Scholar 

  • Cheon BY, Kim HJ, Oh KH, Bahn SC, Ahn JH, Choi JW, Ok SH, Bae JM, Shin JS (2004) Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis. Transgenic Res 13:541–549

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 20:2959–2965

    Article  PubMed  CAS  Google Scholar 

  • de Hostos EL, Togasaki RK, Grossman A (1988) Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinhardtii. J Cell Biol 106:29–37

    Article  PubMed  Google Scholar 

  • de Hostos EL, Schilling J, Grossman AR (1989) Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet 218:229–239

    Article  PubMed  Google Scholar 

  • Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265:888–894

    Article  PubMed  CAS  Google Scholar 

  • Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr Opin Plant Biol 7:159–165

    Article  PubMed  CAS  Google Scholar 

  • Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5:225–235

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M (2004) Production of antigens in Chlamydomonas reinhardtii: green microalgae as a novel source of recombinant proteins. Methods Mol Med 94:191–195

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M, Hausherr A, Ferbitz L, Schodl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55:869–881

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Oertel W, Berthold P, Hegemann P (2005) Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage. Nucleic Acids Res 33:e58

    Article  PubMed  Google Scholar 

  • Goldschmidt-Clermont M, Rahire M (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191:421–432

    Article  PubMed  CAS  Google Scholar 

  • Griesbeck C, Kobl I, Heitzer M (2006) Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 34:213–223

    Article  PubMed  CAS  Google Scholar 

  • Gruber H, Kirzinger SH, Schmitt R (1996) Expression of the Volvox gene encoding nitrate reductase: mutation-dependent activation of cryptic splice sites and intron-enhanced gene expression from a cDNA. Plant Mol Biol 31:1–12

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Heifetz PB (2000) Genetic engineering of the chloroplast. Biochimie 82:655–666

    Article  PubMed  CAS  Google Scholar 

  • Heitzer M, Zschoernig B (2007) Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system. Biotechniques 43:324, 326, 328 (passim)

  • Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF et al (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 313:806–810

    Article  PubMed  CAS  Google Scholar 

  • Janknecht R, de Martynoff G, Lou J, Hipskind RA, Nordheim A, Stunnenberg HG (1991) Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci USA 88:8972–8976

    Article  PubMed  CAS  Google Scholar 

  • Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72:449–489

    PubMed  CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29:109–117

    Article  PubMed  CAS  Google Scholar 

  • Koziel MG, Carozzi NB, Desai N (1996) Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol 32:393–405

    Article  PubMed  CAS  Google Scholar 

  • Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14:273–282

    Article  PubMed  CAS  Google Scholar 

  • Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Grigoriev A (2004) Protein domains correlate strongly with exons in multiple eukaryotic genomes—evidence of exon shuffling? Trends Genet 20:399–403

    Article  PubMed  Google Scholar 

  • Liu K, Sandgren EP, Palmiter RD, Stein A (1995) Rat growth hormone gene introns stimulate nucleosome alignment in vitro and in transgenic mice. Proc Natl Acad Sci USA 92:7724–7728

    Article  PubMed  CAS  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  CAS  Google Scholar 

  • Matsumoto S, Ikura K, Ueda M, Sasaki R (1995) Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol Biol 27:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (1994) Introns: evolution and function. Curr Opin Genet Dev 4:823–831

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18:126–133

    Article  PubMed  CAS  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL (1991) Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA 88:478–482

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (2002) The three genomes of Chlamydomonas. Photosynth Res 73:285–293

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jore-Dupas C, Faye L, Gomord V (2007) From planta to pharma with glycosylation in the toolbox. Trends Biotechnol 25:317–323

    Article  PubMed  CAS  Google Scholar 

  • Sayre RT, Wagner RE, Siripornadulsil S, Farias C (2001) Transgenic algae for delivering antigens to an animal. US patent number 7,410,637

  • Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J 31:445–455

    Article  PubMed  CAS  Google Scholar 

  • Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982

    Article  PubMed  CAS  Google Scholar 

  • Walter C, Steinau T, Gerbsch N, Buchholz R (2003) Monoseptic cultivation of phototrophic microorganisms–development and scale-up of a photobioreactor system with thermal sterilization. Biomol Eng 20:261–271

    Article  PubMed  CAS  Google Scholar 

  • Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Regina Groebner-Fererra for perfect technical assistance and Amparo Hausherr for the purification of luciferase from E. coli. This work has been financially supported in parts by the Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology, the Bavarian Ministry of Environment, Public Health and Consumer Protection and the German Federal Ministry of Education and Research including an ExistSeed grant and a BioChance grant together with the Entelechon GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Heitzer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler-Stahlberg, A., Weisheit, W., Ruecker, O. et al. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii . Planta 229, 873–883 (2009). https://doi.org/10.1007/s00425-008-0879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0879-x

Keywords

Navigation