Skip to main content

Advertisement

Log in

RNA silencing in Chlamydomonas: mechanisms and tools

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The generation of a comprehensive EST library and the sequencing of its genome set the stage for reverse genetics approaches in Chlamydomonas reinhardtii. However, these also require tools for the specific downregulation of target gene expression. Consequently, a large number of diverse constructs were developed aimed at reducing target gene expression in Chlamydomonas via the stable expression of antisense or inverted repeat-containing RNA. Double-stranded RNA (dsRNA) generated by the annealing of antisense and sense RNAs or by hairpin formation of an inverted repeat, feeds into the RNA silencing pathway. In this pathway, dsRNA is cleaved into ~25-bp small interfering RNAs (siRNAs) by the endonuclease Dicer. One of the two complementary strands of a siRNA is then loaded onto an Argonaute-like protein present as core component within larger complexes. Guided by this single-stranded RNA, the Argonaute-like protein either detects homologous transcripts and cleaves these endonucleolytically, or initiates transcriptional gene silencing. This article summarizes current information derived mainly from the Chlamydomonas genome project on components that are assumed to be involved in RNA silencing mechanisms in Chlamydomonas. Furthermore, all approaches employed in Chlamydomonas to date to downregulate target gene expression by antisense or inverted repeat constructs are reviewed and discussed critically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. Generation of 3433 non-redundant expressed sequence tags. DNA Res 6:369–373

    Article  PubMed  Google Scholar 

  • Asamizu E, Miura K, Kucho K, Inoue Y, Fukuzawa H, Ohyama K, Nakamura Y, Tabata S (2000) Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. DNA Res 7:305–307

    Article  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Johnson AM, Gillham WN, Boynton JE (1997) A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics 145:97–110

    PubMed  CAS  Google Scholar 

  • Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25:481–482

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Melis A (2004) Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta 220:198–210

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the ß2-tubulin promotor in Chlamydomonas reinhardtii. Nucleic Acids Res 20:2959–2965

    Article  PubMed  CAS  Google Scholar 

  • Debuchy R, Purton S, Rochaix J-D (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7-locus. EMBO J 8:2803–2809

    PubMed  CAS  Google Scholar 

  • van Dijk K, Marley KE, Jeong BR, Xu J, Hesson J, Cerny RL, Waterborg JH, Cerutti H (2005) Monomethyl histone H3 lysine 4 as an epigenetic mark for silenced euchromatin in Chlamydomonas. Plant Cell 17:2439–2453

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  PubMed  CAS  Google Scholar 

  • Ebnet E, Fischer M, Deininger W, Hegemann P (1999) Volvoxrhodopsin, alight-gegulated sensory photoreceptor of the spheroidal green alga Volvox carteri. Plant Cell 11:1473–1484

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  PubMed  CAS  Google Scholar 

  • Ermilova EV, Zalutskaya ZM, Huang K, Beck CF (2004) Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas. Planta 219:420–427

    Article  PubMed  CAS  Google Scholar 

  • Falciatore A, Merendino L, Barneche F, Ceol M, Meskauskiene R, Apel K, Rochaix JD (2005) The FLP proteins act as regulators of chlorophyll synthesis in response to light and plastid signals in Chlamydomonas. Genes Dev 19:176–187

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265:888–894

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Hausherr A, Ferbitz L, Schodl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55:869–881

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M, Rahire M (1986) Sequence, evolution and differential expression of two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191:421–432

    Article  PubMed  CAS  Google Scholar 

  • Govorunova EG, Jung KH, Sineshchekov OA, Spudich JL (2004) Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86:2342–2349

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Gumpel NJ, Rochaix J-D, Purton S (1994) Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet 26:438–442

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Waterhouse PM (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. Methods Enzymol 392:24–35

    Article  PubMed  CAS  Google Scholar 

  • Herr AJ (2004) Silence is green. Biochem Soc Trans 32:946–951

    Article  PubMed  CAS  Google Scholar 

  • Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 100:6269–6274

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  CAS  Google Scholar 

  • Jeong BR, Wu-Scharf D, Zhang C, Cerutti H (2002) From the cover: suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci USA 99:1076–1081

    Article  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL, Schnell RA, Fernández E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601

    Article  PubMed  CAS  Google Scholar 

  • Koblenz B, Lechtreck K-F (2005) The Nit1 promoter allows inducible and reversible silencing of centrin in Chlamydomonas reinhardtii. Eukaryot Cell 4:1959–1962

    Article  PubMed  CAS  Google Scholar 

  • Koblenz B, Schoppmeier J, Grunow A, Lechtreck KF (2003) Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci 116:2635–2646

    Article  PubMed  CAS  Google Scholar 

  • Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29:109–117

    Article  PubMed  CAS  Google Scholar 

  • Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacetylatable α-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 25:158–170

    Article  PubMed  CAS  Google Scholar 

  • Lechtreck KF, Rostmann J, Grunow A (2002) Analysis of Chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs. J Cell Sci 115:1511–1522

    PubMed  CAS  Google Scholar 

  • Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108

    Article  PubMed  CAS  Google Scholar 

  • Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, Lewis RA, Green JS, Parfrey PS, Leroux MR, Davidson WS, Beales PL, Guay-Woodford LM, Yoder BK, Stormo GD, Katsanis N, Dutcher SK (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117:541–552

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song J-J, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Willmund F, Whitelegge JP, Hawat S, Knapp B, Lodha M, Schroda M (2005) J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle inducing protein in plastids 1 (VIPP1). Mol Biol Cell 16:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  CAS  Google Scholar 

  • Ma J-B, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–322

    Article  PubMed  CAS  Google Scholar 

  • Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    Article  PubMed  CAS  Google Scholar 

  • Makeyev EV, Bamford DH (2002) Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes. Mol Cell 10:1417–1427

    Article  PubMed  CAS  Google Scholar 

  • Martienssen RA, Zaratiegui M, Goto DB (2005) RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet 21:450–456

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  PubMed  CAS  Google Scholar 

  • Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  PubMed  CAS  Google Scholar 

  • Naumann B, Stauber EJ, Busch A, Sommer F, Hippler M (2005) N-terminal processing of Lhca3 is a key step in remodeling of the photosystem I- light-harvesting complex under iron-deficiency in Chlamydomonas reinhardtii. J Biol Chem 280:20431–20441

    Article  PubMed  CAS  Google Scholar 

  • Nelson JAE, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15:5762–5769

    PubMed  CAS  Google Scholar 

  • Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  CAS  Google Scholar 

  • Palombella AL, Dutcher SK (1998) Identification of the gene encoding the tryptophan synthase β-subunit from Chlamydomonas reinhardtii. Plant Physiol 117:455–464

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Wang Q, Snell WJ (2004) An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell 6:445–451

    Article  PubMed  CAS  Google Scholar 

  • Parker JS, Roe SM, Barford D (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23:4727–4737

    Article  PubMed  CAS  Google Scholar 

  • Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature 434:663–666

    Article  PubMed  CAS  Google Scholar 

  • Pfannenschmid F, Wimmer VC, Rios RM, Geimer S, Krockel U, Leiherer A, Haller K, Nemcova Y, Mages W (2003) Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J Cell Sci 116:1449–1462

    Article  PubMed  CAS  Google Scholar 

  • Pollock SV, Prout DL, Godfrey AC, Lemaire SD, Moroney JV (2004) The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Plant Mol Biol 56:125–132

    Article  PubMed  CAS  Google Scholar 

  • Quinn JM, Kropat J, Merchant S (2003) Copper response element and Crr1-dependent Ni(2+)-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. Eukaryot Cell 2:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu M-P, Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236:235–244

    Article  PubMed  CAS  Google Scholar 

  • Rivas FV, Tolia NH, Song J-J, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 4:340–349

    Article  CAS  Google Scholar 

  • Rochaix JD (2004) Genetics of the biogenesis and dynamics of the photosynthetic machinery in eukaryotes. Plant Cell 16:1650–1660

    Article  PubMed  CAS  Google Scholar 

  • Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40:611–621

    Article  PubMed  CAS  Google Scholar 

  • Sarkar N, Lemaire S, Wu-Scharf D, Issakidis-Bourguet E, Cerutti H (2005) Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage. Eukaryot Cell 4:262–273

    Article  PubMed  CAS  Google Scholar 

  • Schramke V, Allshire R (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82:221–240

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Vallon O, Wollman F-A, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J 31:445–455

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  PubMed  CAS  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    PubMed  CAS  Google Scholar 

  • Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J, Tamse R, Zhang Z, Grossman AR (2003) The Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131:401–408

    Article  PubMed  Google Scholar 

  • Silflow CD (1998) Organization of the nuclear genome. In: Rochaix J-D, Goldschmidt-Clermont M, Merchant S (eds) Molecular biology of Chlamydomonas: chloroplasts and mitochondria. Kluwer, Dordrecht, pp 25–40

    Google Scholar 

  • Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:8689–8694

    PubMed  CAS  Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Snell WJ, Pan J, Wang Q (2004) Cilia and flagella revealed: from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117:693–697

    Article  PubMed  CAS  Google Scholar 

  • Sodeinde OA, Kindle K (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 90:9199–9203

    Article  PubMed  CAS  Google Scholar 

  • Song J-J, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10:1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Song J-J, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6:127–138

    Article  PubMed  CAS  Google Scholar 

  • Soupene E, Inwood W, Kustu S (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci USA 101:7787–7792

    Article  PubMed  CAS  Google Scholar 

  • Stevens DR, Rochaix J-D, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251:23–30

    PubMed  CAS  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  PubMed  CAS  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    Article  PubMed  CAS  Google Scholar 

  • Van der Krol AR, Mol JNM, Stuitje AR (1988a) Antisense genes in plants: an overview. Gene 72:45–50

    Article  PubMed  Google Scholar 

  • Van der Krol AR, Lenting PE, Veenstra J, Van der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988b) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869

    Article  Google Scholar 

  • Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676

    Article  PubMed  CAS  Google Scholar 

  • Villand P, Eriksson M, Samuelsson G (1997) Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Biochem J 327:51–57

    PubMed  CAS  Google Scholar 

  • Wu-Scharf D, Jeong B, Zhang C, Cerutti H (2000) Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 298:1159–1162

    Article  Google Scholar 

  • Yokoyama R, O’toole E, Ghosh S, Mitchell DR (2004) Regulation of flagellar dynein activity by a central pair kinesin. Proc Natl Acad Sci USA 101:17398–17403

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Wu-Scharf D, Jeong BR, Cerutti H (2002) A WD40-repeat containing protein, similar to a fungal co-repressor, is required for transcriptional gene silencing in Chlamydomonas. Plant J 31:25–36

    Article  PubMed  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68

    Article  PubMed  CAS  Google Scholar 

  • Zorin B, Hegemann P, Sizova I (2005) Nuclear gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4:1264–1272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Christoph Beck, Felix Willmund, Mukesh Lodha, Cuimin Liu, and Miriam Schulz-Raffelt for their critical reading of the manuscript. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Schr 617/4-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schroda.

Additional information

Communicated by F.-A. Wollman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroda, M. RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49, 69–84 (2006). https://doi.org/10.1007/s00294-005-0042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0042-1

Keywords

Navigation