Skip to main content
Log in

Plant Promoters: An Approach of Structure and Function

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

With current advances in genomics, several technological processes have been generated, resulting in improvement in different segments of molecular research involving prokaryotic and eukaryotic systems. A widely used contribution is the identification of new genes and their functions, which has led to the elucidation of several issues concerning cell regulation and interactions. For this, increase in the knowledge generated from the identification of promoters becomes considerably relevant, especially considering that to generate new technological processes, such as genetically modified organisms, the availability of promoters that regulate the expression of new genes is still limited. Considering that this issue is essential for biotechnologists, this paper presents an updated review of promoters, from their structure to expression, and focuses on the knowledge already available in eukaryotic systems. Information on current promoters and methodologies available for studying their expression are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borém, A. (1998). Melhoramento de plantas. Viçosa: UFV.

    Google Scholar 

  2. Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.

    CAS  Google Scholar 

  3. Shelenkov, A., & Korotkov, E. (2009). Search of regular sequences in promoters from eukaryotic genomes. Computational Biology and Chemistry, 33, 196–204.

    CAS  Google Scholar 

  4. Cai, M., Wei, J., Li, X., Xu, C., & Wang, S. (2007). A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnology Journal, 5, 664–674.

    CAS  Google Scholar 

  5. Griffiths, A. J. F., Suzuki, D. T., Lewontin, R. C. & Gelbart, W. M. (2000). Regulation of gene transcription, in Modern Genetic Analysis, 3rd edition, (W.H. Freeman and Company), New York, USA.

  6. Périer, R. C., Junier, T., & Bucher, P. (1998). The eukaryotic promoter database EPD. Nucleic Acids Research, 26, 353–357.

    Google Scholar 

  7. Lodish, H., Berk, A., Zipursky, L. S., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Regulation of transcription initiation. In W. H. Freeman (Ed.), Molecular Cell Biology. New York: W. H. Freeman.

    Google Scholar 

  8. Haag, J. R., & Pikaard, C. S. (2011). Multisubunit RNA polymerases IV and V: purveyors of noncoding RNA for plants gene silencing. Nature Reviews Molecular Cell Biology, 2, 483–492.

    Google Scholar 

  9. Butler, J. E. F., & Kadonaga, J. T. (2002). The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes & Development, 6, 2583–2592.

    Google Scholar 

  10. Burke, T. W., & Kadonaga, J. T. (1996). Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes & Development, 10, 711–724.

    CAS  Google Scholar 

  11. Burke, T. W., & Kadonaga, J. T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes & Development, 11, 3020–3031.

    CAS  Google Scholar 

  12. Klug, W. S., & Cummings, M. R. (1997). Concepts of Genetics. New Jersey: Prentice-Hall.

    Google Scholar 

  13. Goldberg, M. L. (1979). Sequence analysis of Drosophila histone genes, PhD thesis, Stanford University, California, USA.

  14. Breathnach, R., & Chambon, P. (1981). Organization and expression of eukaryotic split genes coding for proteins. Annual Review of Biochemistry, 50, 349–383.

    CAS  Google Scholar 

  15. Lewin, B. (2001). Genes VII. Porto Alegre: Artmed Editora LTDA.

    Google Scholar 

  16. Pribnow, D. (1975). Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proceedings of the National Academy of Sciences, 72, 784–788.

    CAS  Google Scholar 

  17. Basehoar, A. D., Zanton, S. J., & Pugh, B. F. (2004). Identification and distinct regulation of yeast TATA box-containing genes. Cell, 116, 699–709.

    CAS  Google Scholar 

  18. Shi, W., & Zhou, W. (2006). Frequency distribution of TATA Box and extension sequences on human promoters. BMC Bioinformatics, 7, S2.

    Google Scholar 

  19. Yamamoto, Y. Y., Ichida, H., Matsui, M., Obokata, J., Sakurai, T., Satou, M., et al. (2007). Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics, 8, 1–23.

    Google Scholar 

  20. Chen, L., Tu, Z., Hussain, J., Cong, L., Yan, Y., Jin, L., et al. (2010). Isolation and heterologous transformation analysis of a pollen-specific promoter from wheat (Triticum aestivum L.). Molecular Biology Reports, 37, 737–744.

    Google Scholar 

  21. Tiwari, S. B., Shen, Y., Chang, H. C., Hou, Y., Harris, A., Ma, S. F., et al. (2010). The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist, 187, 57–66.

    CAS  Google Scholar 

  22. Bucher, P. (1990). Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. Journal of Molecular Biology, 212, 563–578.

    CAS  Google Scholar 

  23. Juven-Gershon, T., & Kadonaga, J. T. (2010). Regulation of gene expression via the core promoter and the basal transcriptional machinery. Developmental Biology, 15, 225–229.

    Google Scholar 

  24. Smale, S. T., & Kadonaga, J. T. (2003). The RNA polymerase II core promoter. Annual Review of Biochemistry, 72, 449–479.

    CAS  Google Scholar 

  25. Hultmark, D., Klemenz, R., & Gehring, W. J. (1986). Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell, 44, 429–438.

    CAS  Google Scholar 

  26. Purnell, B. A., Emanuel, P. A., & Gilmour, D. S. (1994). TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class II genes. Genes & Development, 8, 830–842.

    CAS  Google Scholar 

  27. Arkhipova, I. R. (1995). Promoter elements in Drosophila melanogaster revealed by sequence analysis. Genetics, 139, 1359–1369.

    CAS  Google Scholar 

  28. Kutach, A. K., & Kadonaga, J. T. (2000). The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Molecular and Cellular Biology, 20, 4754–4764.

    CAS  Google Scholar 

  29. Javahery, R., Khachi, A., Lo, K., Zenzie-Gregory, B., & Smale, S. T. (1994). DNA sequence requirements for transcriptional initiator activity in mammalian cells. Molecular and Cellular Biology, 14, 116–127.

    CAS  Google Scholar 

  30. Lagrange, T., Kapanidis, A. N., Tang, H., Reinberg, D., & Ebright, R. (1998). New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes & Development, 12, 34–44.

    CAS  Google Scholar 

  31. Deng, W., & Roberts, S. G. (2005). A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes & Development, 19, 2418–2423.

    CAS  Google Scholar 

  32. Iacobazzi, V., Infantino, V., & Palmieri, F. (2013). Regulação da transcrição do citrato mitocondrial e transportadores carnitina/acilcarnitina: dois genes envolvidos na biossíntese de ácidos graxos e β-oxidação. Biology, 2, 284–303.

    CAS  Google Scholar 

  33. Kadonaga, J. T. (1998). Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell, 92, 307–313.

    CAS  Google Scholar 

  34. Sawant, S. V., Singh, P. K., Madanala, R., & Tuli, R. (2001). Designing of an artificial expression cassette for high level expression of transgenes in plants. Theoretical and Applied Genetics, 102, 635–644.

    CAS  Google Scholar 

  35. Kanhere, A., & Bansal, M. (2005). Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Research, 33, 3165–3175.

    CAS  Google Scholar 

  36. Zhang, G., Lukoszek, R., Mueller-Roeber, B., & Ignatova, Z. (2011). Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation. Nucleic Acids Research, 39, 3331–3339.

    CAS  Google Scholar 

  37. Fessele, S., Maier, H., Zischek, C., Nelson, P. J., & Werner, T. (2002). Regulatory context is a crucial part of gene function. Trends in Genetics, 18, 60–63.

    CAS  Google Scholar 

  38. Riethoven, J. J. M. (2010). Regulatory regions in DNA: promoters, enhancers, silencers, and insulators. Methods in Molecular Biology, 674, 33–42.

    CAS  Google Scholar 

  39. Kolovos, P., Knoch, T. A., Grosveld, F. G., Cook, P. R., & Papantonis, A. (2012). Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin, 5, 3–8.

    Google Scholar 

  40. Bulger, M., & Groudine, M. (2011). Functional and mechanistic diversity of distal transcription enhancers. Cell, 144, 327–339.

    CAS  Google Scholar 

  41. He, H. H., Meyer, C. A., Shin, H., Bailey, S. T., Wei, G., Wang, Q., et al. (2010). Nucleosome dynamics define transcriptional enhancers. Nature Genetics, 42, 343–347.

    CAS  Google Scholar 

  42. Watson, J. D. (2008). Molecular biology of the gene. San Francisco: Benjamin-Cummings.

    Google Scholar 

  43. Fickett, J. W., & Hatzigeorgiou, A. G. (1997). Eukaryotic promoter recognition. Genome Research, 7, 861–878.

    CAS  Google Scholar 

  44. Hochheimer, A., & Tjian, R. (2003). Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes & Development, 17, 1309–1320.

    CAS  Google Scholar 

  45. Park, S. H., Yi, N., Kim, Y. S., Jeong, M. H., Bang, S. W., Choi, Y. D., et al. (2010). Analysis of five novel putative constitutive gene promoters in transgenic rice plants. Journal of Experimental Botany, 61, 2459–2467.

    CAS  Google Scholar 

  46. Park, S. H., Bang, S. W., Jeong, J. S., Jung, H., Felipe, M. C., Redillas, R., et al. (2012). Analysis of the APX, PGD1 and R1G1Bconstitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta, 235, 1397–1408.

    CAS  Google Scholar 

  47. Ranjan, R., Patro, S., Kumari, S., Kumar, D., Dey, N., & Maiti, I. B. (2011). Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of Figwort mosaic virus (FMV). Journal of Biotechnology, 152, 58–62.

    CAS  Google Scholar 

  48. Benfey, P. N., & Chua, N. H. (1990). The Cauliflower Mosaic Virus 35S Promoter: combinatorial regulation of transcription in plants. Science, 250, 959–966.

    CAS  Google Scholar 

  49. Kay, R., Chau, A., & Daly, M. (1987). Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science, 236, 1299–1302.

    CAS  Google Scholar 

  50. Lu, J., Sivamani, E., Li, X., & Qu, R. (2008). Activity of the 5′ regulatory regions of the rice polyubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes. Plant Cell Reports, 27, 1587–1600.

    CAS  Google Scholar 

  51. Hernandez-Garcia, C. M., Adriana, P., Martinelli, A. P., Bouchard, R. A., & Finer, J. J. (2009). A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Reports, 28, 837–849.

    CAS  Google Scholar 

  52. Kwak, M. S., Oh, M. J., Lee, S. W., Shin, J. S., Paek, K. H., & Bae, J. M. (2007). A strong constitutive gene expression system derived from ibAGP1 promoter and its transit peptide. Plant Cell Reports, 26, 1253–1262.

    CAS  Google Scholar 

  53. Liang, Y. S., Bae, H. J., Kang, S. H., Lee, T., Kim, M. G., Kim, Y. M., et al. (2009). The Arabidopsis beta-carotene hydroxylase gene promoter for a strong constitutive expression of transgene. Plant Biotechnol Report, 3, 325–331.

    Google Scholar 

  54. Xiao, K., Khang, C., Harrison, M., & Wang, Z. Y. (2005). Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Molecular Breeding, 2, 221–231.

    Google Scholar 

  55. Rasco, G., Rasco-Gaunt, S., Liu, D., Li, C., Doherty, A., Hagemann, K., et al. (2003). Characterization of the expression of a novel constitutive maize promoter in transgenic wheat and maize. Plant Cell, 6, 569–576.

    Google Scholar 

  56. Miranda, V. J. (2011) Caracterização da expressão do gene codificador da enzima de conjugação a ubiquitina (E2) em soja inoculada com Meloidoyne incognita e infestada com Anticarsia gemmatalis, Dissertação, Universidade de Brasília, Brasília, DF.

  57. Ortiz, R. (1998). Critical role of plant biotechnology for the genetic improvement of food crops: perspectives for the next millennium. Electronic Journal of Biotechnology, 1, 1–7.

    Google Scholar 

  58. Nain, V., Verma, A., Kumar, N., Sharma, P., Ramesh, B., & Kumar, A. A. (2008). Cloning of an ovule specific promoter from Arabidopsis thaliana and expression of B-glucuronidase. Indian Journal of Experimental Biology, 46, 207–211.

    CAS  Google Scholar 

  59. Chen, X., Wang, Z., Wang, J., Wang, M., Zhao, L., & Wang, G. (2007). Isolation and characterization of Brittle2 promoter from Zea mays and its comparison with Ze19 promoter in transgenic tobacco plants. Plant Cell, Tissue and Organ Culture, 88, 11–20.

    CAS  Google Scholar 

  60. Ye, R., Zhou, F., & Lin, Y. (2012). Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L. ssp.). Plant Cell, 31, 1159–1172.

    CAS  Google Scholar 

  61. Cook, M., & Thilmony, R. (2012). The OsGEX2 gene promoter confers sperm cell expression in transgenic rice. Plant Molecular Biology Reporter, 30, 1138–1148.

    CAS  Google Scholar 

  62. Prashant, S., Sunita, M. S. L., Sirisha, V. L., Bhaskar, V. V., Rao, A. M., Narasu, M. L., et al. (2012). Isolation of cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase gene promoters from Leucaena leucocephala, a leguminous tree species, and characterization of tissue-specific activity in transgenic tobacco. Plant Cell, Tissue and Organ Culture, 108, 421–436.

    CAS  Google Scholar 

  63. Freitas, R. L. (2007). Identificação de regiões no promotor do gene SBP2 (Sucrose Binding Protein) de soja que conferem expressão espacial especifica, Dissertation, Universidade Federal de Viçosa, Minas Gerais, Brazil.

  64. Santana, R. H. (2012). Isolamento e caracterização de promotores órgão-específicos de plantas de soja (Glicyne max), Dissertação, Universidade de Brasília, Brasília, DF.

  65. Subramanian, S., Hu, X., Lu, G., Odelland, J. T., & Yu, O. (2004). The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Molecular Biology, 54, 623–639.

    CAS  Google Scholar 

  66. Marraccini, P., Deshayes, A., Petiard, V., & Rogers, W. J. (1999). Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiology and Biochemistry, 37, 273–282.

    CAS  Google Scholar 

  67. Brandalise, M., Severino, F. E., Maluf, M. P., & Maia, I. G. (2009). The promoter of a gene encoding an isoflavone reductase-like protein in coffee (Coffea arabica) drives a stress responsive expression in leaves. Plant Cell Reports, 28, 1699–1708.

    CAS  Google Scholar 

  68. Hoshino, A. A. (2007). Isolamento e caracterização de promotores tecido-específicos a partir das informações do SUCEST (“Sugarcane expressed sequence TAGS”), thesis, Universidade Estadual Paulista, SP, BR.

  69. Damaj, M. B., Kumpatla, S. P., Emani, C., Beremand, P. D., Reddy, A. S., Rathore, K. S., et al. (2010). Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta, 231, 1439–1458.

    CAS  Google Scholar 

  70. Moyle, R. L., & Birch, R. G. (2013). Sugarcane loading stem Gene promoters drive transgene expression preferentially in the stem. Plant Molecular Biology, 82, 51–58.

    CAS  Google Scholar 

  71. Sassaki, F. T. (2008). Isolamento e caracterização de promotores órgão-específicos a partir de informações do banco forests (Eucalyptus Genome Sequencing Project Consortium). Thesis, Universidade Estadual Paulista, SP, Brazil.

  72. Costa, C. S. (2011). Caracterização de promotores de eucalipto com expressão tecido-específica: raiz e folha. Dissertação, Universidade Estadual Paulista, Campus de Botucatu, SP.

  73. Li, X., Fan, X., Lanwang, X., Cai, L., & Yang, A. (2005). The cotton actin1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 17, 859–875.

    CAS  Google Scholar 

  74. Sunilkumar, G., Campbell, L. M., Hossen, M., Connell, J. P., Hernandez, E., Reddy, A. S., et al. (2005). A comprehensive study of the use of a homologous promoter in antisense cotton lines exhibiting a high seed oleic acid phenotype. Plant Biotechnology Journal, 3, 319–330.

    CAS  Google Scholar 

  75. Lightfoot, D. J., Orford, S. J., & Timmis, J. N. (2013). Identification and characterization of cotton boll wall-specific gene promoters for future transgenic cotton varieties. Plant Molecular Biology Reporter, 31, 174–184.

    CAS  Google Scholar 

  76. Kamaladini, H., Abdullah, N. A. S., Aziz, M. A., Ismail, I. B., & Haddadi, F. (2013). Breaking-off tissue specific activity of the oil palm metallothionein-like gene promoter in T1 seedlings of tomato exposed to metal ions. Journal of Plant Physiology, 170, 346–354.

    CAS  Google Scholar 

  77. Daniell, H. (2002). Molecular strategies for gene containment in transgenic crops. Nature Biotechnology, 20, 581–586.

    CAS  Google Scholar 

  78. Sisterson, M. S., Carriere, Y., Dennehy, T. J., & Tabashnik, B. E. (2007). Nontarget effects of transgenic insecticidal crops: implications of source-sink population dynamics. Environmental Entomology, 36, 121–127.

    Google Scholar 

  79. Siebert, P. D., Chenchik, A., Kellogg, D. E., Lukyanov, K. A., & Lukyanov, S. A. (1995). An improved method for walking in uncloned genomic DNA. Nucleic Acids Research, 23, 1087–1088.

    CAS  Google Scholar 

  80. Devic, M., Albert, S., Delseny, M., & Roscoe, T. J. (1997). Efficient PCR walking on plant genomic DNA. Plant Physiology and Biochemistry, 35, 1–9.

    Google Scholar 

  81. Rishi, A. S., & Nelson, N. D. (2004). Arun Goyal Genome walking of large fragments: an improved method. Journal of Biotechnology, 111, 9–15.

    CAS  Google Scholar 

  82. Almasia, N., Narhirñak, V., Hopp, H. E., & Vazquez-Rovere, C. (2010). Isolation and characterization of the tissue and development-specific potato snakin-1 promoter inducible by temperature and wounding. Electronic Journal of Biotechnology, 13, 1–12.

    Google Scholar 

  83. Damaj, M. B., Beremand, P. D., Buenrostro-Nava, M. T., Ivy, J., Kumpatla, S. P., Jifon, J., et al. (2010). Isolating promoters of multigene family members from the polyploid sugarcane genome by PCR-based walking in BAC DNA. Genome, 53, 840–847.

    CAS  Google Scholar 

  84. Tajrishi, M. M., & Tuteja, N. (2011). Isolation and in silico analysis of promoter of a high salinity stress-regulated pea DNA helicase 45. Plant Signaling & Behavior, 6, 1447–1450.

    CAS  Google Scholar 

  85. Xiang, J., Liu, Z., Yang, Y., & Li, X. (2012). Cloning and analysis of the ascorbate peroxidase gene promoter from Brassica napus. African Journal of Biotechnology, 11, 6428–6433.

    CAS  Google Scholar 

  86. Wee, C. C., & Roslan, H. A. (2012). Isolation of alcohol dehydrogenase cdna and basal regulatory region from Metroxylon sagu. ISRN Molecular Biology, 2012, 1–10.

    Google Scholar 

  87. Liu, Y. G., & Whittier, R. F. (1995). Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 25, 674–681.

    CAS  Google Scholar 

  88. Wan, X. L., Yang, R. H., & Yao, Y. J. (2011). Development of microsatellite markers for Ophiocordyceps sinensis (Ophiocordycipitaceae) using an ISSR-TAIL-PCR method. American Journal of Botany, 98, 391–394.

    Google Scholar 

  89. Terauchi, R., & Kahl, G. (2000). Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea). Molecular Genetics and Genomics, 263, 554–560.

    CAS  Google Scholar 

  90. Prestridge, D. S. (1991). SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Bioinformatics, 7, 203–206.

    CAS  Google Scholar 

  91. Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research, 27, 297–300.

    CAS  Google Scholar 

  92. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Peer, Y. V., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.

    CAS  Google Scholar 

  93. Berezikov, E., Guryev, V., & Cuppen, E. (2005). CONREAL Web Server: identification and visualization of conserved transcription factor binding sites. Nucleic Acids Research, 33, W447–W450.

    CAS  Google Scholar 

  94. Sandelin, A., Wasserman, W. W., & Lenhard, B. (2004). ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Research, 32, 249–252.

    Google Scholar 

  95. Portales-Casamar, E., Thongjuea, S., Kwon, A. T., Arenillas, D., Zhao, X., Valen, E., et al. (2010). JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Research, 38, D105–D110.

    CAS  Google Scholar 

  96. Fiedler, T., & Rehmsmeier, M. (2006). jPREdictor: a versatile tool for the prediction of cis-regulatory elements. Nucleic Acids Research, 34, W546–W550.

    CAS  Google Scholar 

  97. Marinescu, V. D., Kohane, I. S., & Riva, A. (2005). MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics, 79, 1–36.

    Google Scholar 

  98. Cartharius, K., Frech, K., Grote, K., Klocke, B., Haltmeier, M., Klingenhoff, A., et al. (2005). MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics, 21, 2933–2942.

    CAS  Google Scholar 

  99. Wang, T., & Stormo, G. D. (2005). Identifying the conserved network of cis-regulatory sites of a eukaryotic genome. Proceedings of the National Academy of Sciences, 102, 17400–17405.

    CAS  Google Scholar 

  100. Thomas-Chollier, M., Sand, O., Turatsinze, J. V., Janky, R., Defrance, M., Vervisch, E., et al. (2008). RSAT: regulatory sequence analysis tools. Nucleic Acids Research, 36, W119–W127.

    CAS  Google Scholar 

  101. Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Collado-Vides, J., Paley, S. M., et al. (2002). The EcoCyc Database. Nucleic Acids Research, 30, 56–58.

    CAS  Google Scholar 

  102. Liu, X. Brutlag, D. L. Liu, J. S. (2001). BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pacific Symposium on Biocomputing pp. 127–38.

  103. Kolchanov, N. A., Ignatieva, E. V., Ananko, E. A., Podkolodnaya, O. A., Stepanenko, I. L., Merkulova, T. I., et al. (2002). Transcription regulatory regions database (TRRD): its status in 2002. Nucleic Acids Research, 30, 312–317.

    CAS  Google Scholar 

  104. TRANSFAC 7.0 Public 2005 and TRANSCompel 7.0 Public 2005. Available in: http://www.gene-regulation.com/pub/databases.html. Accessed 9 December 2013.

  105. Jaiswal, R., Nain, V., Abdin, M. Z., & Kumar, P. A. (2007). Isolation of pigeon pea (Cajanus cajan L.) legumin gene promoter and identification of conserved regulatory elements using tools of bioinformatics. Indian Journal of Experimental Biology, 6, 495–503.

    CAS  Google Scholar 

  106. Lindlöf, A., Bräutigam, M., Chawade, A., Olsson, O., & Olsson, B. (2009). In silico analysis of promoter regions from cold-induced genesin rice (Oryza sativa L.) and Arabidopsis thaliana reveals the importance of combinatorial control. Bioinformatics, 25, 1345–1348.

    Google Scholar 

  107. Nain, V., Sahi, S. & Kumar, P. A. (2011). In silico identification of regulatory elements in promoters, in Computational Biology and Applied Bioinformatics, (Lopes, H., ed), InTech China.

  108. Lacorte, C. (1998). β-glucorosidade (GUS), in manual de transformação genética de plantas, (Brasileiro, A. C. M. Carneiro, V. T. D., ed), Brasília, Embrapa: pp. 127–141.

  109. Jefferson, R. A., Burgess, S. M. & Hirsh, D. (1986). β-glucuronidase from Escherichia coli as a gene fusion marker, Proceedings of the National Academic of Science, Washington, DC, USA.

  110. Brasileiro, A. C. M., & Carneiro, V. T. C. (1995). Manual de Transformação Genética de Plantas. Brasília: Embrapa.

    Google Scholar 

  111. Gilissen, L. J. W., Metz, P. L. J., Stiekema, W. J., & Nap, J. (1998). Biosafety of E. coli b-glucuronidase (GUS) in plants. Transgenic Research, 7, 157–163.

    CAS  Google Scholar 

  112. Van, B. J., Berthouly, M., Carasco, C., Dufuor, M., & Eskes, A. (1995). Transient expression of b-glucuronidase following biolistic delivery of foreign DNA into coffee tissue. Plant Cell Reports, 14, 748–752.

    Google Scholar 

  113. Torres, A. C., Ferreira, A. T., Widholzer, C. F. N., Romano, E., & Peters, J. A. (2003). Expressão eficiente do gene repórter β-glucuronidase nos tecidos vasculares de batata (Solanum tuberosum L.) utilizando de um promotor específico (BRA3) de Agrobacterium rhizogenes. Horticultura Brasileira, 21, 176–179.

    Google Scholar 

  114. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 98, 503–517.

    CAS  Google Scholar 

  115. Burnette, W. N. (1981). Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic protein A. Analytical Biochemistry, 112, 195–203.

    CAS  Google Scholar 

  116. Burridge, K. (1976). Changes in cellular glycoproteins after transformations: identification of specific glycoproteins and antigens in sodium dodecyl sulphatase gels. Proceedings of the National Academy of Sciences USA, 73, 4447–4461.

    Google Scholar 

  117. Showe, M. K., Isobe, E., & Onorato, L. (1976). Bacteriophage T4 pre head proteinase II. Its cleavage from the product of gene 21 and regulation in phage-infected cells. Journal of Molecular Biology, 107, 55–69.

    CAS  Google Scholar 

  118. Towbin, H., Staehelin, T., & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences USA, 76, 4350–4354.

    CAS  Google Scholar 

  119. Hornbeck, P. (1991). Enzyme-linked immunosorbent assays, in Current protocols in immunology (Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. T. & Strober, W., eds), John Wiley & Sons, NY.

  120. Greenplate, J. G. (1999). Quantification of Bacillus thuringiensis insect control protein (Cry1Ac) over time in Bollgard cotton fruit and terminals. Journal of Economic Entomology, 92, 1377–1383.

    CAS  Google Scholar 

  121. Gore, J., Leonard, B. R., & Adamczyk, J. J. (2001). Bollworm (Lepidoptera: Noctuidae) survival and ‘Bollgard II’ cotton flower bud and flower components. Journal of Economic Entomology, 94, 1445–1451.

    CAS  Google Scholar 

  122. Kranthi, K. R., Naidu, S., Dhawad, C. S., Tatwawadi, A., Mate, K., Patil, E., et al. (2005). Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera). Current Science, 89, 291–298.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liziane Maria de Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porto, M.S., Pinheiro, M.P.N., Batista, V.G.L. et al. Plant Promoters: An Approach of Structure and Function. Mol Biotechnol 56, 38–49 (2014). https://doi.org/10.1007/s12033-013-9713-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9713-1

Keywords

Navigation