Skip to main content

Perspectives of Using Endophytic Microbes for Legume Improvement

  • Chapter
  • First Online:
Microbes for Legume Improvement

Abstract

Plant growth-promoting rhizobacteria (PGPR) have long been used as inoculant for optimizing legume production, but their survival under hostile field conditions is conflicted. Endophytes among PGPR are the microorganisms that live inside different plant tissues for at least part of their life without harming their host. Beneficial endophytes facilitate plant growth by enhancing uptake of plant nutrients, protecting plants from phytopathogens and increasing tolerance against environmental stresses. Nevertheless, the cellular interactions between pulses and endophytes for improving legumes growth and yields are variable. The endophytic colonization and diversity, various growth promontory aspects, and recent advances in endophyte-legume interactions with consequential impact on legume production have been discussed comprehensively. Considering the importance of endophytic microorganisms, it is likely that their use in agricultural practices will play a pivotal role and offer environmentally friendly strategy for increasing legume productivity while decreasing chemical inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WDM, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1–10

    Article  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 4th edn. Academic, Amsterdam

    Google Scholar 

  • Ait Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans PsJN. Appl Environ Microbiol 72:7246–7252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhgar M, Arzanlou R, Bakker PAHM, Hamidpour M (2014) Characterization of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24:461–468

    Article  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annapurna K, Ramadoss D, Bose P, Kumar LV (2013) In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max L.) Plant Soil 373:641–648

    Article  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 8:673–677

    Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In: Rai MK (ed) Handbook of microbial biofertilizers. Haworth Press, New York

    Google Scholar 

  • Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171:884–894

    Article  CAS  PubMed  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Braun EJ (1990) Colonization of resistant and susceptible maize plants by Envinia stewartii strains differing in exopolysaccharide production. Physiol Mol Plant Pathol 36:363–379

    Article  CAS  Google Scholar 

  • Brittenham GM (1994) New advances in iron metabolism, iron deficiency and iron overload. Curr Opin Hematol 1:549–556

    Google Scholar 

  • Carlos MH, Stefani PV, Janette AM, Melani MS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 189:53–61

    Article  CAS  Google Scholar 

  • Celloto VR, Oliveira AJB, Gonçalves JE, Watanabe CSF, Matioli G, Gonçalves RAC (2012) Biosynthesis of indole-3-acetic acid by new Klebsiella oxytoca free and immobilized cells on inorganic matrices. Sci World J 2012:495970. doi:10.1100/2012/495970

    Article  CAS  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induced root hair curling, inhibits Sclerotinia sclerotiorum and enhance growth of Indian mustard (Brassica compestris). Braz J Microbiol 38:24–30

    Article  Google Scholar 

  • Chen W, Sun L, Lu J, Bi L, Wang L, Wei G (2015) Diverse nodule bacteria were associated with Astragalus species in arid region of northwestern China. J Basic Microbiol 55:121–128

    Article  CAS  PubMed  Google Scholar 

  • Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92(6):fiw083. doi:10.1093/femsec/fiw083

    Article  PubMed  CAS  Google Scholar 

  • Chiwocha SD, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross AR, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • De Meyer SE, Beuf KD, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–11

    Article  CAS  Google Scholar 

  • Dudeja SS, Narula N (2008) Molecular diversity of root nodule forming bacteria. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms. Academic World International, Bhopal, pp 1–24

    Google Scholar 

  • Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260

    Article  CAS  PubMed  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, Gara F (1998) Combining proteolytic and phloroglucinol-producing bacteria for improved control of Pythium-mediated damping off of sugar beet. Plant Pathol 47:299–307

    Article  Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96

    Chapter  Google Scholar 

  • Eisenhauer N (2012) Aboveground–belowground interactions as a source of complementarity effects in biodiversity experiments. Plant Soil 35:1–22

    Article  CAS  Google Scholar 

  • Emmert EA, Klimowicz AK, Thomas MG, Handelsman J (2004) Genetics of zwittermicin a production by Bacillus cereus. Appl Environ Microbiol 70:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC, London, pp 77–86

    Google Scholar 

  • Fernandez O, Theocharis A, Bordiec S, Feil R, Jasquens L, Clement C, Fontaine F, Ait Barka E (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25:496–504

    Article  CAS  PubMed  Google Scholar 

  • Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium melilotiand alfafa (Medicago satia). J Bacteriol 178:7159–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao K, Mendgen K (2006) Seed-transmitted beneficial endophytic Stagonospora sp. can penetrate the walls of the root epidermis, but does not proliferate in the cortex, of Phragmites australis. Can J Bot 84:981–988

    Article  Google Scholar 

  • Germaine K (2007) Construction of endophytic xenobiotic degrader bacteria for improving the phytoremediation of organic pollutants. PhD thesis, Institute of Technology Carlow, Ireland

    Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, van Der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  PubMed  Google Scholar 

  • Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PK, Sen SK, Maiti TK (2015) Production and metabolism of IAA by Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. Biocatal Agric Biotechnol 3:296–303

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. doi:10.6064/2012/963401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR, TodorovicB CJ, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Grover WH, Bryan AK, diez-Silva M, Suresh S, Higgins JM, Manalis SR (2011) Measuring single-cell density. Proc Natl Acad Sci U S A 108:10992–10996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Halo BA, Khan AL, Waqas M, Al-Harrasi A, Hussain J, Ali L, Adnan M, In-Jung L (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J Plant Interact 10:117–125

    Article  CAS  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterisation of root nodule bacteria associated with Acacia salicina and Acacia stenophylla (Mimosaceae) across south eastern Australia. Int J Syst Evol Microbiol 61:299–309

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberge E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibanez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut nodules by opportunistic gamma proteobacteria. Syst Appl Microbiol 32:49–55

    Article  CAS  PubMed  Google Scholar 

  • Imsande J (1998) Nitrogen de fi cit during soybean pod fill and increased plant biomass by vigorous N2 fixation. Eur J Agron 8:1–11

    Article  Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265

    Article  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Jasim B, Joseph AA, Jimtha John C, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell 26:1481–1490

    Article  CAS  Google Scholar 

  • Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Arch Microbiol 188:103–115

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis/CRC, Boca Raton, FL, pp 207–220

    Chapter  Google Scholar 

  • Khalifa AYZ, Alsyeeh A, Almalki MA, Saleh FA (2016) Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi J Biol Sci 23:79–86

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3. doi:10.1186/1471-2180-12-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Sang-Mo K, Yoon-Ha K, Byung-Wook Y, Al-Rawahi A, Al-Harrasi A, In-Jung L (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pée KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Wei G, Tuzun S (1992) Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichurn orbiculare. In: Tjamos ES (ed) Biological control of plant diseases. Plenum, New York, pp 185–191

    Chapter  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Dekker, New York, pp 199–236

    Google Scholar 

  • Konnova SA, Brykova OS, Sachkova OA, Egorenkova IV, Ignatov VV (2001) Protective role of the polysaccharide containing capsular components of Azospirillum brasilense. Microbiology 70:436–440

    Article  CAS  Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158

    Article  CAS  Google Scholar 

  • Kumar V, Pathak DV, Dudeja SS, Saini R, Giri R, Narula S, Anand RC (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non-legumes in soils of Haryana, India. J Microbiol Biotech Res 3:83–92

    Google Scholar 

  • Kusari P, Kusari S, Spiteller M, Kayser O (2015) Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 99:5383–5390

    Article  CAS  PubMed  Google Scholar 

  • Larrainzar E, Ogara F, Morrissey JP (2005) Application of autofluorescent proteins for insitu studies in microbial ecology 59:257–277

    Google Scholar 

  • Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH (2016) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18:469–473. doi:10.1111/mpp.12483

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei X, Wang ET, Chen WF, Sui XH, Chen WX (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 190:657–671

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Li L, Nagai K, Yin F (2016) Progress in cold roll bonding of metals. Sci Technol Adv Mater 9:023001(11pp). doi:10.1088/1468-6996/9/2/023001

    Google Scholar 

  • Liu J, Wang ET, da Ren W, Chen WX (2010) Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Arch Microbiol 192:229–234

    Article  CAS  PubMed  Google Scholar 

  • Long HH, Schmid DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species specific manner, Phytohormone manipulations do not result in common growth responses. PLoS One 3:2702–2708

    Article  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW, Van Vuurde JWL, Van der Wolf JM, Van den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity in Rhizosphere bacteria. CSIRO, Melbourne, p 180

    Google Scholar 

  • Maheswari TU, Anbukkarasi K, Hemalatha T, Chendrayan K (2013) Studies on phytohormone producing ability of indigenous endophytic bacteria isolated from tropical legume crops. Int J Curr Microbiol Appl Sci 2:127–136

    Google Scholar 

  • Maougal RT, Bargaz A, Sahel C, Amenc L, Djekoun A, Plassard C, Drevon J (2014) Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate. Planta 239:901–908

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hidalgo P, Galindo-Villardon P, Trujillo ME, Igual JM, Martýnez-Molina E (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep 4:6389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mehboob F, Junca H, Schraa G, Stams AJM (2009) Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 83:739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miche L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Up regulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact 19:502–511

    Article  CAS  PubMed  Google Scholar 

  • Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense sp7 to wheat roots. J Gen Microbiol 137:2241–2246

    Article  CAS  Google Scholar 

  • Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biologija 57:98–102

    Article  Google Scholar 

  • Milner J, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013) Advances in elucidating beneficial interactions between plants, soil and bacteria. Adv Agron 121:381–445

    Article  CAS  Google Scholar 

  • Moghaddam MJM, Emtiazi G, Salehi Z (2012) Enhanced auxin production by Azospirillum pure cultures from plant root exudates. J Agric Sci Technol 14:985–994

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar A, Bhaskaran R, Kumar SK (2010) Efficacy of endophytic Pseudomonas fluorescens (Trevisan) migula against chilli damping-off. J Biopest 3(105):109

    Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  CAS  PubMed  Google Scholar 

  • Naveed M (2013) Maize endophytes–diversity, functionality and application potential. Ph.D. thesis, AIT–Austrian Institute of Technology/BOKU University, Vienna

    Google Scholar 

  • Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014a) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50:249–262

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Krzysztof W, Sessitsch A (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014c) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot J (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plantarum 129:185–195

    Article  CAS  Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC, London, pp 1–14

    Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:182–186

    Article  Google Scholar 

  • Orlandelli RC, Vasconcelos AFD, Azevedo JL, Silva MLC, Pamphile JA (2016) Screening of endophytic sources of exopolysaccharides: preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time. Biochimie Open 2:33–40

    Article  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilising endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pablo A, Parisi G, Lattanzi FA, Grimoldi AA, Omacini M (2015) Multi-symbiotic systems: functional implications of the coexistence of grass–endophyte and legume–rhizobia symbioses. Oikos 124:553–560

    Article  Google Scholar 

  • Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertil Soils 46:807–816

    Article  Google Scholar 

  • Pandya M, Kumar GN, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett 348:58–65

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642

    Article  CAS  PubMed  Google Scholar 

  • Peterson CA, Emanuel ME, Humphreys GB (1981) Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba). Can J Bot 59:618–625

    Article  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Amsterdam, pp 195–230

    Chapter  Google Scholar 

  • Prasad MP, Dagar S (2014) Identification and characterization of endophytic bacteria from fruits like Avacado and Black grapes. Int J Curr Microbiol Appl Sci 3:937–947

    Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rashid A (1996) Secondary and micronutrients. In: Saghir E, Bantel R (eds) Soil science, pp 341–379

    Google Scholar 

  • Rivas R, Garcıa-Fraile P, Velazquez E (2009) Taxonomy of bacteria nodulating legumes. Microbiol Insights 2:51–69

    Google Scholar 

  • Rivera-Cruz MC, Trujillo-Narcía A, Córdova-Ballona G, Kohler J, Caravaca F, Roldán A (2008) Poultry manure and banana wastes are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 40:3092–3095

    Article  CAS  Google Scholar 

  • Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A (2008) Vesicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules. Lipid Insights 2:27–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez GLJ, Valle R, Duran A, Roncero C (2005) Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 579:6186–6190

    Article  CAS  Google Scholar 

  • Rodríguez JP, Beard TD, Bennett EM, Cumming GS, Cork S, Agard J, Dobson AP, Peterson GD (2006) Trade-offs across space, time and ecosystem services. Ecol Soc 11:28. http://www.ecologyandsociety.org/vol11/iss1/art28/

    Article  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Ann Rev Plant Biol 59:143–166

    Article  CAS  Google Scholar 

  • Saini R, Kumar V, Dudeja SS, Pathak DV (2015) Beneficial effects of inoculation of endophytic bacterial isolates from roots and nodules in chickpea. Int J Curr Microbiol Appl Sci 4:207–221

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  CAS  PubMed  Google Scholar 

  • Schank SC, Smith RL, Weiser GC, Zuberere DA, Bouton JH, Quesenberry KH, Tyler ME, Milam JR, Littell RC (1979) Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol Biochem 11:287–295

    Article  Google Scholar 

  • Shahzad R, Waqas R, Khan AL, Asaf S, Khan MA, Sang-Mo K, Byung-Wook Y, In-Jung L (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Waqas M, Sang-Mo K, In-Jung L (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77. doi:10.1016/j.envexpbot.2017.01.010

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lou K, Li C (2010) Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria. Photosynthesis Res 105:5–13

    Article  CAS  Google Scholar 

  • Silva JM, dos Santos TMC, de Albuquerque LS, Montaldo YC, de Oliveira JUL, da Silva SGM, Nascimento MS, Teixeira Rd RO (2015) Potential of the endophytic bacteria (Herbaspirillum spp. and Bacillus spp.) to promote sugarcane growth. Aust J Crop Sci 9:754–760

    Google Scholar 

  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microbial Ecol 61:729–739

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stajković O, Meyer SD, Miličić B, Willems A, Delić D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.) Bot Serb 33:107–114

    Google Scholar 

  • Stephen J, Jisha MS (2009) Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J Agric Sci 5:135–137

    Google Scholar 

  • Sturz AV, Christie BR (1995) Endophytic bacterial systems governing red clover growth and development. Ann Appl Biol 126:285–290

    Article  Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332

    Article  CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds), Microbial inoculants in sustainable agricultural productivity, vol 1, Springer, New Delhi, pp 117-143

    Google Scholar 

  • Tanaka F, Ando A, Nakamura T, Takagi H, Shima J (2006) Functional genomic analysis of commercial baker’s yeast during initial stages of model dough-fermentation. Food Microbiol 23:717–728

    Article  CAS  PubMed  Google Scholar 

  • Tao G, Tian S, Cai M, Xie G (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Tombolini R, Jansson JK (1998) Monitoring of GFP-tagged bacterial cells. In: La Rossa RA (ed) Methods in molecular biology: bioluminescence methods and protocols. Humana Press, Totowa, pp 285–298

    Chapter  Google Scholar 

  • Tombolini R, Unge A, Davey ME, de Bruijn FJ, Jansson JK (1997) Flow cytometric and microscopic analysis of GFP tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol 22:17–28

    Article  CAS  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodriguez R, Carro L, Cerda E, Alonso P, Martinez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact 8:241–251

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Yiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    Article  Google Scholar 

  • Villacieros M, Power B, Sánchez-Contreras M, Lloret J, Oruezabal RI, Martín M, Fernández-Piñas F, Bonilla I, Whelan C, Dowling DN, Rivilla R (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54

    Article  CAS  Google Scholar 

  • Wagh J, Chanchal K, Sonal S, Praveena B, Archana G, Kumar GN (2016) Inoculation of genetically modified endophytic Herbaspirillum seropedicae Z67 endowed with gluconic and 2-ketogluconic acid secretion, confers beneficial effects on rice (Oriza sativa) plants. Plant Soil 409:51–64

    Article  CAS  Google Scholar 

  • Wahid A, Rasul E (2005) Photosynthesis in leaf, stem, flower and fruit. In: Pessarakli M (ed) Handbook of photosynthesis, 3rd edn. CRC, Boca Raton, FL, pp 479–497

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Weir BS (2011) The current taxonomy of rhizobia New Zealand rhizobia. http://www.rhizobia.co.nz/taxonomy/rhizobia.html

  • White JF, Monica S (2010) Torres is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  CAS  PubMed  Google Scholar 

  • Xi C, Lambrecht M, Vanderleyden J, Michiels J (1999) Bi-functional gfp-and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J Microbiol Methods 35:85–92

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Li Y, Liu Z, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhang Y, Wang L, Chen W, Wei G (2014) Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Syst Appl Microbiol 37:457–465

    Article  PubMed  CAS  Google Scholar 

  • You CB, Lin M, Fang XJ, Song W (1995) Attachment of Alcaligenes to rice roots. Soil Biol Biochem 27:463–466

    Article  CAS  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Arshad M (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

  • Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel JC, Gillis M, Dreyfus B, de Lajudie P (2006) Characterization of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27:380–395

    Article  Google Scholar 

  • Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S (2015) A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genet 11:1–21

    Article  Google Scholar 

  • Zhang XX, George A, Bailey MJ, Rainey PB (2006) The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings. Microbiology 152:1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Guo YD (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.) J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

  • Zhao LF, YJ X, Ma ZQ, Deng ZS, Shan CJ, Wei GH (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44:629–637

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Naveed, M., Aziz, M.Z., Yaseen, M. (2017). Perspectives of Using Endophytic Microbes for Legume Improvement. In: Zaidi, A., Khan, M., Musarrat, J. (eds) Microbes for Legume Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_12

Download citation

Publish with us

Policies and ethics