Skip to main content

Potential of Rhizosphere Bacteria for Improving Rhizobium-Legume Symbiosis

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

About 60 % of the earth’s available nitrogen is fixed via biological nitrogen fixation (BNF). Being a major contributor to BNF, Rhizobium-legume symbiosis can provide well over half of the biological source of fixed nitrogen. Actually, Rhizobium-legume symbiosis results in the formation of nodules on legume roots where rhizobia fix nitrogen from the atmosphere. But nodulation and nitrogen fixation is a complex process and is dependent on the compatibility and potential of both partners of Rhizobium-legume symbiosis under variable soil and environmental conditions. Although, some selected efficient and effective traits of rhizobia and legumes have shown encouraging results, there is a need of consistent positive influence on nodulation and nitrogen fixation to maximize the growth and yield of legumes under variable conditions. Hence, the use of means capable of improving both the legume growth and the growth and function of symbiotic rhizobia is essential. Co-inoculation of Rhizobium species with favorably interacting traits of plant growth-promoting rhizobacteria (PGPR) is considered an applied, cost-effective, efficient, and environment-friendly approach to further improve legume growth and productivity under variable conditions because they can provide broad spectrum mechanisms of actions and improve reliability of inocula without genetic engineering. In addition, these PGPR when used in combination with rhizobia have also shown the strategies for dealing with stressful conditions like salinity, pH, temperature, drought, heavy metal, and pathogens which could further impose limitations on the capacity of Rhizobium-legume symbiosis. This chapter highlights various PGPR traits compatible with specific legume rhizobia and their phytostimulatory mechanisms contributing to augmentation in rhizobial growth and function for growth and yield enhancement of legumes under variable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab AFM, Mekhemar GAA, Badawi FSF, Shehata HS (2008) Enhancement of nitrogen fixation, growth and productivity of Bradyrhizobium-lupinus symbiosis via co-inoculation with rhizobacteria in different soil types. J Agric Sci Mansoura Univ 33:469–484

    Google Scholar 

  • Abeles FD, Morgan PW, Saltveit MEJ (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Adeseoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15N-dependent fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol Res 163:73–181

    Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate-deaminase. Can J Microbiol 57:578–589

    PubMed  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62:1321–1330

    CAS  Google Scholar 

  • Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372

    Google Scholar 

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Google Scholar 

  • Anandham R, Sridar R, Nalayini P, Poonguzhali S, Madhaiyan M, Tongmin S (2007) Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microbiol Res 162:139–153

    PubMed  CAS  Google Scholar 

  • Andrade D, De Leij FAAM, Lynch JM (1998) Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett Appl Microbiol 26:311–316

    Google Scholar 

  • Arshad M, Frankenberger WT Jr (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer Academic Publishers, New York

    Google Scholar 

  • Atieno M, Herrmann L, Okalebo R, Lesueur D (2012) Efficiency of different formulations of Bradyrhizobium japonicum and effect of co- inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J Microbiol Biotechnol 28:2541–2550

    PubMed  CAS  Google Scholar 

  • Babar SM, Mirza MS, Bano A, Malik KA (2007) Co-inoculation of chickpea with rhizobium isolates from roots and nodules and phytohormone producing Enterobacter strains. Aust J Agric Res 47:1008–1015

    Google Scholar 

  • Badawi FSF, Biomy AMM, Desoky AH (2011) Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann Agric Sci 56:17–25

    Google Scholar 

  • Bai Y, Pan B, Charles TC, Smith DL (2002a) Co-inoculation dose and root zone temperature for plant growth promoting rhizobacteria on soybean [Glycine max (L.) Merr] grown in soil-less media. Soil Biol Biochem 34:1953–1957

    CAS  Google Scholar 

  • Bai Y, Souleimanov A, Smith DL (2002b) An inducible activator produced by a Serratia proteamaculans strain and its soybean growth-promoting activity under greenhouse conditions. J Exp Bot 53:149–502

    Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Google Scholar 

  • Bakker PAHM, Van Peer R, Schippers B (1991) Suppression of soil-borne plant pathogens by fluorescent Pseudomonas: mechanisms and prospects. In: Beemster ABR, Bollewn M, Gerirch Ruissen MA, Schippers B, Tempel A (eds) Biotic interactions and soil-borne diseases. Elsevier, Amsterdam, pp 221–230

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bontante PO, Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon A, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    PubMed  CAS  Google Scholar 

  • Barka AE, Nowk J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with plant growth promoting rhizobacteria Burkholderia phytofermans strain PsJN. Appl Environ Microbiol 72:7246–7252

    CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacterial plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier, Oxford

    Google Scholar 

  • Beijerinck MW (1901) Ueber oligonitrophile Mikroben, Zentral-blatt fur Bakteriologie. Parasitenkunde, Infektionskrankheiten und Hygiene Abteilungen II 7:561–582

    Google Scholar 

  • Belimov AA, Kojemiakov PA, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen-fixing and phosphate-solubilizing bacteria. Plant Soil 17:29–37

    Google Scholar 

  • Berggren I, Alstrom S, van Vuurde JWL, Martensson AM (2005) Rhizoplane colonisation of peas by Rhizobium leguminosarum bv. viceae and a deleterious Pseudomonas putida. FEMS Microbiol Ecol 52:71–78

    PubMed  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180

    CAS  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197

    CAS  Google Scholar 

  • Bucio JL, Cuevas CC, Calderon EH, Becerra CV, Rodriguez RF, Rodriguez LIM, Cantero EV (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Google Scholar 

  • Budezikiewicz H (1997) Siderophore of fluorescent Pseudomonas L. Nat Foresche 52C:413–420

    Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    PubMed  CAS  Google Scholar 

  • Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    CAS  Google Scholar 

  • Burns TA, Bishop JRPE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandii and Rhizobium. Plant Soil 62:399–412

    Google Scholar 

  • Burris RH (1994) Biological nitrogen fixation – past and future. In: Hegazi NA, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. American University in Cairo Press, Cairo, pp 1–11

    Google Scholar 

  • Camacho M, Santamaria C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062

    PubMed  CAS  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    CAS  Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    PubMed  CAS  Google Scholar 

  • Chandra R, Pareek RP (2002) Effect of rhizobacteria in urdbean and lentil. Indian J Pulse Res 15:152–155

    Google Scholar 

  • Chanway CP, Hynes RK, Nelson LM (1989) Plant growth-promoting rhizobacteria: effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–517

    Google Scholar 

  • Chebotar VK, Asis CA Jr, Akao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432

    CAS  Google Scholar 

  • Crowley DE, Reid CPPP, Szaniszlo PJ (1998) Utilization of microbial siderophore in iron acquisition by oat. Plant Physiol 87:680–685

    Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, OkonY MM (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    CAS  Google Scholar 

  • Dary M, Chamber M, Palomares A, Pajuelo E (2010) “In situ” phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    PubMed  CAS  Google Scholar 

  • Dashadi M, Khosravi H, Moezzi A, Nadian H, Heidari M, Radjabi R (2011) Co- inoculation of Rhizobium and Azotobacter on growth indices of faba bean under water stress in the green house condition. Adv Stud Biol 3:373–385

    Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1997) Application of plant growth-promoting rhizobacteria to soybean [Glycine max (L.) Merr.] increases protein and dry matter yield under shot season conditions. Plant Soil 188:33–41

    CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213

    CAS  Google Scholar 

  • Dashti N, Prithiviraj B, Zhou X, Hynes RK, Smith DL (2000) Combined effects of plant growth‐promoting rhizobacteria and genistein on nitrogen fixation in soybean at suboptimal root zone temperatures. J Plant Nutr 23:593–604

    CAS  Google Scholar 

  • Dashti N, Khanafer M, El-Nemr I, Sorkhok N, Ali N, Radwan S (2009) The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74:1354–1359

    PubMed  CAS  Google Scholar 

  • de Freitas JR, Gupta VVSR, Germida JJ (1993) Influence of Pseudomonas syringae R25 and Pseudomonas putida R105 on the growth and nitrogen fixation (acetylene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.). Biol Fertil Soils 16:215–220

    Google Scholar 

  • Deanand BJ, Patil AB, Kulkaarni JH, Algawadi AR (2002) Effect of plant growth promoting rhizobacteria on growth and yield of pigeon pea (Cajanus cajan L.) by application of plant-growth promoting rhizobacteria. Microbiol Res 159:371–394

    Google Scholar 

  • del Gallo M, Fabbri P (1991) Effect of soil organic matter on chickpea inoculated with Azospirillum brasilense and Rhizobium leguminosarum bv. ciceri. Plant Soil 137:171–175

    Google Scholar 

  • Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 54:211–217

    Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth-promoting effect and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial association. Springer, Dordrecht, pp 145–170

    Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2010) Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). Eur J Soil Biol 46:269–272

    CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilising bacteria on the nodulation, plant growth and yield of chickpea. J Plant Nutr 31:157–171

    CAS  Google Scholar 

  • Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv. ‘Elkoca-05’). J Plant Nutr 33:2104–2119

    CAS  Google Scholar 

  • El-Sawy WA, Mekhemar GAA, Kandil BAA (2006) Comparative assessment of growth and yield responses of two peanut genotypes to inoculation with Bradyrhizobium conjugated with cyanobacteria or rhizobacteria. Minufiya J Agric Res 31:1031–1049

    Google Scholar 

  • Engqvist LG, Martensson A, Orlowska E, Turnau K, Belimov AA, Borisov AY, Gianinazzi-Pearson V (2006) For a successful pea production on polluted soils, inoculation with beneficial microbes requires active interaction between the microbial components and the plant. Acta Agric Scand Sect B Soil Plant Sci 56:9–16

    CAS  Google Scholar 

  • Esteve de Jensen C, Pereick JA, Graham PH (2002) Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. J Field Crops Res 74:107–115

    Google Scholar 

  • Estevez J, Dardanelli MS, Megías M, Rodríguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49:29–36

    Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193

    CAS  Google Scholar 

  • Fox SL, O’Hara GW, Bräu L (2011) Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when co-inoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419. Plant Soil 348:245–254

    CAS  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    PubMed  CAS  Google Scholar 

  • Fuhrmann J, Wollum AG (1989) Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol Fertil Soils 7:108–112

    Google Scholar 

  • Garcia JAL, Probanza A, Ramos B, Barriuso J, Mañero FJG (2004a) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267:143–153

    CAS  Google Scholar 

  • Garcia JAL, Probanza A, Ramos B, Flores JJC, Mañero FJG (2004b) Effects of plant growth promoting rhizobacteria (PGPRS) on the biological nitrogen fixation, nodulation, and growth of Lupinus albus L. cv. Multolupa. Eng Life Sci 4:71–77

    CAS  Google Scholar 

  • Geurts R, Bisseling T (2002) Rhizobium nod factor perception and signaling. Plant Cell 14:S239–S249

    PubMed  CAS  Google Scholar 

  • Glick BR, Pentrose DM, Li J (1998) A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2000) Pigment diverse mutants of Pseudomonas sp.: inhibition of fungal growth and stimulation of growth of Cicer arietinum. Biol Plant 43:563–569

    CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2001) Seed bacterization with fluorescent Pseudomonas enhances the synthesis of flavonoid-like compounds in chickpea (Cicer arietinum L.). Physiol Mol Biol Plants 6:195–198

    Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum L.) by Pseudomonas pp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396

    CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Mineral nutrient acquisition and response of plants grown in saline environments. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Press Inc, New York, pp 203–229

    Google Scholar 

  • Groppa MD, Zawoznik MS, Tomaro ML (1998) Effects of co-inoculation with Bradyrhizobium japonicum and Azospirillum brasilense on soybean plants. Eur J Soil Biol 34:75–80

    Google Scholar 

  • Guinazu LB, Andres JA, Del Papa MF, Pistorio M, Rosas SB (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190

    Google Scholar 

  • Gull M, Hafeez FY, Saleem M (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    CAS  Google Scholar 

  • Gunasekaran S, Balachandar D, Mohanasundaram K (2004) Studies on synergism between Rhizobium, plant growth promoting rhizobacteria (PGPR) and phosphate solubilizing bacteria in black gram. In: Kannaiyan S, Kumar K, Govimdarajan K (eds) Biofertilizer technology for rice based cropping system. Scientific Publ, Jodhpur, pp 269–273

    Google Scholar 

  • Gupta A, Saxena AK, Gopal M, Tilak KVBR (1998) Effect of plant growth promoting rhizobacteria on competitive ability of introduced Bradyrhizobium sp. (Vigna) for nodulation. Microbiol Res 153(11):3–117

    Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azatebactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Kumar Rao JVDK, Reddy G (2010) Biological control of chickpea collar rot by co-inoculation of antagonistic bacteria and compatible rhizobia. Indian J Microbiol 50:419–424

    PubMed  CAS  Google Scholar 

  • Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    PubMed  CAS  Google Scholar 

  • Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41:281–288

    PubMed  CAS  Google Scholar 

  • Hubbell DH, Kidder G (2009) Biological nitrogen fixation. Univ Fla IFAS Ext Publ SL16:1–4

    Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Google Scholar 

  • Ibekwe AM, Angle JS, Chaney RL, Vonberkum P (1997) Enumeration and nitrogen fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agric Ecosyst Environ 61:103–111

    CAS  Google Scholar 

  • Iqbal MA, Khalid M, Shahzad SM, Ahmad M, Soleman N, Akhtar N (2012) Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik). Chilean J Agric Res 72:104–110

    Google Scholar 

  • Iruthayathas EE, Gunasekaran S, Vlassak K (1983) Effect of combined inoculation of Azospirillum and Rhizobium on nodulation and N2 fixation of winged bean and soybean. Sci Hortic 20:231–240

    Google Scholar 

  • Jadhav RS, Thaker NV, Desai A (1994) Involvement of the siderophore of cowpea Rhizobium in the iron nutrition of the peanut. World J Microbiol Biotechnol 10:360–361

    CAS  Google Scholar 

  • Janisiewicz WJ (1996) Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology 86:473–479

    Google Scholar 

  • Juge C, Prévost D, Bertrand A, Bipfubusa M, Chalifour F-P (2012) Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Appl Soil Ecol 61:147–157

    Google Scholar 

  • Khammas KM, Ageron E, Grimont PAD, Kaisar P (1989) Azospirillum irakense sp. nov., a nitrogen fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693

    PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Indian J Bot Soc 81:255–263

    Google Scholar 

  • Khot GG, Tauro P, Dadarwal KR (1996) Rhizobacteria from chickpea (Cicer arietinum L.) rhizosphere effective in wilt control and promote nodulation. Indian J Microbiol 36:217–222

    Google Scholar 

  • Khurana SA, Sharma P (2000) Effect of dual inoculation of phosphate solubilizing bacteria, Bradyrhizobium sp. (Cicer) and phosphorus on nitrogen fixation and yield of chickpea. Indian J Pulses Res 13:66–67

    Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology. Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacteria inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Knight TJ, Langston-Unkefer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science 241:951–954

    PubMed  CAS  Google Scholar 

  • Kumar R, Chandra R (2008) Influence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentil. World J Agric Sci 4:297–301

    Google Scholar 

  • Kumar J, Sing NB, van Rheenen HA, Johansen C, Asthana AN, Ali M, Agrawal SC, Pandey RL, Verma MM, Gaur RB, Satyanarayana A, Patil MS, Rahman MM, Saxena NP, Haware MP, Wightman JA (1997) Growing chickpea in India. International Crops Research Institute for the Semi-Arid Tropics/Indian Council of Agricultural Research, Patancheru/New Delhi, p 602

    Google Scholar 

  • Kumar BSD, Berggfren I, Martensson AM (2001) Potential for improving pea production by co-inoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil 229:25–34

    CAS  Google Scholar 

  • Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioeng 95:399–403

    PubMed  CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    PubMed  CAS  Google Scholar 

  • Lian B, Prithiviraj B, Souleimanov A, Smith DL (2001) Evidence for the production of chemical compounds analogous to nod factor by the silicate bacterium Bacillus circulans GY92. Microbiol Res 156:289–292

    PubMed  CAS  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St Paul, pp 1–26

    Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophore enhances level of iron available to Pseudomonas putida in rhizosphere. Appl Environ Microbiol 65:5357–5363

    PubMed  CAS  Google Scholar 

  • Machackova I, Chavaux N, Dewitte W, Onckelen HV (1997) Diurnal fluctuations in ethylene formation in Chenopodium rubrum. Plant Physiol 113:981–985

    PubMed  CAS  Google Scholar 

  • Magalhaes FM, Baldani JI, Souto SM, Kuykendall JR, Dobereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430

    Google Scholar 

  • Malik DK, Sindhu SS (2008) Transposon-derived mutants of Pseudomonas strains altered in indole acetic acid production: effect on nodulation and plant growth in green gram (Vigna radiata L.). Physiol Mol Biol Plant 14:315–320

    CAS  Google Scholar 

  • Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plant 17:25–32

    CAS  Google Scholar 

  • Marek-Kozaczuk M, Skorupska A (2001) Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol Fertil Soils 33:146–151

    CAS  Google Scholar 

  • Marek-Kozaczuk M, Derylo M, Skorupska A (1996) Tn5 insertion mutants of Pseudomonas sp. 267 defective in siderophore production and their effect on clover (Trifolium pratense) nodulated with Rhizobium leguminosarum bv. trifolii. Plant Soil 179:269–274

    CAS  Google Scholar 

  • Marek-Kozaczuk M, Kopcinska J, Lotocka B, Golinowski W, Skorupska A (2000) Infection of clover by plant growth promoting Pseudomonas fluorescens strain 267 and Rhizobium leguminosarum bv. trifolii studied by mTn5-gusA. Antonie van Leeuwenhock 78:1–11

    CAS  Google Scholar 

  • Martinez-Toledo MV, Salmeron V, Gonzalez-Lopez J (1991) Biological characteristics of Azotobacter spp. in natural environments. Trends Soil Sci 1:15–23

    Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengal K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Google Scholar 

  • Matsukuma S, Okuda T, Watanabe J (1994) Isolation of actinomycetes from pine litter layers. Actinomycetologica 8:57–65

    Google Scholar 

  • McLoughlin TJ, Owens PA, Alt SG (1985) Competition studies with fast growing Rhizobium japonicum strains. Can J Microbiol 31:220–223

    Google Scholar 

  • Medeot DB, Paulucci NS, Albornoz AI, Fumero MV, Bueno MA, Garcia MB, Woelke MR, Okon Y, Dardanelli MS (2010) Plant growth promoting rhizobacteria improving the legume-rhizobia symbiosis. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Berlin, pp 473–494

    Google Scholar 

  • Medina A, Probanza A, Gutierrez Manero FJ, Azcon R (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22:15–28

    Google Scholar 

  • Mehboob I, Naveed M, Zahir ZA (2009) Rhizobial association with non-legumes: mechanisms and applications. Crit Rev Plant Sci 28:432–456

    CAS  Google Scholar 

  • Mirza BS, Mirza MS, Bano A, Malik KA (2007) Co-inoculation of chickpea with Rhizobium isolates from roots and nodules and phytohormone-producing Enterobacter strains. Aust J Exp Agric 47:1008–1015

    Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009a) Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761

    Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Kundu S, Gupta HS (2009b) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand Sect B Soil Plant Sci 59:189–196

    CAS  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    CAS  Google Scholar 

  • Mishra PK, Bisht SC, Mishra S, Selvakumar G, Bisht JK, Gupta HS (2012) Coinoculation of rhizobium leguminosarum-pr1 with a cold tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum L.). J Plant Nutr 35:243–256

    CAS  Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001a) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    CAS  Google Scholar 

  • Molla AH, Shamsuddin ZH, Saud HM (2001b) Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense. Commun Soil Sci Plant Anal 32:2177–2187

    CAS  Google Scholar 

  • Okazaki T, Takahashi K, Kizuka M, Enokita R (1995) Studies on actinomycetes isolated from plant leaves. Annu Rep Sankyo Res Lab 47:97–106

    Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    PubMed  CAS  Google Scholar 

  • Okon Y, Itzigsohn R, Burdman S, Hampel M (1995) Advances in agronomy and ecology of the Azospirillum/plant association. In: Tikhonovich IA, Provarov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic Publishers, Dordrecht, pp 635–640

    Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    PubMed  CAS  Google Scholar 

  • Pan B, Vessey JK, Smith DL (2002) Response of field-grown soybean to co-inoculation with the plant growth promoting rhizobacteria Serratia proteamaculans or Serratia liquefaciens, and Bradyrhizobium japonicum pre-incubated with genistein. Eur J Agron 17:143–153

    Google Scholar 

  • Pankaj K, Bansal RK, Dabur KR (2011) Effect of rhizobacteria as seedling inoculation on root-knot nematode and plant growth in rice-nursery. Indian J Nematol 41:41–46

    Google Scholar 

  • Parmer N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Google Scholar 

  • Parniske M, Downie JA (2003) Plant biology: locks, keys and symbioses. Nature 425:569–570

    PubMed  CAS  Google Scholar 

  • Pathak DV, Sharma MK, Sushil K, Naresh K, Sharma PK (2007) Crop improvement and root rot suppression by seed bacterization in chickpea. Arch Agron Soil Sci 53:287–292

    Google Scholar 

  • Paul S, Verma OP (1999) Influence of combined inoculation of Azotobacter and Rhizobium on the yield of chickpea. Indian J Microbiol 39:249–251

    Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:2–28

    Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84:940–947

    Google Scholar 

  • Plazinski J, Rolfe BG (1985) Influence of Azospirillum strains on the nodulation of clovers by Rhizobium strains. Appl Environ Microbiol 49:984–989

    PubMed  CAS  Google Scholar 

  • Podile AR, Laxmi VDV (1998) Seed bacterization with Bacillus subtilis AF 1 increases phenylalanine ammonia-lyase and reduces the incidence of fusarial wilt in pigeonpea. J Phytopathol 146:255–259

    CAS  Google Scholar 

  • Polonenko DR, Kloepper JW, Scher FM (1993) Nodulation promotion bacteria and use thereof. European Patent EP0227336

    Google Scholar 

  • Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81:1153–1161

    CAS  Google Scholar 

  • Qureshi MA, Ahmad MJ, Naveed M, Iqbal A, Akhtar N, Niazi KH (2009) Co-inoculation with Mesorhizobium ciceri and Azotobacter chroococcum for improving growth, nodulation and yield of chickpea (Cicer arietinum L.). Soil Environ 28:124–129

    CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr I (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremediation 7:19–32

    PubMed  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr I, Khanafer M (2007) Hydrocarbon utilization by nodule bacteria and plant growth-promoting rhizobacteria. Int J Phytoremediation 9:475–486

    PubMed  CAS  Google Scholar 

  • Rai R (1983) Efficacy of associative N2-fixation by streptomycin-resistant mutants of Azospirillum brasilense with genotypes of chickpea Rhizobium strains. J Agric Sci 100:75–80

    CAS  Google Scholar 

  • Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:544–550

    Google Scholar 

  • Rautela LS, Chandra R, Pareek RP (2001) Enhancing Rhizobium inoculum efficiency in urdbean by co-inoculation of Azotobacter chroococcum and Bacillus sp. Indian J Pulses Res 14:133–137

    Google Scholar 

  • Raverker KP, Konde BK (1988) Effect of Rhizobium and Azospirillum lipoferum inoculation on the nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106:249–252

    Google Scholar 

  • Reddy ASR, Babu JS, Reddy MCS, Khan MM, Rao MM (2011) Integrated nutrient management in pigeon pea (Cajanus cajana). Int J Appl Biol Pharm Technol 2:467–470

    Google Scholar 

  • Redmond JW, Batle M, Djjordjevic MA, Innes RW, Keumpel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature (London) 323:63–635

    Google Scholar 

  • Reid MS (1995) Ethylene in plant growth, development and senescence. In: Davies PJ (ed) Plant hormone: physiology biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 486–508

    Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar Grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51

    Google Scholar 

  • Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    CAS  Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of RhizobiumAzospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    CAS  Google Scholar 

  • Requena BN, Jimenez I, Toro M, Barea JM (1997) Interactions between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystem. New Phytol 136:667–677

    Google Scholar 

  • Richardson AE, Barea JM, McNeil AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rodelas B, Gonzales Lopez J, Martinez Toledo MV, Pozo C, Salmeron V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.). Biol Fertil Soils 29:165–169

    CAS  Google Scholar 

  • Rosas SB, Andres JA, Rovera M, Correa NS (2006) Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biol Biochem 38:3502–3505

    CAS  Google Scholar 

  • Roseline R, Lara R, Sarah S, German H, Aurelio G, Jorge R, Nancy M, Vidalina T, Miguel M, Lazaro G, Jos V (2008) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Google Scholar 

  • Russelle MP (2008) Biological dinitrogen fixation in agriculture. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems, 2nd edn. Agronomy monograph 22. American Society of Agronomy, Madison, pp 281–359

    Google Scholar 

  • Salem S, Saidi S, Chihaoui S-A, Mhamdi R (2012) Inoculation of Phaseolus vulgaris, Medicago laciniata and Medicago polymorpha with Agrobacterium sp. strain 10C2 may enhance nodulation and shoot dry weight but does not affect host range specificity. Ann Microbiol 62:1811–1817

    Google Scholar 

  • Samavat S, Samavat S, Besharati H, Behboudi K (2011) Interaction of rhizobia cultural filtrates with Pseudomonas fluorescens on Bean Damping-off control. J Agric Sci Technol 13:965–976

    Google Scholar 

  • Schlaman HR, Okker RJH, Lugtenberg BJJ (1992) Regulation of nodulation gene expression by nod D in rhizobia. J Bacteriol 174:5177–5182

    PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    PubMed  CAS  Google Scholar 

  • Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nutr Soil Sci 167:125–137

    CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth-promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    PubMed  CAS  Google Scholar 

  • Shweta B, Maheshwari DK, Dubey RC, Arora DS, Bajpal VK, Kang SC (2008) Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18:1578–1583

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Ali NI, Zaki MJ, Shaukat SS (2001) Evaluation of Aspergillus species for the biocontrol of Meloidogyne javanica in mungbean. Nematol Medit 29:115–121

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogen enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358

    PubMed  CAS  Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiate). Biol Fertil Soils 29:62–68

    CAS  Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Appl Soil Ecol 19:57–64

    Google Scholar 

  • Singh G, Sekhon HS, Sharma P (2011) Effect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L). Arch Agron Soil Sci 57:715–726

    Google Scholar 

  • Sivaramaiah N, Malik DK, Sindhu SS (2007) Improvement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. Cicer. Indian J Microbiol 47:51–56

    PubMed  CAS  Google Scholar 

  • Soe KM, Bhromsiri A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr 58:319–325

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indol-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    PubMed  CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    PubMed  CAS  Google Scholar 

  • Srinivasan M, Holl EB, Petersen DJ (1996) Influence of indole acetic acid producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditions. Can J Microbiol 42:1006–1014

    CAS  Google Scholar 

  • Srinivasan M, Petersen DJ, Holl FB (1997) Nodulation of Phaseolus vulgaris by Rhizobium etli in the presence of Bacillus. Can J Microbiol 43:1–8

    CAS  Google Scholar 

  • Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotechnol Lett 16:5919–5926

    Google Scholar 

  • Star L, Matan O, Dardanelli MS, Kapulnik Y, Burdman S, Okon Y (2012) The Vicia sativa spp. nigra – Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Plant Soil 356:165–174

    CAS  Google Scholar 

  • Tarrand JJ, Krieg NR, Dobereiner J (1978) A taxonomic study of the Azospirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. Nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    PubMed  CAS  Google Scholar 

  • Tate RL (1995) Soil microbiology (symbiotic nitrogen fixation). Wiley, New York, pp 307–333

    Google Scholar 

  • Tchebotar VK, Kang UG, Asis CA Jr, Akao S (1998) The use of GUS-reporter gene to study the effect of Azospirillum-Rhizobium coinoculation on nodulation of white clover. Biol Fertil Soils 27:349–352

    CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57:67–71

    CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DF, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus Wyec108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    PubMed  CAS  Google Scholar 

  • Tsigie A, Tilak KVBR, Saxena AK (2011) Field response of legumes to inoculation with plant growth-promoting rhizobacteria. Biol Fertil Soils 47:971–974

    Google Scholar 

  • Tsigie A, Tilak KVBR, Anil KS (2012) Field response of legumes to inoculation with plant growth-promoting rhizobacteria. Biol Fertil Soils 47:971–974

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodriguez-Barrueco C, Cervantes E, Chamber M, Igual JM (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    CAS  Google Scholar 

  • Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Beneduzi A, Passaglia A, Luciane-Maria P (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in rio grande do sul state. Rev Bras Ciênc Solo 33:1227–1235

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria in eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43:605–621

    CAS  Google Scholar 

  • Vessey JK, Buss TJ (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation and N-accumulation in grain legumes, controlled environment studies. Can J Plant Sci 82:282–290

    Google Scholar 

  • Vijila K, Jebaraj S (2008) Studies on the improvement of Rhizobium-green gram [Vigna radiata (L.) Wilczek] symbiosis in low nutrient, acid stress soils. Legume Res 31:126–129

    Google Scholar 

  • Villacieros M, Power B, Sanchez-Contreras M, Lloret J, Oruezabal RI, Martin M, Fernandez-Pinas F, Bonilla I, Whelan C, Dowling DN, Rivilla R (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54

    CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozana JM, Barea JM, Azcon R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    PubMed  Google Scholar 

  • Vivas A, Barea JM, Biro B, Azcon R (2006) Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. J Appl Microbiol 100:587–598

    PubMed  CAS  Google Scholar 

  • Volpin H, Burman S, Castro-Sowinski S, Kapulink Y, Okon Y (1996) Inoculation with Azospirillum increased exudation of rhizobial nod-gene inducers by alfalfa roots. Mol Plant Microbe Interact 5:388–394

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287

    CAS  Google Scholar 

  • Wasule DL, Wadyalkar SR, Buldeo AN (2003) Effect of phosphate solubilizing bacteria on role of Rhizobium on nodulation by soybean. In: Velazquez E (ed) First international meeting on microbial phosphate solubilization, Salamanca, Spain. Springer, Dordrecht, pp 139–142

    Google Scholar 

  • Weller DM (2007) Pseudomonas biological control agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    PubMed  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seed inoculation with Rhizobium phaseoli and plant growth-promoting rhizobacteria on yield and yield components. Pak J Biol Sci 11:1935–1939

    PubMed  CAS  Google Scholar 

  • Yahalom E, Okon Y, Dovrat A (1987) Azospirillum effects on susceptibility to Rhizobium nodulation and on nitrogen fixation of several forage legumes. Can J Microbiol 33:510–514

    CAS  Google Scholar 

  • Yahalom E, Okon Y, Dovrat A (1990) Possible mode of action of Azospirillum brasilense strain on the root morphology and nodule formation in burr medic (Medicago polymorpha). Can J Microbiol 36:10–14

    Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Yuming B, Xiaomin Z, Smith DL (2003) Enhanced soybean plant growth resulting from co-inoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1778

    Google Scholar 

  • Yuttavanichakul W, Lawongsa P, Wongkaew S, Teaumroong N, Boonkerd N, Nomura N, Tittabutr P (2012) Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biol Control 63:87–97

    Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fertil Soils 47:457–465

    CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Rev 63:968–989

    CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Google Scholar 

  • Zaidi A, Khan MS, Aamil M (2004) Bioassociative effect of rhizospheric microorganisms on growth, yield, and nutrient uptake of green gram. J Plant Nutr 27:601–612

    CAS  Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–460

    Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1997) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:452–459

    Google Scholar 

Download references

Acknowledgement

We are thankful to Hafiz Muhammad Haroon for his help in drawing Fig. 12.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir A. Zahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Mehboob, I., Naveed, M., Zahir, Z.A., Sessitsch, A. (2013). Potential of Rhizosphere Bacteria for Improving Rhizobium-Legume Symbiosis. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_12

Download citation

Publish with us

Policies and ethics