Skip to main content

Plant Growth-Promoting Endophytic Bacteria and Their Potential to Improve Agricultural Crop Yields

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Plant-associated bacteria are known to inhabit rhizosphere (Rhizobacteria), phyllosphere (epiphytes) and endosphere (endophytes). The action of bacterial endophytes residing in plant tissues remained unexplored due to culturing difficulties and lack of advanced identification techniques. Endophytes shield the plant from root pathogen attack by producing biofilm around roots. Rhizobia are perhaps the best example of plant-associated endobacteria as they facilitate N uptake in plants through Rhizobium-legume symbiosis. With certain physiological differences, several species of Rhizobium remain present in legume plants like alfalfa, clover and pea. In this chapter, if not otherwise stated, the ‘endophytes’ are mentioned with reference to endophyte bacteria only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem D, Sorkhoh N, Marafie M, Al-Awadhi H, Eliyas M, Radwan S (2010) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour Technol 101(15):5786–5792

    Article  CAS  PubMed  Google Scholar 

  • Andreote FD, de Araujo WL, de Azevedo JL, van Elsas JD, da Rocha UN, van Overbeek LS (2009) Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl Environ Microbiol 75(11):3396–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aschehoug ET, Metlen KL, Callaway RM, Newcombe G (2012) Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology 93(1):3–8

    Article  PubMed  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64(3):253–260

    Article  CAS  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16

    Article  Google Scholar 

  • Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194

    Google Scholar 

  • Bacon C, Porter J, Robbins J, Luttrell E (1977) Epichloe typhina from toxic tall fescue grasses. Appl Environ Microbiol 34(5):576–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ball OJ-P, Gwinn KD, Pless CD, Popay AJ (2011) Endophyte isolate and host grass effects on Chaetocnema pulicaria (Coleoptera: Chrysomelidae) feeding. J Econ Entomol 104(2):665–672

    Article  PubMed  Google Scholar 

  • Banerjee MR, Yesmin L (2009) Sulfur-oxidizing plant growth promoting rhizobacteria for enhanced canola performance. Google Patents

    Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK, Rai MK, others (2005) Plant-growth-promoting rhizobacteria as biofertilizers and biopesticides. In: Handbook of microbial biofertilizers, pp 137–181

    Google Scholar 

  • Bara R, Aly AH, Pretsch A, Wray V, Wang B, Proksch P, Debbab A (2013) Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J Antibiot 66(8):491–493

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Barros IA, Araújo WL, Azevedo JL (2010) The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae). Braz J Microbiol 41(4):956–965

    Article  Google Scholar 

  • Bell C, Dickie G, Harvey W, Chan J (1995) Endophytic bacteria in grapevine. Can J Microbiol 41(1):46–53

    Article  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112(3):919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204(2):153–168

    Article  CAS  Google Scholar 

  • Berg T, Tesoriero L, Hailstones D (2005) PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol 54(3):416–427

    Article  CAS  Google Scholar 

  • Bhore SJ, Preveena J, Kandasamy KI (2013) Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species. Pharm Res 5(2):134

    Google Scholar 

  • Boddey R, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. In: Nitrogen fixation. Springer, pp 105–111

    Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke JM, Rorie RW (2002) Changes in ovarian function in mature beef cows grazing endophyte infected tall fescue. Theriogenology 57(6):1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Buttner D, Bonas U (2006) Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Curr Opin Microbiol 9(2):193–200

    Article  PubMed  CAS  Google Scholar 

  • Canny M, Huang C (1993) What is in the intercellular spaces of roots? Evidence from the cryo-analytical-scanning electron microscope. Physiol Plant 87(4):561–568

    Article  CAS  Google Scholar 

  • Canny M, McCully M (1988) The xylem sap of maize roots: its collection, composition and formation. Funct Plant Biol 15(4):557–566

    Article  CAS  Google Scholar 

  • Castillo U, Harper JK, Strobel GA, Sears J, Alesi K, Ford E, Lin J, Hunter M, Maranta M, Ge H, Yaver D, Jensen JB, Porter H, Robison R, Millar D, Hess WM, Condron M, Teplow D (2003) Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol Lett 224(2):183–190

    Article  CAS  PubMed  Google Scholar 

  • Chanway CP (2002) Bacterial endophytes. In: Encyclopedia of pest management, vol 1, pp 43–46

    Google Scholar 

  • Chen B, Zhu J, Sun QG, Zheng YH, Huang HQ, Bao SX (2011) A bacterial endophyte from banana: its isolation, identification, activity to Fusarium wilt and PGPR effect to banana seedlings. Microbiology/Weishengwuxue Tongbao 38(2):199–205

    CAS  Google Scholar 

  • Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7(13):11–16

    PubMed  PubMed Central  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160(Suppl 4):S99–s127

    Article  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa LEDO, Queiroz MV, Borges AC, Moraes CA, Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562–1575

    Article  Google Scholar 

  • Crawford KM, Land JM, Rudgers JA (2010) Fungal endophytes of native grasses decrease insect herbivore preference and performance. Oecologia 164(2):431–444

    Article  PubMed  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Maier A, Fiebig HH, Lin WH, Hertweck C (2011) A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org Biomol Chem 9(11):4029–4031

    Article  CAS  PubMed  Google Scholar 

  • Dobereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Science Tech Publishers, Madison

    Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135(2):325–334

    Article  CAS  Google Scholar 

  • Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol 57:621–629

    Article  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MA, Teplow DB, Sears J, Maranta M (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp.(MSU-2110) endophytic on Monstera sp. Microbiology 150(4):785–793

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Barker AV (1992) Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses. Part II. J Plant Nutr 15(11):2471–2490

    Article  CAS  Google Scholar 

  • Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C, Fontaine F, Barka EA (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant-Microbe Interact 25(4):496–504

    Article  CAS  PubMed  Google Scholar 

  • Fescue T (1990) A review of the agronomic characteristics of endophyte-free and endophyte-infected. Appl Agric Res 5(3):188–194

    Google Scholar 

  • Fisher R, Long S (1992) Rhizobium--plant signal exchange. Nature 357(6380):655

    Article  CAS  PubMed  Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36(6):524–531

    Article  Google Scholar 

  • Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms 5(4):70

    Article  PubMed Central  CAS  Google Scholar 

  • Fuentes-Ramı́rez LE, Caballero-Mellado J, Sepúlveda J, Martı́nez-Romero E (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29(2):117–128

    Article  Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351

    Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57(2):302–310

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296(2):226–234

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Goryluk A, Rekosz-Burlaga H, Blaszczyk M (2009) Isolation and characterization of bacterial endophytes of Chelidonium majus L. Pol J Microbiol 58(4):355–361

    CAS  PubMed  Google Scholar 

  • Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77(17):5934–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin H-S, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwinn KD, Bernard EC (1993) Interactions of endophyte infected grasses with the nematodes Meloidogyn marylandi and Pratylenchus scribneri. In: Proceeding of 2nd international symposium Acremonium/grass interactions. Plenary Papers, Plamerston North

    Google Scholar 

  • Hallmann J (2003) Biologische Bekämpfung pflanzenparasitärer Nematoden mit antagonistischen Bakterien. Bundesforschungsinstitut für Kulturpflanzen, Berlin

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hallmann J, Rodrıguez-Kábana R, Kloepper J (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31(4):551–560

    Article  CAS  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54(1):1–10

    Article  Google Scholar 

  • Han JI, Choi HK, Lee SW, Orwin PM, Kim J, Laroe SL, Kim TG, O’Neil J, Leadbetter JR, Lee SY, Hur CG, Spain JC, Ovchinnikova G, Goodwin L, Han C (2011) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193(5):1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008a) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39(2):187–200

    Article  Google Scholar 

  • Harish S, Saravanakumar D, Radjacommare R, Ebenezar E, Seetharaman K (2008b) Use of plant extracts and biocontrol agents for the management of brown spot disease in rice. BioControl 53(3):555–567

    Article  Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51(1):16–25

    Article  CAS  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Hauberg-Lotte L, Klingenberg H, Scharf C, Bohm M, Plessl J, Friedrich F, Volker U, Becker A, Reinhold-Hurek B (2012) Environmental factors affecting the expression of pilAB as well as the proteome and transcriptome of the grass endophyte Azoarcus sp. strain BH72. PLoS One 7(1):e30421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huitu O, Forbes KM, Helander M, Julkunen-Tiitto R, Lambin X, Saikkonen K, Stuart P, Sulkama S, Hartley S (2014) Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores. Front Plant Sci 5

    Google Scholar 

  • Humann JL, Wildung M, Pouchnik D, Bates AA, Drew JC, Zipperer UN, Triplett EW, Main D, Schroeder BK (2014) Complete genome of the switchgrass endophyte Enterobacter clocace P101. Stand Genomic Sci 9(3):726–734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56(1):34–43

    Article  CAS  PubMed  Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265

    Article  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65(2):197–209

    Article  Google Scholar 

  • Jesus M-B, Ben JJL (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3(1):60–75

    Article  CAS  Google Scholar 

  • Jha Y, Subramanian RB (2011) Endophytic Pseudomonas pseudoalcaligenes shows better response against the Magnaporthe grisea than a rhizospheric Bacillus pumilus in Oryza sativa (Rice). Arch Phytopathol Plant Protect 44(6):592–604

    Article  Google Scholar 

  • Jha Y, Subramanian R, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33(3):797–802

    Article  Google Scholar 

  • Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78(9):3504–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39(5):1087–1098

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4(5):317–320

    Article  CAS  Google Scholar 

  • Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201(2):599–609

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Palumbo J (2000) Bacterial endophytes and their effects on plants and uses in agriculture. Microbial Endophytes:199–233

    Google Scholar 

  • Kraepiel A, Bellenger J, Wichard T, Morel F (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22(4):573–581

    Article  CAS  PubMed  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorholter FJ, Weidner S, Puhler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24(11):1385–1391

    Article  CAS  PubMed  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46(1):57–71

    Article  Google Scholar 

  • Kumar N, Samiyappan R, Harish S, Kavino M (2007) Biopriming banana with plant growth-promoting endophytic bacteria induces systemic resistance against banana bunchy top virus. In: III international symposium on banana: ISHS-ProMusa symposium on recent advances in banana crop protection for sustainable, vol 828, pp 295–302

    Google Scholar 

  • Lee S, Reth A, Meletzus D, Sevilla M, Kennedy C (2000) Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. J Bacteriol 182(24):7088–7091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liarzi O, Ezra D (2014) Endophyte-mediated biocontrol of herbaceous and non-herbaceous plants. In: Verma CV, Gange CA (eds) Advances in endophytic research. Springer, New Delhi, pp 335–369

    Google Scholar 

  • Long H, Schmidt D, Baldwin I (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3(7):e2702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185(2):554–567

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93(4):1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Madore M, Webb JA (1981) Leaf free space analysis and vein loading in Cucurbita pepo. Can J Bot 59(12):2550–2557

    Article  CAS  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227(1–2):115–126

    Article  CAS  Google Scholar 

  • Martínez-Rodríguez JC, Mora-Amutio MD, Plascencia-Correa LA, Audelo-Regalado E, Guardado FR, Hernández-Sánchez E, Peña-Ramírez YJ, Escalante A, Beltrán-García MJ, Ogura T (2014) Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters. Braz J Microbiol 45(4):1333–1339

    Article  Google Scholar 

  • Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc Biol Sci 273(1599):2299–2304

    Article  CAS  Google Scholar 

  • McInroy J, Kloepper J (1994) Novel bacterial taxa inhabiting internal tissues of sweet corn and cotton. In: Improving plant productivity with rhizosphere bacteria. CSIRO, Melbourne, p 190

    Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4(1):81–95

    Article  CAS  PubMed  Google Scholar 

  • Meneses CH, Rouws LF, Simoes-Araujo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant-Microbe Interact 24(12):1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Miche L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant-Microbe Interact 19(5):502–511

    Article  CAS  PubMed  Google Scholar 

  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2(3):403–411

    Article  CAS  PubMed  Google Scholar 

  • Minamisawa K (2006) A milestone for endophyte biotechnology. Nat Biotechnol 24(11):1357–1358

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29(6):360–393

    Article  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131

    Article  CAS  Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    Article  CAS  PubMed  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2000) Biological nitrogen fixation (BNF) in micropropagated sugarcane plants inoculated with different endophytic diazotrophic bacteria. In: Nitrogen fixation: from molecules to crop productivity. Springer, pp 425–425

    Google Scholar 

  • Oliver JW, Schultze A, Rohrbach BW, Fribourg HA, Ingle T, Waller J (2000) Alterations in hemograms and serum biochemical analytes of steers after prolonged consumption of endophyte-infected tall fescue. J Anim Sci 78(4):1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Olson PE, Castro A, Joern M, Duteau NM, Pilon-Smits E, Reardon KF (2008) Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil. J Environ Qual 37(4):1439–1446

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr 2:1117–1142

    Google Scholar 

  • Pan JH, Lin YC, Tan N, Gu YC (2010) Cu(II): a “signaling molecule” of the mangrove endophyte Fusarium oxysporum ZZF51? Biometals 23(6):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417(1–2):99–116

    Article  CAS  Google Scholar 

  • Patel MV, Patel RK (2014) Indole-3-acetic acid (IAA) production by endophytic bacteria isolated from saline dessert, the Little Rann of Kutch. CIBTech J Microbiol 3:17–28

    Google Scholar 

  • Perring TM, Gruenhagen NM, Farrar CA (1999) Management of plant viral diseases through chemical control of insect vectors. Annu Rev Entomol 44(1):457–481

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro EA, Carvalho JM, Santos DC, Feitosa AO, Marinho PS, Guilhon GM, Santos LS, Souza AL, Marinho AM (2013) Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. An Acad Bras Cienc 85(4):1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Popay A, Prestidge R, Rowan D, Dymock J (1990) The role of Acremonium lolii mycotoxins in insect resistance of perennial ryegrass (Lolium perenne). In: Quisenberry SS, Joost RE (eds) Proceedings of the international symposium on Acremonium/grass interactions’, pp 44–48

    Google Scholar 

  • Prestidge RA, Gallagher RT (1985) Lolitrem B - a stem weevil toxin isolated from Acremonium-infected ryegrass. Proc NZ Weed Pest Control Conf 38:38–40

    Google Scholar 

  • Prieto P, Navarro-Raya C, Valverde-Corredor A, Amyotte SG, Dobinson KF, Mercado-Blanco J (2009) Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microb Biotechnol 2(4):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Principe A, Alvarez F, Castro MG, Zacchi LF, Fischer SE, Mori GB, Jofre E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55(4):314–322

    Article  CAS  PubMed  Google Scholar 

  • Quadt-Hallmann A, Kloepper JW, Benhamou N (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43(6):577–582

    Article  CAS  Google Scholar 

  • Radwan S (2009) Phytoremediation for oily desert soils. In: Singh A, Kuhad CR, Ward PO (eds) Advances in applied bioremediation. Springer, Berlin/Heidelberg, pp 279–298

    Google Scholar 

  • Rajendran L, Samiyappan R, Raguchander T, Saravanakumar D (2007) Endophytic bacteria mediate plant resistance against cotton bollworm. J Plant Interact 2(1):1–10

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Reis V, Estrada-De Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani V, Schmid M, Baldani J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54(6):2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287(1–2):15–21

    Article  CAS  Google Scholar 

  • Russo A, Toffanin A, Felici C, Cinelli F, Carrozza GP, Vettori L (2012) Plant beneficial microbes and their application in plant biotechnology. INTECH Open Access Publisher

    Google Scholar 

  • Ryan P, Bennett-Wimbush K, Vaala W, Bagnell C (2001) Systemic relaxin in pregnant pony mares grazed on endophyte-infected fescue: effects of fluphenazine treatment. Theriogenology 56(3):471–483

    Article  CAS  PubMed  Google Scholar 

  • Rybakova D, Cernava T, Köberl M, Liebminger S, Etemadi M, Berg G (2015) Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil: 1-16

    Google Scholar 

  • Ryu CM, Hu CH, Reddy M, Kloepper JW (2003) Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160(2):413–420

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Dudeja SS, Giri R, Kumar V (2015) Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 55(1):74–81

    Article  CAS  PubMed  Google Scholar 

  • Saker KE, Allen V, Kalnitsky J, Thatcher C, Swecker W, Fontenot J (1998) Monocyte immune cell response and copper status in beef steers that grazed endophyte-infected tall fescue. J Anim Sci 76(10):2694–2700

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Fernández RE, Diaz D, Duarte G, Lappe-Oliveras P, Sánchez S, Macías-Rubalcava ML (2016) Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb Ecol 71(2):347–364

    Article  PubMed  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz B, Boyle C (2006) What are Endophytes?. In: Schulz PDDBJE, Boyle DCJC, Sieber DTN (eds) Microbial root endophytes. Springer, Berlin/Heidelberg, pp 1–13

    Google Scholar 

  • Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283

    Article  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004

    Article  CAS  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70(3):1475–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50(4):239–249

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2011) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25(1):28–36

    Article  CAS  Google Scholar 

  • Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang X, Lou K (2013) Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians. J Insect Sci 13(1):151

    PubMed  PubMed Central  Google Scholar 

  • Siegel M, Latch G, Bush L, Fannin F, Rowan D, Tapper B, Bacon C, Johnson M (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16(12):3301–3315

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey R, Maheshwari D, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promotory activity in chir-pine. Crop Prot 29(10):1142–1147

    Article  Google Scholar 

  • Son H-J, Park G-T, Cha M-S, Heo M-S (2006) Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97(2):204–210

    Article  CAS  PubMed  Google Scholar 

  • Song W, Yang HL, Sun XL, Wang YS, Wang YD, Chen ZH (1998) The rice endophytic diazotroph and PGPR. In: Nitrogen fixation with non-legumes. Springer, pp 41–48

    Google Scholar 

  • Stajković O, De Meyer S, Miličić B, Willems A, Delić D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Botanica Serbica 33(1):107–114

    Google Scholar 

  • Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97(22):9589–9596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Straub D, Yang H, Liu Y, Tsap T, Ludewig U (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30(T). J Exp Bot 64(14):4603–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44(2):162–167

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant–microbe interactions by ethylene inhibition. Biotechnol Adv 24(4):382–388

    Article  CAS  PubMed  Google Scholar 

  • Sulbaran M, Perez E, Ball MM, Bahsas A, Yarzabal LA (2009) Characterization of the mineral phosphate-solubilizing activity of Pantoea agglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolivar State). Curr Microbiol 58(4):378–383

    Article  CAS  PubMed  Google Scholar 

  • Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R (2012) Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol Control 60(1):59–67

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57(4):1036–1050

    Article  CAS  PubMed  Google Scholar 

  • Tashi-Oshnoei F, Harighi B, Abdollahzadeh J (2017) Isolation and identification of endophytic bacteria with plant growth promoting and biocontrol potential from oak trees. For Pathol 47(5):e12360

    Article  Google Scholar 

  • Tervet IW, Hollis JP (1948) Bacteria in the storage organs of healthy plants. Phytopathology 38:960–967

    Google Scholar 

  • Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187(21):7254–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian B, Zhang C, Ye Y, Wen J, Wu Y, Wang H, Li H, Cai S, Cai W, Cheng Z (2017) Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric Ecosyst Environ 247:149–156

    Article  Google Scholar 

  • Ulrich K, Stauber T, Ewald D (2008) Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue Organ Cult 93(3):347–351

    Article  Google Scholar 

  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85(5):1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Verma VC, Gange AC (2013) Advances in endophytic research. Springer Science & Business Media

    Google Scholar 

  • Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y (2012) Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89(6):743–750

    Article  CAS  PubMed  Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor C, O’callaghan K, Kothari S, Davey M, Dénarié J, Cocking E (1997) Interactions of rhizobia with rice and wheat. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, pp 115–122

    Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193(13):3383–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microbe Interact 13(10):1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Wolfe B, Bush M, Monfort S, Mumford S, Pessier A, Montali R (1998) Abdominal lipomatosis attributed to tall fescue toxicosis in deer. J Am Vet Med Assoc 213(12):1783–1786, 1754

    CAS  PubMed  Google Scholar 

  • Xu Z, Baunach M, Ding L, Peng H, Franke J, Hertweck C (2014) Biosynthetic code for divergolide assembly in a bacterial mangrove endophyte. Chembiochem 15(9):1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Yue Q, Wang C, Gianfagna TJ, Meyer WA (2001) Volatile compounds of endophyte-free and infected tall fescue (Festuca arundinacea Schreb.). Phytochemistry 58(6):935–941

    Article  CAS  PubMed  Google Scholar 

  • Zehnder GW, Yao C, Murphy JF, Sikora ER, Kloepper JW (2000) Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. BioControl 45(1):127–137

    Article  Google Scholar 

  • Zhang S, Outlaw W (2001) Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Environ 24(10):1045–1054

    Article  CAS  Google Scholar 

  • Zhang X, Li C, Nan Z (2012) Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte. Sci China Life Sci 55(9):793–799

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li Y, Xia L (2014) An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnol Biofuels 7(1):152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu B, Liu H, Tian WX, Fan XY, Li B, Zhou XP, Jin GL, Xie GL (2012) Genome sequence of Stenotrophomonas maltophilia RR-10, isolated as an endophyte from rice root. J Bacteriol 194(5):1280–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziedan EHE (2006) Manipulating endophytic bacteria for biological control to soil borne diseases of peanut. J Appl Sci Res 2:497–502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A., Yadav, K. (2019). Plant Growth-Promoting Endophytic Bacteria and Their Potential to Improve Agricultural Crop Yields. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_7

Download citation

Publish with us

Policies and ethics