Skip to main content

Advertisement

Log in

The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

With the aim to select powerful microbial strains to be used for the enhancement of maize yield and resistance to abiotic and biotic stresses, we tested five endophytic bacterial strains previously isolated from maize roots. A range of different laboratory assays in regard to potential plant growth promotion was performed and strains were further evaluated for improving growth of five maize cultivars under axenic and natural soil conditions. Endophytic colonization was an additional component in our selection process as it is of high importance for an inoculant strain to efficiently colonize the plant environment. All strains had the potential to improve maize seedling growth under axenic conditions. Enterobacter sp. strain FD17 showed both the highest growth-promoting activity under axenic conditions as well as colonization capacity. FD17 was therefore selected for further plant tests in a net house, in which two different maize cultivars were grown in large pots until ripening and subjected to outdoor climatic conditions. Results showed that inoculation significantly increased plant biomass, number of leaves plant−1, leaf area, and grain yield up to 39 %, 14 %, 20 %, and 42 %, respectively, as compared to the un-inoculated control. Similarly, inoculation also improved the photochemical efficiency of photosystem II (PSII) of maize plant and reduced the time needed for flowering. We also confirmed that strain FD17 is able to colonize the rhizosphere, roots and stems. Based on rigorous testing, Enterobacter sp. strain FD17 showed the highest potential to promote growth and health of maize grown under natural conditions. This study suggested that in vitro plant growth-promoting traits and potential of maize seedling growth promotion by bacterial endophytes could be used for the selection of potential inoculant strains subjected for further testing as bio-inoculant under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Andreote FD, da Rocha UN, Araujo WL, Azevedo JL, van Overbeek LS (2010) Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie van Leeuwenhoek 97:389–399

    Article  PubMed Central  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barea J, Pozo M, Azcon R, Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barret M, Morrissey JP, O'Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48:173–182

    Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee RB, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay SN (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48:173–182

    Article  CAS  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49

    CAS  PubMed  Google Scholar 

  • Brady C, Cleenwerck I, Venter SN, Vancanneyt M, Swings J, Coutinho TA (2008) Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Sys Appl Microbiol 31:447–460

    Article  CAS  Google Scholar 

  • Brimecombe MJ, De Liej FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 95–140

    Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 64:807–838

    Article  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (1992) Biochemical activities of microorganisms. In: Microbiology, a laboratory manual. The Benjamin/Cummings Publishing, California, USA, pp 125–178

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149

    Article  CAS  Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant associated bacteria. Mol Plant-Microbe Interact 11:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart GSAB (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma. I. production of non-volatile antibiotics. Trans Brit Mycol Soc 57:25–39

    Article  CAS  Google Scholar 

  • Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:147–149

    Article  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, The Netherlands, pp 143–172

    Google Scholar 

  • Gasser I, Müller H, Berg G (2009) Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants. FEMS Microbiol Ecol 70:142–150

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Jiping L (1998) A model for the lowering of plant ethylene concentrations by plant growth–promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hayati D, Ranjbar Z, Karami E (2011) Measuring agricultural sustainability. In: Lichtfouse E (ed) Biodiversity, biofuels, agroforestry and conservation agriculture. Sustainable Agriculture Reviews. Springer-Verlag, The Netherlands, pp 73–100

    Google Scholar 

  • Hynes RK, Leung GCY, Hirkala DLM, Nelson LM (2008) Isolation, selection, and characterisation of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can J Microbiol 54:248–258

    Article  CAS  PubMed  Google Scholar 

  • Juan ML, Gonzalez LW, Walker GC (1998) A novel screening method for isolating exopolysaccharide deficient mutants. Appl Environ Microbiol 64:4600–4602

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khalid M, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer-Verlag, Berlin, Germany, pp 133–160

    Chapter  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci U S A 108:3465–3472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laus MC, van Brussel AAN, Kijne JW (2005) Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs. Mol Plant-Microbe Interact 18:533–538

    Article  CAS  PubMed  Google Scholar 

  • Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146

    Article  CAS  Google Scholar 

  • Madi L, Henis Y (1989) Aggregation in Azospirillum brasilense Cd: conditions and factors involved in cell-to-cell adhesion. Plant Soil 115:89–98

    Article  Google Scholar 

  • Maiti R (1996) Sorghum science. Science Publishers, Lebanon, NH, p 352

    Google Scholar 

  • Männistö MK, Häggblom MM (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29:229–243

    Article  PubMed  Google Scholar 

  • Mateos PF, Jimenez-Zurdo JI, Chen J, Squartini AS, Haack SK, Martinez-Molina E, Hubbell DH, Dazzo FB (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58:1816–1822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medina P, Baresi L (2007) Rapid identification of gelatin and casein hydrolysis using TCA. J Microbiol Methods 69:391–393

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for screening phosphate solubilization bacteria. Curr Microbiol 43:57–58

    Article  Google Scholar 

  • Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013) Advances in elucidating beneficial interactions between plants, soil and bacteria. Adv Agron 121:381–445

    Article  CAS  Google Scholar 

  • Montañez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya (in Russian) 17:362–370

    CAS  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature and genotype effects on epiphytic and endophytic colonization and in vitro growth promotion of tomato (Lycopersicon esculentum L.) by a pseudomonad bacterium. Can J Microbiol 43:354–361

    Article  CAS  Google Scholar 

  • Prischl M, Hackl E, Pastar M, Pfeiffer S, Sessitsch A (2012) Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Appl Soil Ecol 54:39–48

    Article  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  • Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:4885–4890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rosado AS, De Azevedo FS, da Croz DW, Van Elas JD, Seldin L (1998) Phenotypic and genetic diversity of Paenibacillus azatofeixans strains isolated from the rhizophere soil of different grasses. J Appl Microbiol 84:216–226

    Article  Google Scholar 

  • Ruiza D, Agaras B, de Werrab P, Wall LG, Valverde C (2011) Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J Microbiol 49:902–912

    Article  CAS  PubMed  Google Scholar 

  • Sarwar M, Arshad M, Martens DA, Frankenberger WT Jr (1992) Tryptophan dependent biosynthesis of auxins in soil. Plant Soil 147:207–215

    Article  CAS  Google Scholar 

  • Scervino JM, Mesa MP, Mónica ID, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR, Rufty TW (2012) Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Secur 1:94–98

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray R, Wood W, Krieg N (eds) Methods for general and molecular bacteriology. ASM Press, Washington, DC, p 615

    Google Scholar 

  • Smyth EM, McCarthy J, Nevin R, Khan MR, Dow JM, O'Gara F, Doohan FM (2011) In vitro analyses are not reliable predictors of the plant growth promotion capability of bacteria; a Pseudomonas fluorescens strain that promotes the growth and yield of wheat. J Appl Microbiol 111:683–692

    Article  CAS  PubMed  Google Scholar 

  • Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbuchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other storage compounds. Arch Microbiol 171:73–80

    Article  CAS  PubMed  Google Scholar 

  • Staudt AK, Wolfe LG, Shrout JD (2012) Variations in exopolysaccharide production by Rhizobium tropici. Arch Microbiol 194:197–206

    Article  CAS  PubMed  Google Scholar 

  • Steel RGD, Torrie JH, Dicky DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, Singapore

    Google Scholar 

  • Strader LC, Chen GL, Bartel B (2010) Ethylene directs auxin to control root cell expansion. Plant J 64:874–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria in the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32

    Article  Google Scholar 

  • Vance CP (2011) Phosphorus as a critical macronutrient. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. John Wiley & Sons, Iowa, USA, pp 229–264

    Google Scholar 

  • Weaver PK, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao T (2004) Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region: III. Phosphate-solubilizing power and auxin production. Acta Prataculturae Sinica 13:85–90

    Google Scholar 

  • Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, González B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Higher Education Commission (HEC) of Pakistan for financial support. We thank Anton Grahsl for help with the net house experiment and Dr. Günter Brader for providing a reporter strain (A. tumefaciens NTL4. pZLR4) and positive control (A. tumefaciens NTL1. pTiC58ΔaccR) for the AHL assay. The authors also thank Prof. Holger Bohlmann, Division of Plant Protection, University of Natural Resources and Applied Sciences, Vienna for providing fungal pathogen strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naveed, M., Mitter, B., Yousaf, S. et al. The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50, 249–262 (2014). https://doi.org/10.1007/s00374-013-0854-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0854-y

Keywords

Navigation