Skip to main content

Mutualistic Plant Associations Related to Insect Resistance

  • Chapter
  • First Online:
Molecular Advances in Insect Resistance of Field Crops
  • 395 Accesses

Abstract

On this planet, crops and insects are two predominating classes as living entities. Among all biodiverse systems, plants hold the foremost commodious part; however, insects are the most plausible class. Both kingdoms have mutualistic associations with one another living divorced life. Green plants are the essential makers of food, and all creatures are heterotrophs which depend straightforwardly or by implication on plant-derived food. Thus, almost three-fourths of all angiosperms require the administrations of creepy crawly pollinators. The entomophilic blossoming plants and their flower pollinators are subsequently addressed as the most obvious and broad material illustration of mutualism among living organic entities. However, a wide assortment of phytophagous insects likewise prospers, enhances, and supports these plants. Thus, plants have advanced a bewildering cluster of morphological and biochemical hindrances for security against insects and different herbivores. Transformative associations among plants and bugs may have added to the expanded biodiversity and achievement of both these gatherings. The investigation of these interrelationships, as illustrated in this chapter, is of incredible importance for future crop development. The advancement of insect-resistant and safe cultivars of plants and progress in integrated pest management need a mind-boggling comprehension of insect plant connections. Best-in-class strategies like freak investigation, metabolomics, RNAi, and proteomics created during the recent 30 years have been useful in giving improved understanding into these interrelationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Matsuda K (2000) Feeding responses of four phytophagous lady beetle species (Coleoptera: Coccinellidae) to cucurbitacins and alkaloids. Appl Entomol Zool 35:257–264

    Article  CAS  Google Scholar 

  • Adams AS, Aylward FO, Adams SM et al (2013) Mountain pine beetles colonizing historical and native host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Micobiol 79:3468–3475

    Article  CAS  Google Scholar 

  • Aggrawal R, Subramanyam S, Zhao C et al (2014) Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor). PLoS One 9(6):e100958

    Article  CAS  Google Scholar 

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defence against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  • Alborn T, Turlings TCH, Jones TH et al (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Aluja M, Prokopy RJ (1993) Host odour and visual stimulation interaction during intratree host finding behaviour of Rhagoletis pomonella flies. J Chem Ecol 19:2671–2696

    Article  CAS  PubMed  Google Scholar 

  • Andersen JF, Walding JK, Evans PH, Bowers WS, Feyereisen R (1997) Substrate specificity for the epoxidation of terpenoids and active site topology of house fly cytochrome P450 6A1. Chem Res Toxicol 10:156–164

    Article  CAS  PubMed  Google Scholar 

  • Andow DA (1991) Vegetation diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • Arora R (2012) Co-evolution of insects and plants. In: Arora R, Singh B, Dhawan AK (eds) Theory and practice of integrated pest management. Scientific Publications, Jodhpur, pp 49–75

    Google Scholar 

  • Arora R, Dhaliwal GS (2004) Biochemical bases of resistance in plants to insects. In: Dhaliwal GS, Singh R (eds) Host plant resistance to insects: concepts and applications. Panima Publications, New Delhi, pp 84–125

    Google Scholar 

  • Arora R, Sandhu S (2017) Insect-plant interrelationships. In: Arora R, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer, Singapore, pp 1–44

    Chapter  Google Scholar 

  • Atwal AS (2000) Essentials of beekeeping and pollination. Kalyani Publications, New Delhi

    Google Scholar 

  • Auclair JC (1963) Aphid feeding and nutrition. Annu Rev Entomol 8:439–490

    Article  Google Scholar 

  • Axelrod DI (1960) The evolution of flowering plants. In: Tax S (ed) Evolution after Darwin, vol I. The evolution of life. University of Chicago Press, Chicago, pp 227–305

    Google Scholar 

  • Ayasse M, Schiesl FP, Paulus HF et al (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc Lond B 270:517–522

    Article  CAS  Google Scholar 

  • Baker HG, Baker I (1986) The occurrence and significance of amino acids in floral nectars. Plant Syst Evol 151:175–186

    Article  CAS  Google Scholar 

  • Banerjee MK, Kalloo G (1989) Role of phenols in resistance to tomato leaf curl virus, Fusarium wilt and fruit borer in Lycopersicon. Curr Sci 52:575–576

    Google Scholar 

  • Barbehenn RV (2003) Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. J Chem Ecol 29:683–702

    Article  CAS  PubMed  Google Scholar 

  • Barbosa P, Schulz JC (1987) Insect outbreaks. Academic, San Diego

    Google Scholar 

  • Beck SD (1965) Resistance of plants to insects. Annu Rev Entomol 10:207–232

    Article  Google Scholar 

  • Berenbaum MR (1983) Coumarins and caterpillars: a case for co-evolution. Evolution 37:163–179

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR (1991a) Comparative processing of allelochemicals in the papilionidae (Lepidoptera). Arch Insect Biochem Physiol 17:213–221

    Article  CAS  Google Scholar 

  • Berenbaum MR (1991b) Coumarins. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, London, pp 221–250

    Chapter  Google Scholar 

  • Berenbaum MR (1995) Turnabout is fairplay: secondary roles for primary compounds. J Chem Ecol 21:925–940

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR, Zangerl AR (1998) Chemical phenotype matching between a plant and its insect herbivore. Proc Natl Acad Sci U S A 95:13743–13748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernays EA (1986) Diet-induced head allometry among foliage chewing insects and its importance for graminivores. Science 231:495–497

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA, Chamberlain DJ (1980) A study of tolerance of ingested tannin in Schistocerca gregaria. J Insect Physiol 26:415–420

    Article  CAS  Google Scholar 

  • Bodnaryk RP (1992) Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae Goeze. Can J Plant Sci 72:1295–1303

    Article  Google Scholar 

  • Boone CK, Keefover-Ring K, Mapes AC et al (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defence compounds. J Chem Ecol 39:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Bottger GT, Sheechan ET, Lukefahr MJ (1964) Relation of gossypol of cotton plants to insect resistance. J Econ Entomol 57:283–285

    Article  CAS  Google Scholar 

  • Brar DS, Sarao PS, Singh KS, Jena KK, Fujita D (2015) Biotechnological approaches for enhancing resistance to planthoppers in rice. In: Singh B, Arora R, Gosal SS (eds) Biological and molecular approaches in pest management. Scientific Publications, Jodhpur, pp 13–38

    Google Scholar 

  • Bridges M, Jones AME, Bones AM et al (2002) Spatial organization of the glucosinolate myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B 269:187–191

    Article  CAS  Google Scholar 

  • Brioschi D, Nadalini LD, Bengtsonb MH et al (2007) General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor. Insect Biochem Mol Biol 37:1283–1240

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA (2015) Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J Exp Bot 66:455–465

    Article  CAS  PubMed  Google Scholar 

  • Bull DL, Ivie GW, Beier RC et al (1986) In vitro metabolism of a linear furanocoumarin (8-methoxypsoralen, xanthotoxin) by mixed-function oxidases of larvae of black swallowtail butterfly and fall armyworm. J Chem Ecol 12:885–892

    Article  CAS  PubMed  Google Scholar 

  • Buntin DG, Chapin JW (1990) Biology of Hessian fly (Diptera: Cecidomyiidae) in the Southeastern United States: geographic variation and temperature-dependent phenology. J Econ Entomol 83:1015–1024

    Article  Google Scholar 

  • Burkle LA, Alarcon R (2011) The future of plant-pollinator diversity: understanding interaction networks across time, space and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Casida JE (ed) (1973) Pyrethrum: the natural insecticide. Academic, New York

    Google Scholar 

  • Chambers DL (1978) Attractants for fruit fly survey and control. In: Shorey HH, Mckelvey JJ (eds) Chemical control of insect behavior: theory and application. Wiley, New York, pp 327–344

    Google Scholar 

  • Chapman RF (1974) The chemical inhibition of feeding by phytophagous insects. Bull Entomol Res 64:339–363

    Article  Google Scholar 

  • Chen MS, Fellers JP, Zhu YC et al (2006) A super-family of genes coding for secreted salivary gland proteins from the Hessian fly, Mayetiola destructor. J Insect Sci 6:12

    Article  PubMed Central  Google Scholar 

  • Chen MS, Echegaray E, Whitworth RJ et al (2009) Virulence analysis of Hessian fly populations from Texas, Oklahoma and Kansas. J Econ Entomol 102:774–780

    Article  PubMed  Google Scholar 

  • Chen M-S, Liu S, Wang H et al (2016) Genes expressed differentially in Hussian fly larvae feeding in resistant and susceptible plants. Int J Mol Sci 14(8):1324. https://doi.org/10.3390/ijms17081324

    Article  CAS  Google Scholar 

  • Chhabra KS, Kooner BS, Sharma AK et al (1990) Sources of resistance in chickpea: role of biochemical components on incidence of gram pod borer, Helicoverpa armigera (Hubner). Indian J Entomol 52:423–430

    Google Scholar 

  • Chisholm ST, Cooker G, Day B et al (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Chiu TL, Wen Z, Rupasinghe SG et al (2008) Comparative molecular modelling of an Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci U S A 105:8885–8860

    Article  Google Scholar 

  • Chow JK, Akhtar Y, Isman MB (2005) The effects of larval experience with a complex plant latex on subsequent feeding and oviposition by the cabbage looper moth: Trichoplusia ni (Lepidoptera: Noctuidae). Chemoecology 15:129–133

    Article  Google Scholar 

  • Chuang WP, Herde M, Ray S et al (2014) Caterpillar attack triggers accumulation of toxic maize protein RIP2. New Phytol 201:928–939

    Article  CAS  PubMed  Google Scholar 

  • Chung SH, Rosa C, Scully ED et al (2013) Herbivore exploits orally secreted bacteria to suppress plant defences. Proc Natl Acad Sci U S A 110:15728–15733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cianfrogna JA, Zangerl AR, Berenbaum MR (2002) Dietary and developmental influences on induced detoxification in an oligophage. J Chem Ecol 28:1349–1364

    Article  CAS  PubMed  Google Scholar 

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233

    Article  Google Scholar 

  • Coll M (1998) Parasitoid activity and plant species composition in intercropped systems. In: Pickett CH, Bugg RL (eds) Enhancing biological control: habitat management to promote natural enemies of agricultural pests. Univ California Press, Berkeley, pp 85–119

    Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Cruz M, Snook M, McMullen MD (2003) The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks. Genome 46:182–194

    Article  CAS  PubMed  Google Scholar 

  • Cox PA (1991) Abiotic pollination: an evolutionary escape for animal-pollinated angiosperms. Philos Trans R Soc B 333:217–224

    Article  Google Scholar 

  • Crepet WL, Friis EM, Nixon KC (1991) Fossil evidence for the evolution of biotic pollination. Philos Trans R Soc B 333:187–195

    Article  Google Scholar 

  • Damle MS, Giri AP, Sainani MN et al (2005) Higher accumulation of proteinase inhibitors in flowers than leaves and fruits as a possible basis for differential feeding preference of Helicoverpa armigera on tomato (Lycopersicon esculentum Mill, Cv. Dhanashree). Phytochemistry 66:2659–2667

    Article  CAS  PubMed  Google Scholar 

  • Danielson PB, Maclnytre RJ, Fogleman JC (1997) Molecular cloning of a family of xenobiotic inducible drosophilid cytochrome P450s: evidence for involvement in host-plant allelochemical resistance. Proc Natl Acad Sci U S A 94:10797–10802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Leo F, Volpicella M, Licciulli F et al (2002) Plant-PIs: a database for plant protease inhibitors and their genes. Nucleic Acids Res 30:347–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhaliwal GS, Arora R (2001) Role of phytochemicals in integrated pest management. In: Koul O, Dhaliwal GS (eds) Phytochemical biopesticides. Harwood, Amsterdam, pp 97–118

    Google Scholar 

  • Dhaliwal GS, Arora R (2006) Integrated pest management: concept and approaches. Kalyani Publications, New Delhi

    Google Scholar 

  • Dhaliwal GS, Singh R, Jindal V (2004) Host plant resistance and insect pest management: progress and potential. In: Dhaliwal GS, Singh R (eds) Host plant resistance to insects. Panima, New Delhi, pp 517–558

    Google Scholar 

  • Dimock MH, Kennedy GG (1983) The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol Exp Appl 33:263–268

    Article  Google Scholar 

  • Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  PubMed  Google Scholar 

  • Dodd AP (1940) The biological campaign against prickly-pear. Commonwealth Prickly Pear Board, Brisbane

    Google Scholar 

  • Dunaevsky YE, Elpidina EN, Vinokurov KS et al (2005) Protease inhibitors in improvement of plant resistance to pathogens and insects. Mol Biol 39:702–708

    Article  CAS  Google Scholar 

  • Dussourd DE (1995) Entrapment of aphids and whiteflies in lettuce latex. Ann Entomol Soc Am 88(2):163–172

    Article  Google Scholar 

  • Edger PP, Heidel-Fischer HM, Bekaert M et al (2015) The butterfly plant arms-race by gene and genome duplications. Proc Natl Acad Sci U S A 112:8362–8366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in co-evolution. Evolution 18:586–608

    Article  Google Scholar 

  • Eigenbrode SD (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthropod Struct Dev 33:91–102

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Article  Google Scholar 

  • Eigenbrode SD, Kabalo NN, Stoner KA (1999) Predation, behavior and attachment by Chrysoperla plarabunda larvae on Brassica oleracea with different surface waxblooms. Entomol Exp Appl 90:225–235

    Article  Google Scholar 

  • Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticides resistance. Insect Mol Biol 14:3–8

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol 52:29–66

    Article  CAS  Google Scholar 

  • Faegri K, Pijl LV (1971) The principles of pollination ecology. Pergamon Press, New York

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Fahn A (2000) Structure and function of secretory cells. In: Hallahan DL, Gray JC (eds) Plant trichomes. Academic, New York, p 37

    Google Scholar 

  • Farrell B, Mitter C (1990) Phylogenesis of insect/plant interactions: have Phyllobrotica leaf beetles (chrysomelidae) and the lamiales diversified in parallel? Evolution 44:1389–1403

    Article  PubMed  Google Scholar 

  • Fatouros NE, Broekgaarden C, Bukovinszkine’Kiss G et al (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS One 7(8):e43607. https://doi.org/10.1371/journal.pone.0043607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton GW (2005) Indigestion is a plant’s best defence. Proc Natl Acad Sci U S A 102:18771–18772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton GW, Broaduray RM, Duffey SS (1989) Inactivation of protease inhibitor activity by plant derived quinones, complications for host-plant resistance against noctoid herbivore. J Insect Physiol 35:981–990

    Article  CAS  Google Scholar 

  • Ferry RL, Cuthbert FP Jr (1975) A tomato fruit worm antibiosis in Lycopersicon. Hortic Sci 10:46

    Google Scholar 

  • Feyereisen R (2006) Evolution of insect P450. Biochem Soc Trans 34:1252–1255

    Article  CAS  PubMed  Google Scholar 

  • Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest-management. Annu Rev Entomol 42:123–146

    Article  CAS  PubMed  Google Scholar 

  • Fox LR (1988) Diffuse co-evolution within complex communities. Ecology 69:906–907

    Article  Google Scholar 

  • Fraenkel GS (1959) The raison d’etre of secondary plant substances. Entomol Exp Appl 12:473–486

    Article  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS et al (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Vanhaelen N, Haubruge E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch Insect Biochem Physiol 58:166–174

    Article  CAS  PubMed  Google Scholar 

  • Frelichowski JE Jr, Juvik JA (2001) Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 94:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Frey M, Schullehner K, Dick R et al (2009) Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70:1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Furstenberg-Hagg J, Zagrobelnby M, Bak S (2013) Plant defence against herbivores. Int J Mol Sci 14:10242–10297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galai N, Salles J-M, Settele J et al (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Gardner DE, Smith CW, Markin GP (1995) Biological control of alien plants in natural areas of Hawaii. In: Delfosse ES, Scott RR (eds) Proceedings of the 8th international symposium on biological control of weeds. CSIRO, Melbourne, pp 35–40

    Google Scholar 

  • Gershenzon J, Croteau R (1991) Terpenoids. In: Rosenthal GS, Berenbaum MR (eds) Herbivores: their interaction with secondary plant metabolites. Academic, London, pp 165–220

    Chapter  Google Scholar 

  • Geyter ED, Lambert E, Geelen D et al (2007) Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol 1:96–105

    Google Scholar 

  • Gieselhardt S, Yoneya K, Blenn B et al (2013) Egg laying of cabbage white butterfly (Pieris brassicae) on Arabidopsis thaliana affects subsequent performance of the larvae. PLoS One. https://doi.org/10.1371/journal.pone.0056991

  • Glas JJ, Schimmel BCJ, Alba JM et al (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105:13–28

    Article  Google Scholar 

  • Green MB, Hedin PA (1986) Natural resistance of plants to pests: role of allelochemicals. In: ACS Symp Ser 296, American Chemical Society, Washington, DC

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14

    Article  PubMed  Google Scholar 

  • Hanover JW (1975) Physiology of tree resistance to insects. Annu Rev Entomol 20:75–95

    Article  CAS  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry. Academic, London

    Google Scholar 

  • Harborne JB (1994) Phenolics. In: Mann J, Davidson RS, Hobbs JB, Banthorpe DB, Harborne JB (eds) Natural products: their chemistry and biological significance. Longman, Harlow, pp 362–388

    Google Scholar 

  • Hare DJ (1992) Effects of plant variation on herbivore-enemy interactions. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens. Univ of Chicago Press, Chicago, pp 278–298

    Google Scholar 

  • Harris P (1974) A possible explanation of plant yield increases following insect damage. Agro Ecosyst 1:219–225

    Article  Google Scholar 

  • Hatchett JH, Gallun RL (1970) Genetics of the ability of the Hessian fly, Mayetiola destructor to survive on wheat having different genes for resistance. Ann Entomol Soc Am 63:1400–1407

    Article  Google Scholar 

  • Herrera CM (1996) Floral traits and plant adaptation to insect pollinators: a devil’s advocate approach. In: Lloyd DG, Barrett SCH (eds) Floral biology: studies on floral evolution in animal pollinated plants. Chapman & Hall, New York, pp 65–87

    Chapter  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defence. J Chem Ecol 32:1379–1397

    Article  CAS  PubMed  Google Scholar 

  • Hill DL (1997) The economic importance of insects. Chapman & Hall, London

    Book  Google Scholar 

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol 14:422–428

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Vabder Hoorn RAL, Terauchi R et al (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant-Microbe Interact 22:115–122

    Article  CAS  PubMed  Google Scholar 

  • Holtkamp RH, Campbell MH (1995) Biological control, of Cassinia spp. (Asteraceae). In: Delfosse ES, Scott RR (eds) Proceedings of the 8th international symposium on biological control of weeds. CSIRO, Melbourne, pp 447–450

    Google Scholar 

  • Hoover SER, Ladly JJ, Shchepetkine AR et al (2012) Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol Lett 15:227–234

    Article  PubMed  Google Scholar 

  • Hopkins RJ, Van Dam NM, Van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • House HL (1961) Insect nutrition. Annu Rev Entomol 6:13–26

    Article  Google Scholar 

  • Huang T, Jander G, De Vos M (2011) Non-protein amino acids in plant defence against insect herbivores: representative cases and opportunities for further functional analysis. Phytochemistry 72:1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Huber M, Epping J, Gronover CS et al (2016) A latex metabolite benefits plant fitness under root herbivore attack. PLoS Biol 14(1):e1002332. https://doi.org/10.1371/journal.pbio.1002332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain MA, Lal KB (1940) The bionomics of Empoasca devastens (Distant) on some varieties of cotton in the Punjab. Indian J Entomol 2:123–136

    Google Scholar 

  • Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:4. https://doi.org/10.1186/1471-2148-6-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. E. Arnold, London, pp 23–64

    Google Scholar 

  • Jermy T (1976) Insect-host plant relationship-coevolution or sequential evolution? Symp Biol Hung 16:109–113

    Google Scholar 

  • Jermy T (1984) Evolution of insect/plant relationships. Am Nat 124:609–630

    Article  Google Scholar 

  • Johanson B (1953) The injurious effects of the hooked epidermal hairs of the French beans (Phaseolus vulgaris L.) on Aphis craccivora Koch. Bull Entomol Res 44:779–788

    Article  Google Scholar 

  • Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258

    Article  Google Scholar 

  • Johnson MT (2011) Evolutionary ecology of plant defences against herbivores. Funct Ecol 25:305–311

    Article  Google Scholar 

  • Jongsma MA, Bakker PL, Peters J et al (1995) Adaptation of Spodoptera exigua larvae to plant proteinase-inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci U S A 92:8041–8045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap RK (1983) Studies on resistance behavior of tomato genotypes against fruit borer. Dissertation, Haryana Agricultural University, Hisar

    Google Scholar 

  • Kaur M, Singh K, Rup PJ et al (2006) A tuber lectin from Arisaema helleborifolium Schott with anti-insect activity against melon fruit fly Bactrocera cucurbitae (Coquillett) and anti-cancer effect on human cancer cell lines. Arch Biochem Biophys 445:156–165

    Article  CAS  PubMed  Google Scholar 

  • Kazana E, Pope TW, Tibbles L et al (2007) The cabbage aphid: a walking mustard oil bomb. Proc R Soc Lond B 274:2271–2277

    CAS  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kennedy CEJ (1986) Attachment may be a basis for specialization in oak aphids. Ecol Entomol 11:291–300

    Article  Google Scholar 

  • Khan ZR (1999) Habitat management strategies for control of insect pests in Africa. In: Dhaliwal GS, Arora R, Dhawan AK (eds) Emerging trends in sustainable agriculture. Commonwealth Publications, New Delhi, pp 187–197

    Google Scholar 

  • Khan ZR, Ampong-Nyarko K, Chiliswa P et al (1997) Inter-cropping increases parasitism of pests. Nature 388:631–632

    Article  CAS  Google Scholar 

  • Khan ZR, Midega C, Pittchar J et al (2011) Push-pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int J Agric Sustain 9:162–170

    Article  Google Scholar 

  • Kim JH, Lee BW, Schroeder FC et al (2008) Identification of indole glucosinolate breakdown products with antifeedant effects of Myzus persicae (green peach aphid). Plant J 54:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B 274:303–313

    Google Scholar 

  • Krishnan N, Sehnal F (2006) Compartmentalization of oxidative stress and antioxidant defence in the larval gut of Spodoptera littoralis. Arch Insect Biochem Physiol 63:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kritsky G (2001) Darwin’s Madagascan hawk moth prediction. Am Entomol 37:206–210

    Article  Google Scholar 

  • Kroschel J, Klein O (1999) Biological control of Orobranche spp. with Phytomyza orobranchia Kalt, a review. In: Kroschel J, Abderabihi M, Betz H (eds) Advances in parasitic weed control at on-farm level, vol 2. Joint action to control Orobranche in the WANA region. Mardarof Verlag, Weikersheim, pp 135–159

    Google Scholar 

  • Labandeira CC (1998) Early history of arthropod and vascular plant associations. Annu Rev Earth Planet Sci 26:329–377

    Article  CAS  Google Scholar 

  • Labandeira CC (2013) A paleobiologic perspective on plant-insect interactions. Curr Opin Plant Biol 16:414–421

    Article  PubMed  Google Scholar 

  • Ladd TL, Klein MG, Tumlison JH (1981) Phenethyl propionate+eugenol+geraniol (3: 7: 3) and Japonilure: a highly effective joint lure for Japanese beetles. J Econ Entomol 74:665–667

    Article  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T et al (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–39

    Article  Google Scholar 

  • Lee YL, Kogan M, Larsen JR (1986) Attachment of the potato leafhopper to soybean plant surfaces as affected by morphology of pretarsus. Entomol Exp Appl 42:101–108

    Article  Google Scholar 

  • Li Q, Eigenbrode SD, Stringam GR et al (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:401–2419

    Article  Google Scholar 

  • Liener IE (1991) Lectins. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, London, pp 327–354

    Chapter  Google Scholar 

  • Liu X, Bai J, Li H et al (2007) Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J Chem Ecol 33:2171–2194

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Williams CE, Nemacheck JA et al (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152:985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzen JH, Belbyshev NE, Lafta AM et al (2001) Resistant potato selections contain leptine and inhibit development of Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 94:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Louda S, Mole S (1991) Glucosinolates: chemistry and ecology. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, London, pp 124–164

    Google Scholar 

  • Ma R, Cohen MB, Berenbaum MR et al (1994) Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch Biochem Biophys 310:332–340

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Martin FA, Richard CA, Hensley SD (1975) Host resistance to Diatraea saccharalis (F) relationship of sugarcane internode hardness to larval damage. Environ Entomol 4:687–688

    Article  Google Scholar 

  • Martin JS, Martin MM, Bernays EA (1987) Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defence. J Chem Ecol 13:605–621

    Article  CAS  PubMed  Google Scholar 

  • Martin JP, Beyerlein A, Dacks AM et al (2011) The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 95:427–447

    Article  PubMed  Google Scholar 

  • Mason CJ, Couture JJ, Raffa KF (2014) Plant associated bacteria degrade defence chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–910

    Article  PubMed  Google Scholar 

  • McFadyen REC (2003) Biological control of weeds using exotic insects. In: Koul O, Dhaliwal GS (eds) Predators and parasitoids. Taylor & Francis, London, pp 163–183

    Google Scholar 

  • McLaughlin LA, Niazi U, Bibby J et al (2008) Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Mol Biol 17:125–135

    Article  CAS  PubMed  Google Scholar 

  • Meisner J, Navon A, Zur M et al (1977) The response of Spodoptera littoralis larvae to gossypol incorporated in artificial diet. Environ Entomol 6:243–244

    Article  CAS  Google Scholar 

  • Mithofer A, Boland W (2012) Plant defence against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  CAS  PubMed  Google Scholar 

  • Mohan P, Singh R, Narayanan S et al (1994) Relation of gossypol-gland density with bollworm incidence and yield in tree cotton (Gossypium arboreum). Indian J Agric Sci 64:691–696

    Google Scholar 

  • Muller C, Brakefield PM (2003) Analysis of a chemical defence in sawfly larvae: easy bleeding targets predatory wasps in late summer. J Chem Ecol 29:2683–2694

    Article  PubMed  Google Scholar 

  • Nabhan GP, Buchmann SL (1997) Services provided by pollinators. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 133–150

    Google Scholar 

  • Nepi M, Guarnieri M, Pacini E (2003) ‘Real’ and feed pollen of Lagerstroemia indica: ecophysiological differences. Plant Biol 5:311–314

    Article  Google Scholar 

  • Nikoh N, Hosokawa T, Oshima K et al (2011) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitao JK (1989) Enzymatic adaptation in a specialist herbivore for feeding on furanocoumarin containing plants. Ecology 70:629–625

    Article  CAS  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Owen DF (1980) How plants may benefit from the animals that eat them? Oikos 35:230–235

    Article  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. University of Kansas Press, Lawrence

    Book  Google Scholar 

  • Panda N, Khush GS (1995) Host plant resistance to insects. CABI, Wallingford

    Google Scholar 

  • Pappers SM, Van Dommelon H, Van der Velde G et al (2001) Differences in morphology and reproductive traits of Galerucella nymphaeae from four host plant species. Entomol Exp Appl 99:183–191

    Article  Google Scholar 

  • Parde VD, Sharma HC, Kachole MS (2010) In vivo inhibition of Helicoverpa armigera gut pro-proteinase activation by non host plant protease inhibitors. J Insect Physiol 56:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Parde VD, Sharma HC, Kachole MS (2012) Potential of proteinase inhibitors in wild relatives of pigeonpea against cotton bollworm/legume pod borers, Helicoverpa armigera. Am J Plant Sci 3:627–635

    Article  CAS  Google Scholar 

  • Parmar BS, Walia S (2001) Prospects and problems of phytochemical biopesticides. In: Koul O, Dhaliwal GS (eds) Phytochemical biopesticides. Harwood, Amsterdam, pp 133–210

    Google Scholar 

  • Payne WW (1978) A glossary of plant hair terminology. Brittonia 30:239–255

    Article  Google Scholar 

  • Pellmyr O, Krenn HW (2002) Origin of a complex key innovation in an obligate insect-plant mutualism. Proc Natl Acad Sci U S A 99:5498–5502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfalz M, Vogel H, Kroymann J (2009) The gene controlling the Indole Glucosinolate Modifier 1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillemer EA, Tingey WM (1978) Hooked trichomes and resistance of Phaseolus vulgaris to Empoasca fabae (Harris). Entomol Exp Appl 24:83–94

    Article  Google Scholar 

  • Platt AW, Farstad CM (1946) The reaction of wheat varieties to wheat stem sawfly attack. Sci Agric 26:231–247

    Google Scholar 

  • Proctor M, Yeo F, Lack A (1996) The natural history of pollination. Harper Collins, London

    Google Scholar 

  • Ram P, Singh R, Dhaliwal GS (2004) Biophysical bases of resistance in plants to insects. In: Dhaliwal GS, Singh R (eds) Host plant resistance to insects: concepts and applications. Panima Publications, New Delhi, pp 42–83

    Google Scholar 

  • Ramachandran R, Norris DM, Phillips JK et al (1991) Volatiles mediating plant-herbivore-natural enemy interactions: soybean looper frass volatiles, 3-octanone and guaiacol, as kairomones for the parasitoid, Microplitis demolitor. J Agric Food Chem 39:2310–2317

    Article  CAS  Google Scholar 

  • Ramirez BW (1970) Host specificity of fig wasps (Agaonidae). Evolution 24:681–691

    Google Scholar 

  • Rao NV, Reddy AS, Ankaish R et al (1990) Incidence of whitefly (Bemisia tabaci) in relation to leaf characters of upland plant cotton (Gossypium hirsutum). Indian J Agric Sci 60:619–624

    Google Scholar 

  • Rector BG, Liang GM, Guo Y (2003) Effect of maysin on wild–type, deltamethrin-resistant and Bt-resistant Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol 96:909–913

    Article  CAS  PubMed  Google Scholar 

  • Riffell JA, Lei H, Christensen TA et al (2009) Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19:335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Room PM (1990) Ecology of a simple plant-herbivore system: biological control of Salvinia. Trends Ecol Evol 5:74–79

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA (1991) Nonprotein amino acids as protective phytochemicals. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic, London, pp 1–34

    Google Scholar 

  • Rosenthal GA, Berenbaum MR (eds) (1991) Herbivores: their interactions with secondary plant metabolites. Academic, London

    Google Scholar 

  • Roubik DW (2002) The value of bees to the coffee harvest. Nature 417:708

    Article  CAS  PubMed  Google Scholar 

  • Roulston TAH, Cane JH, Buckmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70:617–643

    Google Scholar 

  • Ruzicka L (1953) Isoprene rule and biogenesis of terpenic compounds. Experientia 9:357–367

    Article  CAS  PubMed  Google Scholar 

  • Sadras VO, Felton GW (2010) Mechanism of cotton resistance to arthropod herbivory. In: Stewart JM, Oosterhius D, Heitholt JJ et al (eds) Physiology of cotton. Springer, London, pp 213–228

    Chapter  Google Scholar 

  • Sahoo BK, Patnaik MP (2003) Effect of biochemicals on the incidence of pigeonpea pod borers. Indian J Plant Prot 31:105–108

    CAS  Google Scholar 

  • Sandhu SK, Arora R (2013) Breeding for insect resistance in crop plants. In: Dhawan AK, Singh B, Bhullar MB, Arora R (eds) Integrated pest management. Scientific Publications, Jodhpur, pp 267–300

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M et al (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler M (1996) The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol 112:1411–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumutterer H (ed) (1995) The neem tree, Azadirachta indica A. Juss. and other meliaceous plants: source of unique products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim

    Google Scholar 

  • Scott MI, Thaler SJ, Scott GF (2010) Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defence in tomato. J Chem Ecol 36:490–499

    Article  CAS  PubMed  Google Scholar 

  • Seybold SJ, Huber DPW, Lee JC et al (2006) Pine monoterpenes and pine bark beetles: a marriage of convenience for defence and chemical communication. Phytochem Rev 5:143–178

    Article  CAS  Google Scholar 

  • Sharma S, Arora R, Singh B (2014) Impact of climate change on agriculturally important insects. J Insect Sci 27:159–188

    Google Scholar 

  • Shera PS, Arora R (2015) Biointensive integrated pest management for sustainable agriculture. In: Singh B, Arora R, Gosal SS (eds) Biological and molecular approaches in pest management. Scientific Publications, Jodhpur, pp 373–429

    Google Scholar 

  • Simon-Delso N, Amaral-Rogers X, Belzunces LP et al (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22:5–34

    Article  CAS  Google Scholar 

  • Singh R, Agarwal RA (1988) Role of biochemical components of resistant and susceptible cotton and okra in ovipositional preference of cotton leafhopper. Proc Indian Acad Sci (Anim Sci) 97:545–550

    Article  CAS  Google Scholar 

  • Sintim HO, Tashiro T, Motoyama N (2009) Response of the cutworm Spodoptera litura to sesame leaves or crude extracts in diet. J Insect Sci 9:52

    Google Scholar 

  • Smith CM, Clement SL (2012) Molecular basis of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  PubMed  Google Scholar 

  • Sogawa K, Pathak MD (1970) Mechanisms of brown planthopper (Hemiptera: Delphacidae) resistance of Mudgo variety of rice. Appl Entomol Zool 5:145–148

    Article  Google Scholar 

  • Springer TL, Kindler SD, Sorenson EL (1990) Comparison of pod-wall characteristics with seed damage and resistance to alfalfa seed chalcid (Hymenoptera: Eurytomidae) in Medicago species. Environ Entomol 19:1614–1617

    Article  Google Scholar 

  • Srinivasan K (1994) Recent trends in insect pest management in vegetable crops. In: Dhaliwal GS, Arora R (eds) Trends in agricultural insect pest management. Commonwealth Publications, New Delhi, pp 345–372

    Google Scholar 

  • Steehius NM, van Gelder WMJ (1985) Tomato with whitefly resistance is nutritionally safe. Zaasbelangen 39:191–192

    Google Scholar 

  • Steppuhn A, Baldwin IT (2007) Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol Lett 10:499–511

    Article  PubMed  Google Scholar 

  • Stevens JL, Snyder MJ, Koener JF et al (2000) Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem Mol Biol 30:559–568

    Article  CAS  PubMed  Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Blackwell, London

    Google Scholar 

  • Stuart JJ, Chen MS, Shukle R et al (2012) Gall midges (Hessian flies) as plant pathogens. Annu Rev Phytopathol 50:339–357

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam S, Smith DF, Clemens JC et al (2008) Functional characterization of HFR1, a high mannose N-glycan-specific wheat lectin induced by hessian fly larvae. Plant Physiol 147:412–426

    Article  CAS  Google Scholar 

  • Subramanyam S, Sardesai N, Minocha SC et al (2015) Hessian fly larval feeding triggers enhanced polyamine levels in susceptible but not resistant wheat. BMC Plant Biol 15:3. https://doi.org/10.1186/s12870-014-0396-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland TD, Unnithan GC, Anderson JF et al (1998) Cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proc Natl Acad Sci U S A 95:12884–12889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talekar NS, Tengkano W (1993) Mechanism of resistance to bean fly (Diptera: Agromyzidae) in soybean. J Econ Entomol 86:981–985

    Article  Google Scholar 

  • Tallamy DW, Stull J, Ehresman NP et al (1997) Cucurbitacins as feeding and oviposition deterrents to insects. Environ Entomol 26:678–683

    Article  CAS  Google Scholar 

  • Tamiru A, Bruce TJA, Woodcock CM et al (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083

    Article  PubMed  Google Scholar 

  • Tanda AS (1983) Assessing the role of honey bees in a field of Asiatic cotton (Gossypium arboreum L.). Am Bee J 123:593–594

    Google Scholar 

  • Tanda AS (1984) Bee pollination increases yield of 2 interplanted varieties of Asiatic cotton (Gossypium arboretum L.). Am Bee J 124(7):539–540

    Google Scholar 

  • Tanda AS (2019a) Entomophilous crops get better fruit quality and yield: an appraisal. Indian J Entomol 81(2):227–234

    Article  Google Scholar 

  • Tanda AS (2019b) Floral biology, foraging behavior and efficiency of European honey bee (Apis mellifera) in bitter gourd (Momordica charantia L.) pollination at Sydney Australia. Bee World. Submitted

    Google Scholar 

  • Tanda AS (2019c) Entomofaunal effect enhances the quality and quantity in okra (Abelmoschus esculenlum L.) plantation. Indian J Entomol 81(1):16–17

    Article  Google Scholar 

  • Tanda AS (2020) Entpollinatology—a strong relationship between plants and insects for crop improvement. In: 6th Edition of Global conference on plant sciences and molecular biology (GPMB 2020) to be held on September 10-12, 2020, at Paris, France (Accepted, May 26, 2020)

    Google Scholar 

  • Tanda AS (2021a) Why insect pollinators important in crop improvement?. Indian J Entomol (Accepted)

    Google Scholar 

  • Tanda AS (2021b) Insect pollinators matter in sustainable world food production. Indian J Entomol (Accepted)

    Google Scholar 

  • Tanda AS (2021c) Urbanization and its impact on native pollinators. In: The 1st international electronic conference on entomology will be held on 1st–15th July 2021 virtually

    Google Scholar 

  • Tanda AS (2021d) Native bees are important and need immediate conservation measures: a review. In: The 1st international electronic conference on entomology will be held on 1st–15th July 2021 published in the Proceedings 1 July 2021, 68, x. https://sciforum.net/manuscripts/10523/manuscript.pdf

  • Tanda AS (2021e) Wild bees and their conservation. Indian J Entomol (Accepted)

    Google Scholar 

  • Tanda AS (2021f) Biofloral phenology, Foraging Behaviour and entpollinatological effect of honey bees in Pomegranate (Punica granatum) fruit quality and yield. J Hortic 08:2

    Google Scholar 

  • Tanda AS (2021g) Insect resistance and host plant relations: a milestone in sustainable crop production. Indian J Entomol (Accepted)

    Google Scholar 

  • Tanda AS, Atwal AS (1988) Effect of sesame intercropping against the root-knot nematode (Meloidogyne Incognita) in okra. Nematologica 34(4):484–492

    Article  Google Scholar 

  • Tanda AS, Atwal AS, Bajaj YPS (1988) Antagonism of sesame to the root-knot nematode (Meloidogyne Incognita) on okra in tissue culture. Nematologica 34(1):78–87

    Article  Google Scholar 

  • Tanda AS, Atwal AS, Bajaj YPS (1989) In vitro inhibition of root-knot nematode Meloidogyne incognita by sesame root exudate and its amino acids. Nematologica 35:115–124

    Article  CAS  Google Scholar 

  • Thayumanavan B, Velusamy R, Sadasivam S et al (1990) Phenolic compounds, reducing sugars and free amino acids in rice leaves of varieties resistant to rice thrips. Int Rice Res Newsl 15:14–15

    Google Scholar 

  • Thien LB, Azuma H, Kawano S (2000) New perspectives on the pollination biology of basal angiosperms. Int J Plant Sci 161:S225–S235

    Article  Google Scholar 

  • Thompson JN (1994) The co-evolutionary process. Chicago University Press, Chicago

    Google Scholar 

  • Thompson JN (1999) Specific hypotheses on the geographic mosaic of co-evolution. Am Nat 153:S1–S14

    Article  Google Scholar 

  • Thompson JN (2005) Co-evolution: the geographic mosaic of co-evolutionary arms race. Curr Biol 15(24):R992–R994

    Article  CAS  PubMed  Google Scholar 

  • Tingey WM (1984) Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167

    Article  CAS  Google Scholar 

  • Toju H, Sota T (2006) Imbalance of predator and prey armament; Geographic clines in phenotypic interface and natural selection. Am Nat 167:105–117

    Article  PubMed  Google Scholar 

  • Toju H, Abe H, Ueno S et al (2011) Climatic gradients of arms race coevolution. Am Nat 177:562–573

    Article  PubMed  Google Scholar 

  • Traw MB, Dawson TE (2002) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131:526–532

    Article  PubMed  Google Scholar 

  • Uthamasamy S (1996) Biochemical basis of resistance to insects in cotton, Gossypium spp. In: Ananthakrishnan TN (ed) Proceedings of national symposium on biochemical bases of host plant resistance to insects. National Academy of Agricultural Sciences, New Delhi, pp 15–37

    Google Scholar 

  • Vail SG (1994) Overcompensation, plant-herbivore mutualism, and mutualistic co-evolution—a reply to Mathews. Am Nat 144:534–536

    Article  Google Scholar 

  • Van Lenteren JC, Hua LZ, Kamerman JW et al (1995) The parasite host relationship between Encarsia Formosa (Hym., Aphelinidae) and Trialeurodes vaporariorum (Hom., Aleyrodidae). XXVI. Leaf hairs reduce the capacity of Encarsia to control greenhouse whitefly on cucumber. J Appl Entomol 119:553–559

    Article  Google Scholar 

  • Velthius HWW (1992) Pollen digestion and the evolution of sociality in bees. Bee World 127:1383–1389

    Google Scholar 

  • Verkerk RHJ (2004) Manipulation of tritrophic interactions for IPM. In: Koul O, Dhaliwal GS, Cuperus GW (eds) Integrated pest management: potential, constraints and challenges. CABI, Wallingford, pp 55–72

    Chapter  Google Scholar 

  • Vidyachandra B, Roy JK, Bhaskar D (1981) Chemical difference in rice varieties susceptible or resistant to gall midges and stem borers. Int Rice Res Newsl 6(2):7–8

    Google Scholar 

  • Vilkova NA, Kunzetsova TL, Ismailov AL et al (1988) Effect of cotton cultivars with high content of gossypol on development of cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Entomol Obozr 4:689–698

    Google Scholar 

  • Volpicella M, Ceci LR, Cordewener J et al (2003) Properties of purified gut trypsin from Helicoverpa zea adapted to proteinase inhibitors. Eur J Biochem 270:10–19

    Article  CAS  PubMed  Google Scholar 

  • Wadleigh RW, Yu SJ (1988) Detoxification of isothiocyanate allelochemicals by glutathione-S transferases in three lepidopterous species. J Chem Ecol 14:1279–1288

    Article  CAS  PubMed  Google Scholar 

  • War AR, Sharma HC (2014) Induced resistance in plants and counter-adaptation by insect pests. In: Chandrasekar R, Tyagi BK, Guri ZZ, Reeck GR (eds) Short views on insect biochemistry and molecular biology, vol 2. International Book Mission, South India, pp 533–547

    Google Scholar 

  • Waser NM (1998) Pollination, angiosperm speciation and the nature of species boundaries. Oikos 82:198–201

    Article  Google Scholar 

  • Webster B, Bruce T, Pickett J et al (2010) Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim Behav 79:451–457

    Article  Google Scholar 

  • Werker E (2000) Trichome density and development. Adv Bot Res 31:1–36

    Article  Google Scholar 

  • Weseloh RM (1981) Host location by parasitoids. In: Nordland DA, Jones RJ, Lewis WJ (eds) Semiochemicals: their role in pest control. Wiley, New York, pp 79–95

    Google Scholar 

  • Wheat CW, Vogel H, Wittstock U et al (2007) The genetic basis of plant-insect coevolutionary key innovation. Proc Natl Acad Sci U S A 104(51):201427–220431

    Article  Google Scholar 

  • White TCR (1978) The importance of relative food shortage in animal ecology. Oecologia 33:71–86

    Article  CAS  PubMed  Google Scholar 

  • Wiebes JT (1979) Co-evolution of figs and their insect pollinators. Annu Rev Ecol Syst 10:1–12

    Article  Google Scholar 

  • Williams CM (1970) Hormonal interactions between plants and insects. In: Sondheimer E, Simeone JB (eds) Chemical ecology. Academic, New York, pp 103–132

    Chapter  Google Scholar 

  • Williams CE, Collier CC, Nemcheck JA et al (2002) A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J Chem Ecol 28:1411–1428

    Article  CAS  PubMed  Google Scholar 

  • Williams CE, Nemacheck JA, Shukle JT et al (2011) Induced epidermal permeability modulates resistance and susceptibility of wheat seedlings to herbivory be Hessian fly larvae. J Exp Bot 62:4521–4531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiseman BR, Snook ME, Isenhour DJ et al (1992) Relationship between growth of corn earworm and fall armyworm larvae (Lepidoptera: Noctuidae) and maysin concentration in corn silks. J Econ Entomol 85:2473–2477

    Article  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ et al (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defence. Proc Natl Acad Sci U S A 101:4859–4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JR, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Liu X, Zhang X et al (2008) Differential responses of wheat inhibitor-like genes to Hessian fly, Mayetiola destructor, attacks during compatible and incompatible interactions. J Chem Ecol 34:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Arnason JT, Philogene BJR et al (1992) Variation of hydroxamic acid content in maize roots in relation to geographic origin of maize germplasm and resistance to Western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 85:2478–2485

    Article  CAS  Google Scholar 

  • Yan J, Lipka AE, Schmelz EA, Buckler ES, Jander G (2015) Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress. J Exp Bot 66:593–602

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Fang Z, Dicke M et al (2009) The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochem Mol Biol 33:55–61

    Article  CAS  Google Scholar 

  • Yu SJ (2000) Allelochemical induction of hormone-metabolizing microsomal monoxygenases in the Fall armyworm. Zool Stud 39:243–249

    CAS  Google Scholar 

  • Zangerl AR, Berenbaum MR (2003) Phenotype matching in the wild parsnip and parsnip webworms: causes and consequences. Evolution 57:806–815

    Article  CAS  PubMed  Google Scholar 

  • Zavala JA, Patankar AG, Gase K et al (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defences. Plant Physiol 134:1181–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu-Salzman K, Luthe DS, Felton GW (2008) Arthropod-inducible proteins: broad spectrum defences against multiple herbivores. Plant Physiol 146:852–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanda, A.S. (2022). Mutualistic Plant Associations Related to Insect Resistance. In: Tanda, A.S. (eds) Molecular Advances in Insect Resistance of Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-92152-1_1

Download citation

Publish with us

Policies and ethics