Skip to main content
Log in

Response of a Generalist Herbivore Trichoplusia ni to Jasmonate-Mediated Induced Defense in Tomato

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The up-regulation of plant defense-related toxins or metabolic enzyme binding proteins often leads to a negative effect on herbivorous insects. These negative effects can manifest themselves at three points: changes in food ingestion, post-ingestive-changes, and post-digestive changes. Many studies have related the decrease in herbivore growth and/or survival with expression of chemicals that interfere with post-digestive effects such as the anti-nutritive effects of protease inhibitors. Nevertheless, it is unclear whether such compounds impact herbivores via earlier ingestive processes. We addressed this question by using a jasmonate-deficient mutant (Def-1), a jasmonate-overexpressor mutant (Prosystemin or Prosys), and wild-type tomato in three trials with 5th instar Trichoplusia ni. Decreases in relative growth rate (RGR) confirmed that T. ni fed on the Prosys plants developed poorly compared to those feeding on Def-1 plants (larvae on wild-types were intermediate). Preingestive and postingestive processes contributed to this effect. Total food ingested and the consumptive index were 25% lower on Prosys plants compared to Def-1 plants. Post-ingestive processes, measured by approximate digestibility, were 62% greater on Prosy plants. Post-digestive efficiency measured by conversion of ingested and digested food (ECI and ECD) decreased on Prosys plants two-fold compared to Def-1 plants. This post-digestive interference correlated well with the 2-fold decrease in activity of digestive enzymes, serine proteases, in Prosys-fed T. ni compared to those on Def-1 plants. No difference in detoxifying enzyme activity was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdeen, A., Virgós, A., Olivella, E., Villanueva, J., Avilés, X., Gabarra, R., and Prat, S. 2005. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol. Biol. 57:189–202.

    Article  CAS  PubMed  Google Scholar 

  • Baker, J. E., Fabrick, J. A., and Zhu, K. Y. 1998. Characterization of esterases in malathion-resistant and susceptible strains of the pteromalid parasitoid Anisopteromalus calandre. Insect Biochem. Mol. Biol. 28:1039–1050.

    Article  CAS  Google Scholar 

  • Barbehenn, R. V., Jones, C. P., Yip, L., Tran, L., and Constabel, C. P. 2007. Limited impact of elevated levels of polyphenol oxidase on tree-feeding caterpillars: assessing individual plant defenses with transgenic poplar. Oecologia 154:129–140.

    Article  PubMed  Google Scholar 

  • Bi, J. L., Felton, G. W., Murphy, J. B., Howles, P. A., Dixon, R. A., and Lamb, C. J. 1997. Do plant phenolics confer resistance to specialist and generalist insect herbivores? J. Agric. Food Chem. 45:4500–4504.

    Article  CAS  Google Scholar 

  • Boughton, A. J., Hoover, K., and Felton, G. W. 2005. Methyl jasmonate application induces increased densities of glandular trichomes on tomato. J. Chem. Ecol. 31:2211–2216.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 72:248–254.

    Article  CAS  Google Scholar 

  • Broadway, R. M. 1995. Are insects resistant to plant proteinase inhibitors? J. Insect Physiol. 2:107–116.

    Article  Google Scholar 

  • Broadway, R. M., Duffey, S. S., Pearce, G., and Ryan, C. A. 1986. Plant proteinase inhibitors: a defense against herbivorous insects? Entomol. Exp. Appl. 41:33–38.

    Article  CAS  Google Scholar 

  • Broadway, R. M., and Colvin, A. A. 1992. Influence of cabbage proteinase inhibitors in situ on the growth of larval Trichoplusia ni and Pieris rapae. J. Chem. Ecol. 18:1009–1024.

    Article  CAS  Google Scholar 

  • Chen, H., Wilkerson, C. G., Kuchar, J. A., Phinney, B. S., and Howe, G. A. 2005. Jasmonate-inducible plant enzymes degrade essential amino-acids in the herbivore midgut. Proc. Natl. Acad. Sci. USA 102:19237–19242.

    Article  CAS  PubMed  Google Scholar 

  • Chougule, N. P., Doyle, E., Fitches, E., and Gatehouse, J. A. 2008. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. J. Insect Physiol. 54:563–572.

    Article  CAS  PubMed  Google Scholar 

  • Duffey, S. S., and Stout, M. J. 1996. Anti-nutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. 32:3–37.

    Article  CAS  Google Scholar 

  • Elliger, C. A., Wong, Y., Chan, B. G., and Waiss, A. C. 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7:753–758.

    Article  CAS  Google Scholar 

  • Farmer, E. E., and Ryan, C. A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134.

    Article  CAS  PubMed  Google Scholar 

  • Francis, F., Vanhaelen, N., and Haubruge, E. 2005. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect Biochem. Physiol. 58:166–174.

    Article  CAS  PubMed  Google Scholar 

  • Green, T. R., and Ryan, C. A. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777.

    Article  CAS  PubMed  Google Scholar 

  • Hägele, B. F., and Rowell-rahier, M. 1999. Dietary mixing in three generalist herbivores: nutrient complementation or toxin dilution? Oecologia 119:521–533.

    Article  Google Scholar 

  • Halitschke, R., and Baldwin, I. T. 2005. Jasmonates and related compounds in plant-insect interactions. J. Plant Growth Regul. 23:238–245.

  • Hegedus, D., Baldwin, D., O’grady, M., Braun, L., Gleddie, S., Sharpe, A., Lydiate, D., and Erlandson, M. 2003. Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning, and expressed sequence tag analysis. Arch. Insect Biochem. Physiol. 53:30–47.

    Article  CAS  PubMed  Google Scholar 

  • Howe, G. A., Lighter, J., Browse, J., and Ryan, C. A. 1996. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067–2077.

    Article  CAS  PubMed  Google Scholar 

  • Howe, G. A., and Ryan, C. A. 1999. Suppressors of systemin signaling identify genes in the tomato wound response pathway. Genetics 153:1411–1421.

    CAS  PubMed  Google Scholar 

  • Jongsma, M. A., and Bolter, C. 1997. The adaptation of insects to plant protease inhibitors. J. Insect Physiol. 10:885–895.

    Article  Google Scholar 

  • Karban, R., and Myers, J. H. 1989. Induced plant response to herbivory. Ann. Rev. Ecol. System. 20:331–348.

    Article  Google Scholar 

  • Lee, S. S. T., and Scott, J. G. 1989. An improved method for preparation, stabilization and storage of house fly (Diptera: Muscidae) microsomes. J. Econ. Entomol. 82:1559–1563.

    CAS  PubMed  Google Scholar 

  • Li, C., Williams, M. M., Loh, Y.-T., Lee, G. I., and Howe, G. A. 2002. Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signalling pathway. Plant Physiol. 130:494–503.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Oppert, B., Higgins, R. A., Huang, F., Zhu, K. Y., and Buschmann, L. L. 2004. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and—susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochem. Mol. Biol. 34:753–762.

    PubMed  Google Scholar 

  • Lightner, J., Pearce, G., Ryan, C. A., and Browse, J. 1993. Isolation of signaling mutants of tomato (Lycopersicon esculentum). Mol. Gen. Genom. 241:595–601.

    Google Scholar 

  • Mahanil, S., Attajarusit, J., Stout, M. J., and Thipyang, P. 2008. Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Science 174:456–466.

    Article  CAS  Google Scholar 

  • Mcgurl, B., Orozco-cardeas, M., Pearce, G., and Ryan, C. A. 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase-inhibitor synthesis. Proc. Natl. Acad. Sci. USA 91:9799–9802.

    Article  CAS  PubMed  Google Scholar 

  • Raubenheimer, D., and Simpson, S. J. 1992. Analysis of covariance: an alternative to nutritional indices. Entomol. Exp. Appl. 62:221–231.

    Article  Google Scholar 

  • Rayapuram, C., and Baldwin, I. T. 2006. Using nutritional indices to study LOX-3 dependent insect resistance. Plant Cell Environ. 29:1585–1594.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, C. A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477:112–121.

    CAS  PubMed  Google Scholar 

  • Schoonhoven, L. M., Van loon, J. J. A., and Dicke, M. 2005. Insect-plant biology, 2nd Edition. Oxford University Press, Oxford.

    Google Scholar 

  • Slansky, F., and Scriber, J. M. 1985. Food consumption and utilization, pp. 88–151, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology Biochemistry and Pharmacology. Volume 4. Regulation: Digestion, Nutrition, Excretion. Pergamon, New York.

    Google Scholar 

  • Stout, M. J., and Duffey, S. S. 1996. Characterization of induced resistance in tomato plants. Entomol. Exp. Appl. 79:273–283.

    Article  Google Scholar 

  • Thaler, J. S., Farag, M. A., Paré, P. W., and Dicke, M. 2002. Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology Lett. 5:764–774.

    Article  Google Scholar 

  • Wadleigh, R. W., and Yu, S. 1987. Glutathione transferase activity of fall armyworm larvae toward α,β-unsaturaqted carbonyl allelochemicals and its induction by allelochemicals. Insect Biochem. 17:759–764.

    Article  CAS  Google Scholar 

  • Wasternack, C. 2007. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100:681–697.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S. J. 1982. Host plant induction of glutathione S-transferase in the fall armyworm. Pestic. Biochem. Physiol. 18:101–106.

    Article  CAS  Google Scholar 

  • Yu, S. J. 1984. Interactions of allelochemicals with detoxification enzymes of insecticide-susceptible and resistant fall armyworms. Pestic. Biochem. Physiol. 22:60–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to C. Leichter and A. Tuccillo for technical assistance, and Drs. P. Wang, S. Behmer, and G. Howe for advice and the tomato varieties. Funding was provided by NSERC (IS), National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, Grant Number # 2006-35302-17431 (JST), and the Daljit and Elaine Sarkaria Professorship (JGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, I.M., Thaler, J.S. & Scott, J.G. Response of a Generalist Herbivore Trichoplusia ni to Jasmonate-Mediated Induced Defense in Tomato. J Chem Ecol 36, 490–499 (2010). https://doi.org/10.1007/s10886-010-9780-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9780-8

Key Words

Navigation