Skip to main content
Log in

Turnabout is fair play: Secondary roles for primary compounds

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Chemically based resistance of plants to herbivorous insects is today essentially synonymous with allelochemically based resistance; the importance of plant secondary compounds in determining patterns of host-plant utilization has been established in a wide variety of insect-plant interactions. In contrast, primary metabolites, those involved in fundamental plant physiological processes, are rarely considered to be major determinants of host-plant resistance despite the fact that, as insect nutrients, they can have profound effects on behavior and physiology. The degree to which variation in plant primary metabolism results from the selective impact of herbivory may be greatly underestimated in that the biosynthetic and structural diversity of primary metabolites and the consequences of that diversity on herbivores are rarely taken into account in most studies of insect preference and performance. Qualitative and quantitative variation in the production of primary metabolites can result from herbivore selection pressure if production of primary metabolites is under genetic control and if plant fitness in the presence of herbivores is associated in a predictable way with genetically based primary metabolite variation. Variation in primary metabolism is likely to be particularly effective as a defense against highly oligophagous herbivores with limited mobility, especially those confined to structures containing allelochemicals that could neutralize the benefits associated with compensatory feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auclair, J.L., Maltais, J.B., andCartier, J.J. 1957. Factors in resistance of peas to the pea aphid,Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae). II. Amino acids.Can. Entomol. 89:457–464.

    Google Scholar 

  • Aucoin, P.R., Fields, P., Lewis, M.A., Philogene, B.J.R., andArnason, J.T. 1990. The protective effect of antioxidants to a phototoxin-sensitive insect herbivore,Manduca sexta.J. Chem. Ecol. 16:2913–2924.

    Google Scholar 

  • Austin, R.B., andLongden, P.C. 1965. Effects of nutritional treatments of seed-bearing plants on the performance of their progeny.Nature 205:819–820.

    Google Scholar 

  • Axtell, J.D. 1981. Breeding for improved nutritional quality, pp. 365–432,in K.J. Frey (ed.). Plant Breeding II. Iowa State University Press, Ames.

    Google Scholar 

  • Bernays, E.A., andWoodhead, S. 1982. Plant phenols utilized as nutrients by a phytophagous insect.Science 216:201–203.

    Google Scholar 

  • Bittenbender, H.C., andKelly, J.F. 1988. Improving the nutritional quality of vegetables through plant breeding, Chapter 24,in E. Karmas and R.S. Harris (ed.). Nutritional Evaluation of Food Processing. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Bolland, M.D.A., andPaynter, B.H. 1990. Increasing phosphorus concentration in seed of annual pasture legume species increases herbage and seed yields.Plant Soil 125:197–205.

    Google Scholar 

  • Bonner, J., andGalston, A.W. 1952. Principles of Plant Physiology. Freeman, San Francisco. p. 449.

    Google Scholar 

  • Brattsten, L.B. 1992. Metabolic defenses against plant allelochemicals, pp. 176–242.in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores, Their Interactions with Secondary Plant Metabolites. Academic Press, San Diego.

    Google Scholar 

  • Broadway, R.M., andDuffey, S.S. 1988. The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors.J. Insect Physiol. 34:1111–1117.

    Google Scholar 

  • Bryant, J.P., Chapin, F.S., III, andKlein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory.Oikos 40:357–368.

    Google Scholar 

  • Caradus, J.R. 1992. Heritability of and relationships between phosphorus and nitrogen concentration in shoot, stolon and root of white clover (Trifolium repens L.).Plant Soil 146:209–217.

    Google Scholar 

  • Chapman, R.F. 1972. The Insects: Structure and Function. Elsevier, New York.

    Google Scholar 

  • Chen, P.S. 1966. Amino acid and protein metabolism in insect development.Adv. Insect Physiol. 3:53–132.

    Google Scholar 

  • Clancy, K.M. 1992. The role of sugars in western spruce budworm nutritional ecology.Ecol. Entomol. 17:189–197.

    Google Scholar 

  • Cockfield, S.D. 1988. Relative availability of nitrogen in host plants of invertebrate herbivores: Three possible nutritional and physiological definitions.Oecologia 1988:91–94.

    Google Scholar 

  • Coley, P.D., Bryant, J.P., andChapin, F.S. 1985. Resource availability and plant antiherbivore defense.Science 230:895–899.

    Google Scholar 

  • Dadd, R.H. 1963. Feeding behavior and nutrition in grasshoppers and locusts.Adv. Insect Physiol. 1:47–109.

    Google Scholar 

  • Feeny, P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.

    Google Scholar 

  • Felton, G.W., andSummers, C.B. 1993. Potential role of ascorbate oxidase as a plant defense protein against insect herbivory.J. Chem. Ecol. 19:1553–1568.

    Google Scholar 

  • Field, C., andMooney, H.A. 1986. The photosynthesis-nitrogen relationship, pp. 25–55,in T.J. Givnish (ed.). On the Economy of Plant Form and Function, Cambridge University Press, Cambridge.

    Google Scholar 

  • Fitter, A.H., andHay, R.K.M. 1983. Environmental Physiology of Plants. Academic Press, New York.

    Google Scholar 

  • Fraenkel, G. 1959. The raison d'être of secondary plant substances.Science 125:1466–1470.

    Google Scholar 

  • Fraenkel, G. 1969. Evaluation of our thoughts on secondary plant substances.Entomol. Exp. Appl. 12:473–486.

    Google Scholar 

  • Freeman, R.E., andSimon, P.W. 1983. Evidence for simple genetic control of sugar type in carrot (Daucus carota L.).J. Am. Soc. Hortic. Sci. 108:50–57.

    Google Scholar 

  • Green, E., andBerenbaum, M.R. 1994. Phototoxicity of citral toTrichoplusia ni (Lepidoptera: Noctuidae) and its amelioration by vitamin A.Photochem. Photobiol. 60:459–462.

    Google Scholar 

  • Grunwald, C., andKogan, M. 1981. Sterols of soybean differing in insect resistance and maturity group.Phytochemistry 20:765–768.

    Google Scholar 

  • Guenther, E. 1948. The Essential Oils. D. Van Nostrand, New York.

    Google Scholar 

  • Hansen, J.L., Viands, D.R., Steffens, J.C., andSniffen, C.J. 1992. Heritability and improvement of protein and nitrogen concentrations in wilted alfalfa forage.Crop Sci. 32:879–883.

    Google Scholar 

  • Haukioja, E., Ruohomaki, K., Suomela, J., andVuorisalo, T. 1991. Nutritional quality as a defense against herbivores.For. Ecol. Manage. 39:237–245.

    Google Scholar 

  • Hinton, H. 1976. Enabling mechanisms.Proc. XV Int. Cong. Entomol. 1976:71–83.

    Google Scholar 

  • Janzen, D.H. 1977. How southern cowpea weevil larvae (Bruchidae:Callosobruchus maculatus) die on nonhost seeds.Ecology 58:921–927.

    Google Scholar 

  • Janzen, D.H. 1979. New horizons in the biology of plant defenses, pp. 331–350,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Kennedy, J.S. 1953. Host plant selection in Aphididae.Trans. 9th. Int. Cong. Entomol. Amsterdam 2:106–110.

    Google Scholar 

  • Kennedy, J.S. 1958. The experimental analysis of aphid behaviours and its bearing on current theories of instinct.Proc. 10th Int. Cong. Entomol. Montreal 2:397–404.

    Google Scholar 

  • Lipke, H., andFraenkel, G. 1956. Insect nutrition.Annu. Rev. Entomol. 1:17–44.

    Google Scholar 

  • Lundberg, P., andAstrom, M. 1990. Low nutritive quality as a defense against optimally foraging herbivores.Am. Nat. 135:547–562.

    Google Scholar 

  • Maltais, J.B., andAuclair, J.L. 1957. Factors in resistance to the pea aphid,Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae) I. The sugar-nitrogen ratio.Can. Entomol. 89:365–370.

    Google Scholar 

  • Mansingh, A. 1981. Nutritional control of processed food pests: Growth and survival ofTribolium confusum (Duval) on nutritionally imbalanced pudding diets.Insect Sci. Appl. 2:259–262.

    Google Scholar 

  • McFerson, J.K., andFrey, K.J. 1991. Recurrent selection for protein yield of oats.Crop Sci. 31:1–8.

    Google Scholar 

  • Moran, N., andHamilton, W.D. 1980. Low nutritive quality as defense against herbivores.J. Theor. Biol. 86:247–254.

    Google Scholar 

  • Moser, H.S., andFrey, K.J. 1993. Effects of S1-recurrent selection for protein yield on seven agronomic traits of oat.Euphytica 70:141–150.

    Google Scholar 

  • Mothes, K. 1980. Historical introduction, pp. 1–10,in E.A. Bell and B.V. Charlwood (eds.). Secondary Plant Products. Springer-Verlag, New York.

    Google Scholar 

  • Mozafar, A. 1994. Plant Vitamins: Agronomic, Physiological, and Nutritional Aspects. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Muller, C.H. 1969. The “co-” in coevolution.Science 164:197–198.

    PubMed  Google Scholar 

  • Neuvonen, S., andHaukioja, E. 1984. Low nutridve quality as defence against herbivores: Induced responses in birch.Oecologia 63:71–74.

    Google Scholar 

  • Painter, R.H. 1936. The food of insects and its relation to resistance of plants to insect attack.Am. Nat. 70:547–567.

    Google Scholar 

  • Parrish, J.A.D., andBazzaz, F.A. 1985. Nutrient content ofAbutilon theophrasti seeds and the competitive ability of the resulting plants.Oecologia 65:247–251.

    Google Scholar 

  • Poehlman, J.M. 1979. Breeding Field Crops, 2nd ed. AVI, Westport, Connecticut.

    Google Scholar 

  • Price, P.W., Bouton, C.E., McPherson, B.A., Thompson, J.N., andWeis, A.E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies.Annu. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • Rahman, M.A., andGoodman, P.J. 1983. Effect of seed nitrogen on response to applied nitrogen in six spring barley (Hordeum vulgare L.) cultivars in a glasshouse.Plant Soil 73:203–209.

    Google Scholar 

  • Reese, J.C. 1979. Interaction of allelochemicals with nutrients in herbivore food, pp. 309–330,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry.Recent Adv. Phytochem. 10:168–213.

    Google Scholar 

  • Robinson, M.E. 1930. Cyanogenesis in plants.Biol. Rev. Biol. Proc. Cambridge Phil. Soc. 5:126–141.

    Google Scholar 

  • Robinson, T. 1974. Metabolism and function of alkaloids in plants.Science 184:430–435.

    Google Scholar 

  • Rock, G.C. 1972. Optimal proportions of dietary amino acids, pp. 183–197,in J.G. Rodriguez (ed.). Insect and Mite Nutrition. North-Holland Publishing, Amsterdam.

    Google Scholar 

  • Rosenthal, G.A., andBell, E.A. 1979. Naturally occurring, toxic nonprotein amino acids, pp. 353–385,in G.A. Rosenthal and D.H. Janzen (ed.). Herbivores, Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Schiff, N.M., Waldbauer, G.P., andFriedman, S. 1988. Dietary self-selection for vitamins and lipid by larvae of the corn earworm,Heliothis zea.Entomol. Exp. Appl. 46:240–256.

    Google Scholar 

  • Scriber, J.M. 1984. Host-plant suitability, pp. 159–204,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Seigler, D.S. 1977. Primary roles for secondary compounds.Biochem. Syst. Ecol. 5:195–199.

    Google Scholar 

  • Seigler, D.S., andPrice, P. 1976. Secondary compounds in plants; primary functions.Am. Nat. 110:101–105.

    Google Scholar 

  • Simon, P.W., Peterson, C.E., andLindsay, R.C. 1982. Genotype, soil, and climate effects of sensory and objective components of carrot flavor.J. Am. Soc. Hortic. Sci. 107:644–648.

    Google Scholar 

  • Simpson, S.J., andSimpson, C.L. 1990. The mechanisms of nutritional compensation by phytophagous insects, pp. 111–150,in E.A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Sinclair, T.R., andHorie, T. 1989. Leaf nitrogen, photosynthesis, photosynthesis, and crop radiation use efficiency: A review.Crop Sci. 29:90–98.

    Google Scholar 

  • Sinclair, P.R., Gorman, N., Walton, H.S., Bement, W.J., Jacobs, J.M., andSinclair, J.F. 1993. Ascorbic acid inhibition of cytochrome P450-catalyzed uroporphyrin accumulation.Arch. Biochem. Biophys. 304:464–470.

    PubMed  Google Scholar 

  • Slansky, F. 1990. Insect nutritional ecology as a basis for studying host plant resistance.Fl. Entomol. 73:360–378.

    Google Scholar 

  • Slansky, F. 1992. Allelochemical-nutrient interactions in herbivore nutritional ecology, pp. 135–174,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores, Their Interactions with Secondary Plant Metabolites, Academic Press, New York.

    Google Scholar 

  • Slansky, F., andRodriguez, J.G. 1987. Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons, New York.

    Google Scholar 

  • Slansky, F., andWheeler, G.S. 1992. Caterpillar's compensatory feeding response to diluted nutrients leads to toxic allelochemical dose.Entomol. Exp. Appl. 65:171–186.

    Google Scholar 

  • Stahl, E. 1888. Pflanzen und Schnecken.Jena. Z. Med. Naturwiss. 22:559–684.

    Google Scholar 

  • Stommel, J.R., andSimon, P.W. 1989. Phenotypic recurrent selection and heritability estimates for total dissolved solids and sugar type in carrot.J. Am. Soc. Hortic. Sci. 114:695–699.

    Google Scholar 

  • Sullivan, J.G., andBliss, F.A. 1983. Recurrent mass selection for increased seed yield and seed protein percentage in the common bean (Phaseolus vulgaris L.) using a selection index.J. Am. Soc. Hortic. Sci. 108:42–46.

    Google Scholar 

  • Suzuki, H., Torii, Y., Hitomi, K., andTsukagoshi, N. 1993. Ascorbate-dependent elevation of mRNA levels for cytochrome P450s induced by polychlorinated biophenyls.Biochem. Pharmacol. 46:186–189.

    PubMed  Google Scholar 

  • Thompson, J.N. 1973. A review and comparative characterization of the fatty acid compositions of seven orders of insects.Comp. Biochem. Physiol. 45B:467–482.

    Google Scholar 

  • Thorsteinson, A.J. 1958. Acceptability of plants for phytophagous insects.Proc. 10th. Int. Cong. Entomol. Montreal 2:599–602.

    Google Scholar 

  • Thorsteinson, A.J. 1960. Host selection in phytophagous insects.Annu. Rev. Entomol. 5:193–218.

    Google Scholar 

  • Varis, S., andGeorge, R.A.T. 1985. The influence of mineral nutrition on fruit yield, seed yield and quality in tomato.J. Hortic. Sci. 60:373–376.

    Google Scholar 

  • Waldbauer, G.P., Cohen, R.W., andFriedman, S. 1984. Self-selection of an optimal nutrient mix from defined diets by larvae of the corn earworm,Heliothis zea (Boddie).Physiol. Zool. 5:590–597.

    Google Scholar 

  • Weibull, J. 1994. Glutamic acid content of phloem sap is not a good predictor of plant resistance toRhopalosiphum padi.Phytochemistry 35:601–602.

    Google Scholar 

  • Whittaker, R.H., andFeeny, P.P. 1971. Allelochemics: Chemical interactions between species.Science 171:757–770.

    PubMed  Google Scholar 

  • Wilson, K.G., andStinner, R.E. 1984. A potential influence ofRhizobium activity on the availability of nitrogen to legume herbivores.Oecologia 61:337–341.

    Google Scholar 

  • Windholz, M. (ed.). 1983. The Merck Index. Merck & Co., Rahway, New Jersey.

    Google Scholar 

  • Zhang, M., Nyborg, M., andMcGill, W.B. 1990. Phosphorus concentration in barley (Hordeum vulgare L.) seed: Influence on seedling growth and dry matter production.Plant Soil 122:79–83.

    Google Scholar 

  • Zou, J., andCates, R.G. 1994. Role of Douglas fir (Pseudotsuga menziesii) carbohydrates in resistance to budworm (Choristoneura occidentalis).J. Chem. Ecol. 20:395–405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berenbaum, M.R. Turnabout is fair play: Secondary roles for primary compounds. J Chem Ecol 21, 925–940 (1995). https://doi.org/10.1007/BF02033799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033799

Key Words

Navigation