Skip to main content

Abiotic Stress in Plants: Socio-Economic Consequences and Crops Responses

  • Chapter
  • First Online:
Nanobiotechnology

Abstract

Evolution has long enabled plants with an adjusted response and tolerance mechanisms in the time facing drought, salinity, extreme temperatures, excessive light, and heavy metals collectively known as abiotic stress, with an accelerated incidence in climate change era owing to a rapid rise in global temperature, which has triggered a domino effect that recent studies announced its destructive influence on agricultural products. These circumstances have exposed crops to an unprecedented level of multi stress that involves a plethora of complicated morphological, physiological and molecular responses as well as survival strategies. The changes assist plants to improve water relations, regulation over oxidative stress and osmotic adjustment and induction of genes that are directly or indirectly initiate networks of signaling to organizational readiness for an arms race in plants against stress-generated harmful products. Its intertwined nature has been the subject of plenty of biological studies to reach a reliable realization of these processes, since this is the safe approach to inject this understanding into selection and breeding programs to create superior cultivars that make a human capacity to provide food to an ever-increasing population on the earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abebe T, Guenzi AC, Martin B et al (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A et al (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  • Aggarwal PK, Mall R (2002) Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Clim Change 52:331–343

    Article  Google Scholar 

  • Ahmad MSA, Ashraf M (2012) Essential roles and hazardous effects of nickel in plants. In: Whitacre D (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 125–167

    Chapter  Google Scholar 

  • Ahmad S, Ahmad R, Ashraf MY et al (2009) Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pak J Bot 41:647–654

    Google Scholar 

  • Ahsan N, Lee SH, Lee DG et al (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. CR Biol 330:735–746

    Article  CAS  Google Scholar 

  • Al W, Orking G, Clima O (2008) Climate change and food security: a framework document. FAO Rome

    Google Scholar 

  • Alarcón J, Morales M, Ferrández T et al (2006) Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. J Hortic Sci Biotech 81:845–853

    Article  Google Scholar 

  • Alarcón J, Morales M, Torrecillas A et al (1999) Growth, water relations and accumulation of organic and inorganic solutes in the halophyte Limonium latifolium cv. Avignon and its interspecific hybrid Limonium caspia x Limonium latifolium cv. Beltlaard during salt stress. J Plant Physiol 154:795–801

    Article  Google Scholar 

  • Allen M, Dube O, Solecki W et al (2018) Framing and context. Global warming of 1:49–91

    Google Scholar 

  • Álvarez S, Gómez-Bellot MJ, Castillo M et al (2012) Osmotic and saline effect on growth, water relations, and ion uptake and translocation in Phlomis purpurea plants. Environ Exp Bot 78:138–145

    Article  CAS  Google Scholar 

  • Ashraf M (2003) Relationships between leaf gas exchange characteristics and growth of differently adapted populations of Blue panicgrass (Panicum antidotale Retz.) under salinity or waterlogging. Plant Sci 165:69–75

    Article  CAS  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Ashraf M, Karim F (1991) Screening of some cultivars/lines of black gram (Vigna mungo L. Hepper) for resistance to water stress. Trop Agric 68:57–62

    Google Scholar 

  • Ashraf MY, Sadiq R, Hussain M et al (2011) Toxic effect of nickel (Ni) on growth and metabolism in germinating seeds of sunflower (Helianthus annuus L.). Biol Trace Elem Res 143:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Ashtox T (1948) Technique of breeding for drought resistance in crops. Technique of breeding for drought resistance in crops. Cambridge, London

    Google Scholar 

  • Azevedo Neto ADd, Prisco JT, Enéas-Filho J et al (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38

    Article  Google Scholar 

  • Aziz I, Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot 70:259–268

    Article  CAS  Google Scholar 

  • Azizian A, Sepaskhah A (2014) Maize response to different water, salinity and nitrogen levels: agronomic behavior. Int J Plant Prod 8:107–130

    Google Scholar 

  • Bae J, Benoit DL, Watson AK (2016) Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ Pollut 213:112–118

    Article  CAS  PubMed  Google Scholar 

  • Bahar B, Yildirim M, Barutcular C et al (2008) Effect of canopy temperature depression on grain yield and yield components in bread and durum wheat. Not Bot Horti Agrobo 36:34–37

    Google Scholar 

  • Bailey-Serres J, Voesenek LA (2010) Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol 13:489–494

    Article  CAS  PubMed  Google Scholar 

  • Barnes J, Davison A (1988) The influence of ozone on the winter hardiness of Norway spruce [Picea abies (L.) Karst.]. New Phytol 108:159–166

    Article  CAS  PubMed  Google Scholar 

  • Bazihizina N, Colzi I, Giorni E et al (2015) Photosynthesizing on metal excess: copper differently induced changes in various photosynthetic parameters in copper tolerant and sensitive Silene paradoxa L. populations. Plant Sci 232:67–76

    Article  CAS  PubMed  Google Scholar 

  • Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    Article  PubMed  Google Scholar 

  • Bingham J (1966) Varietal response in wheat to water supply in the field, and male sterility caused by a period of drought in a glasshouse experiment. Ann Appl Biol 57:365–377

    Article  Google Scholar 

  • Bloom A, Zwieniecki M, Passioura J et al (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant, Cell Environ 27:971–979

    Article  Google Scholar 

  • Blum A (2011) Drought resistance–is it really a complex trait? Funct Plant Biol 38:753–757

    Article  PubMed  Google Scholar 

  • Bohnert HJ, Gong Q, Li P et al (2006) Unraveling abiotic stress tolerance mechanisms–getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  PubMed  Google Scholar 

  • Bouman B, Peng S, Castaneda A et al (2005) Yield and water use of irrigated tropical aerobic rice systems. Agri Water Manag 74:87–105

    Article  Google Scholar 

  • Bray EA (2000) Response to abiotic stress. Biochem Mol Biol Plant 1158–1203

    Google Scholar 

  • Brooking I (1976) Male sterility in Sorghum bicolor (L.) Moench induced by low night temperature. I. Timing of the stage of sensitivity. Funct Plant Biol 3:589–596

    Article  CAS  Google Scholar 

  • Budhathoki NK, Zander KK (2019) Socio-economic impact of and adaptation to extreme heat and cold of farmers in the Food Bowl of Nepal. Int J Environ Res Public Health 16:1578

    Article  PubMed Central  Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J Hydrometeorol 7:1113–1125

    Article  Google Scholar 

  • Cai X, Magwanga RO, Xu Y et al (2019) Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurberi. AoB Plant 11:plz045

    Google Scholar 

  • Campanharo M, Monnerat P, Espindula M et al (2010) Toxicity symptoms of nickel in common bean. Rev Cienc Agron 41:490–494

    Article  Google Scholar 

  • Caudle KL, Maricle BR (2012) Effects of flooding on photosynthesis, chlorophyll fluorescence, and oxygen stress in plants of varying flooding tolerance. Trans Kans Acad Sci 115:5–18

    Article  Google Scholar 

  • Chavarria G, dos Santos HP (2012) Plant water relations: absorption, transport and control mechanisms. In: Montanaro G (ed) Advances in selected plant physiology aspects. Intechopen. Available via DIALOG. https://www.intechopen.com/books/advances-in-selected-plant-physiology-aspects/plant-water-relations-absorption-transport-and-control-mechanisms. Accessed 7 July 2020

  • Clarke H, Siddique K (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Res 90:323–334

    Article  Google Scholar 

  • Colla G, Rouphael Y, Leonardi C et al (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hortic 127:147–155

    Article  Google Scholar 

  • Conesa M, De La Rosa J, Domingo R et al (2016) Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson seedless) grown in pots. Sci Hortic 202:9–16

    Article  Google Scholar 

  • Cong Dien D, Yamakawa T (2019) Phenotypic variation and selection for cold-tolerant rice (Oryza sativa L.) at germination and seedling stages. Agriculture 9:162. https://doi.org/10.3390/agriculture9080162

  • Dai A (2011) Characteristics and trends in various forms of the palmer drought severity index during 1900–2008. J Geophys Res Atmos 116. https://doi.org/10.1029/2010jd015541

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Ann Rev Plant Biol 42:55–76

    Article  CAS  Google Scholar 

  • de Campos MKF, de Carvalho K, de Souza FS et al (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Article  CAS  Google Scholar 

  • de Juan Javier P, José IJ, Manuel SD (1997) Chilling of drought-hardened and non-hardened plants of different chilling-sensitive maize lines changes in water relations and ABA contents. Plant Sci 122:71–79

    Article  Google Scholar 

  • Demirevska-Kepova K, Holzer R, Simova-Stoilova L et al (2005) Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  CAS  Google Scholar 

  • Dey S, Ram K, Chhabra A et al (2018) Aerobic rice: smart technology of rice cultivation. Int J Curr Microbiol App Sci 7:1799–1804

    Article  Google Scholar 

  • Din J, Khan S, Ali I et al (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21:78–82

    Google Scholar 

  • Ding W, Fang W, Shi S et al (2016) Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Mol Biol Rep 34:1111–1126

    Article  CAS  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  PubMed  Google Scholar 

  • Dolstra O, Jongmans MA, de Jong K (1988) Improvement and significance of resistance to low-temperature damage in maize (Zea mays L.) I. Chlorosis resistance. Euphytica 39:117–123

    Article  Google Scholar 

  • Doncheva S (1998) Copper-induced alterations in structure and proliferation of maize root meristem cells. J Plant Physiol 153:482–487

    Article  CAS  Google Scholar 

  • Ehrler W, Idso S, Jackson RD et al (1978) Wheat canopy temperature: relation to plant water potential 1. Agron J 70:251–256

    Article  Google Scholar 

  • Enders TA, St. Dennis S, Oakland J et al (2019) Classifying cold-stress responses of inbred maize seedlings using RGB imaging. Plant Direct 3:e00104

    Google Scholar 

  • Fageria NK, Baligar VC, Jones CA (2010) Growth and mineral nutrition of field crops. CRC Press, Florida

    Book  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Field CB, Barros VR, Mastrandrea MD et al (2014) Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability Part A: global and sectoral aspects contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, London, pp 1–32

    Google Scholar 

  • Flagella Z, Rotunno T, Tarantino E et al (2002) Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur J Agron 17:221–230

    Article  CAS  Google Scholar 

  • Fortmeier R, Schubert S (1995) Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant, Cell Environ 18:1041–1047

    Article  CAS  Google Scholar 

  • Franco J, Bañón S, Vicente M et al (2011) Root development in horticultural plants grown under abiotic stress conditions–a review. J Hortic Sci Biotech 86:543–556

    Article  Google Scholar 

  • Fricke W (2020) Energy costs of salinity tolerance in crop plants: night-time transpiration and growth. New Phytol 225:1152–1165

    Article  CAS  PubMed  Google Scholar 

  • Georgiadou EC, Kowalska E, Patla K et al (2018) Influence of heavy metals (ni, cu, and zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) Plants. Front Plant Sci 9:862. https://doi.org/10.3389/fpls.2018.00862

  • Gómez-Bellot MJ, Alvarez S, Castillo M et al (2013) Water relations, nutrient content and developmental responses of euonymus plants irrigated with water of different degrees of salinity and quality. J Plant Res 126:567–576

    Article  PubMed  CAS  Google Scholar 

  • Greger M, Johansson M (1992) Cadmium effects on leaf transpiration of sugar beet, Beta vulgaris. Physiol Plant 86:465–473

    Article  CAS  Google Scholar 

  • Gzyl J, Przymusiński R, Woźny A (1997) Organospecific reactions of yellow lupin seedlings to lead. Acta Soc Bot Pol 66:61–66

    Article  CAS  Google Scholar 

  • Hajibabaee M, Azizi F, Zargari K (2012) Effect of drought stress on some morphological, physiological and agronomic traits in various foliage corn hybrids. Am Eurasian J Agric Environ Sci 12:890–896

    Google Scholar 

  • Hajiboland R, Norouzi F, Poschenrieder C (2014) Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees 28:1065–1078

    Article  CAS  Google Scholar 

  • Hampson CR, Simpson G (1990) Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum) I. Germination. Can J Bot 68:524–528

    Article  Google Scholar 

  • Hansen J, Beck E (1988) Evidence for ideal and non-ideal equilibrium freezing of leaf water in frosthardy ivy (Hedera helix) and winter barley (Hordeum vulgare). Bot Acta 101:76–82

    Article  Google Scholar 

  • Hasana R, Miyake H (2017) Salinity stress alters nutrient uptake and causes the damage of root and leaf anatomy in maize. KnE Life Sci 3:219–225

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie Ch (eds) Abiotic stress-plant responses and applications in agriculture. Intechopen. Available via DIALOG. https://www.intechopen.com/books/abiotic-stress-plant-responses-and-applications-in-agriculture/extreme-temperature-responses-oxidative-stress-and-antioxidant-defense-in-plants. Accessed 7 July 2020

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10

    Article  Google Scholar 

  • Haworth M, Marino G, Brunetti C et al (2018) The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.)—A case study of the 2017 heat wave. Plants 7:76

    Google Scholar 

  • Hayashi T, Kashiwabara K, Yamaguchi T et al (2000) Effects of high nitrogen supply on the susceptibility to coolness at the young microspore stage in rice (Oryza sativa L.). Plant Prod Sci 3:323–327

    Article  Google Scholar 

  • Heckathorn SA, Coleman J, Hallberg R (1998) Recovery of net CO2 assimilation after heat stress is correlated with recovery of oxygen-evolving-complex proteins in Zea mays L. Photosynthetica 34:13–20

    Article  Google Scholar 

  • Hochman Z, Gobbett DL, Horan H (2017) Climate trends account for stalled wheat yields in Australia since 1990. Glob Chang Biol 23:2071–2081

    Article  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT et al (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. https://doi.org/10.1155/2012/872875

    Article  Google Scholar 

  • Hotton C, Hueber F, Griffing D et al (2001) Early terrestrial plant environments: an example from the Emsian of Gaspé, Canada. In: Gensel PG, Edwards D (eds) Plants invade the land: evolutionary and environmental perspective. Columbia University Press, New York, pp 179–212

    Chapter  Google Scholar 

  • Hough R, Young S, Crout N (2003) Modelling of Cd, Cu, Ni, Pb and Zn uptake, by winter wheat and forage maize, from a sewage disposal farm. Soil Use Manageme 19:19–27

    Article  Google Scholar 

  • Hussain M, Malik M, Farooq M et al (2009) Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J Agron Crop Sci 195:98–109

    Article  CAS  Google Scholar 

  • Iizumi T, Furuya J, Shen Z et al (2017) Responses of crop yield growth to global temperature and socioeconomic changes. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd). Sci Hortic 122:281–287

    Article  CAS  Google Scholar 

  • Jagadish S, Craufurd P, Wheeler T (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Kataria S, Hirve M et al (2019) Water deficit stress effects and responses in maize. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) plant abiotic stress tolerance. Springer, Cham, pp 129–151

    Chapter  Google Scholar 

  • Jain M, Tiwary S, Gadre R (2010) Sorbitol-induced changes in various growth and biochemici parameters in maize. Plant Soil Environ 56:263–267

    Article  CAS  Google Scholar 

  • Ji X, Shiran B, Wan J et al (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant, Cell Environ 33:926–942

    Article  CAS  Google Scholar 

  • Jovović M, Tunguz V, Mirosavljević M et al (2018) Effect of salinity and drought stress on germination and early seedlings growth of bread wheat (Triticum aestivum L.). Genetika 50:285–298

    Article  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Sans JF et al (2008) Aquaporins and plant water balance. Plant, Cell Environ 31:658–666

    Article  CAS  Google Scholar 

  • Kasim WA (2006) Changes induced by copper and cadmium stress in the anatomy and grain yield of Sorghum bicolor (L.) Moench. Int J Agri Biol 8:123–128

    CAS  Google Scholar 

  • Kastori R, Petrović M, Petrović N (1992) Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. J Plant Nutr 15:2427–2439

    Article  CAS  Google Scholar 

  • Kaur R, Bhardwaj R, Sharma R et al (2016) Hormonal regulation of drought stress in plants. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach. Wiley, New York, pp 2:582–599

    Google Scholar 

  • Khan N, Anjum N, Nazar R et al (2009) Increased activity of ATP–sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russ J Plant Physl 56:670–677

    Article  CAS  Google Scholar 

  • Kirkham M (2005) Principles of soil and plant water relations. Elsevier, Massachusetts

    Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA et al (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150:280–287

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz A, Dufault RJ (2001) Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield. I Watermelon. J Am Soc Hortic Sci 126:404–409

    Article  Google Scholar 

  • Kozlowski T, Pallardy S (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334

    Article  Google Scholar 

  • Lacerda CFd, Cambraia J, Oliva MA et al (2003) Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Braz J Plant Physiol 15:113–118

    Article  Google Scholar 

  • Lal R (2018) Urban agriculture in the 21st century. In: Lal R, Stewart BA (eds) Urban soils. CRC Press, Boca Raton, Florida, pp 1–13. https://doi.org/10.1201/9781315154251-1

  • Lamaoui M, Jemo M, Datla R et al (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26. https://doi.org/10.3389/fchem.2018.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamoreaux RJ, Chaney WR (1977) Growth and water movement in silver maple seedlings affected by cadmium. J Environ Qual 6:201–205

    Article  CAS  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar T, Taiz L, Zeiger E (2003) Plant physiology, 3rd edn. Ann Bot 91:750–751

    Google Scholar 

  • Lim CW, Baek W, Han SW et al (2013) Arabidopsis PYL8 plays an important role for ABA signaling and drought stress responses. Plant pathol J 29:471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Bongi G (1989) Combined low temperature-high light effects on gas exchange properties of jojoba leaves. Plant Physiol 91:1580–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Vonshak A (2002) Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413

    Article  CAS  PubMed  Google Scholar 

  • Lu CM, Zhang JH (2000) Heat-induced multiple effects on PSII in wheat plants. J Plant Physiol 156:259–265

    Article  CAS  Google Scholar 

  • Lu Y, Yao H, Shan D et al (2015) Heavy metal residues in soil and accumulation in maize at long-term wastewater irrigation area in Tongliao. J Chem, China. https://doi.org/10.1155/2015/628280

    Book  Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233:179–187

    Article  CAS  Google Scholar 

  • Maricle K, Maricle (2012) Effects of flooding on photosynthesis, chlorophyll fluorescence, and oxygen stress in plants of varying flooding tolerance. Trans Kans Acad Sci 115:5–18

    Google Scholar 

  • Markhart AH III (1986) Chilling injury: a review of possible causes. HortScience 21:1329–1333

    Article  CAS  Google Scholar 

  • Mediouni C, Benzarti O, Tray B et al (2006) Cadmium and copper toxicity for tomato seedlings. Agron Sustain Dev 26:227–232

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby E, Kosegarten H et al (2001) Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4. https://doi.org/10.3389/fpls.2014.00004

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed HI (2011) Molecular and biochemical studies on the effect of gamma rays on lead toxicity in cowpea (Vigna sinensis) plants. Biol Trace Elem Res 144:1205–1218

    Article  CAS  PubMed  Google Scholar 

  • Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environ Exp Bot 47:115–126

    Article  CAS  Google Scholar 

  • Morales D, Rodríguez P, Dell’Amico J et al (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208

    Article  Google Scholar 

  • Mourtzinis S, Specht JE, Lindsey LE et al (2015) Climate-induced reduction in US-wide soybean yields underpinned by region-and in-season-specific responses. Nature plants 1. https://doi.org/10.1038/nplants.2014.26

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Navarro A, Bañón S, Conejero W et al (2008) Ornamental characters, ion accumulation and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environ Exp Bot 62:364–370

    Article  CAS  Google Scholar 

  • Naz N, Durrani F, Shah Z et al (2018) Influence of heat stress on growth and physiological activities of potato (Solanum tuberosum L.). Phyton 87:225–230

    Article  Google Scholar 

  • Nouman W, Qureshi MK, Shaheen M et al (2018) Variation in plant bioactive compounds and antioxidant activities under salt stress. In: Vats S (ed) Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 77–101

    Google Scholar 

  • Okada T, Jayasinghe J, Nansamba M et al (2018) Unfertilized ovary pushes wheat flower open for cross-pollination. J Exp Bot 69:399–412

    Article  CAS  PubMed  Google Scholar 

  • Okçu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agric Forest 29:237–242

    Google Scholar 

  • Oliver SN, Van Dongen JT, Alfred SC et al (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant, Cell Environ 28:1534–1551

    Article  CAS  Google Scholar 

  • Onyekachi OG, Boniface OO, Gemlack NF et al (2019) The effect of climate change on abiotic plant stress: a review. In: de Oliveira AB (ed) abiotic and biotic stress in plants. IntechOpen. Available via DIALOG. https://www.intechopen.com/books/abiotic-and-biotic-stress-in-plants/the-effect-of-climate-change-on-abiotic-plant-stress-a-review. Accessed 7 July 2020

  • Ouvrard O, Cellier F, Ferrare K et al (1996) Identification and expression of water stress-and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31:819–829

    Article  CAS  PubMed  Google Scholar 

  • Panuccio MR, Jacobsen SE, Akhtar SS et al (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6. https://doi.org/10.1093/aobpla/plu047

  • Passioura J (1988) Root signals control leaf expansion in wheat seedlings growing in drying soil. Funct Plant Biol 15:687–693

    Article  Google Scholar 

  • Passioura J (2010) Scaling up: the essence of effective agricultural research. Funct Plant Biol 37:585–591

    Article  Google Scholar 

  • Pena LB, Azpilicueta CE, Gallego SM (2011) Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. J Trace Elem Med Biol 25:125–129

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Huang J, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdomo JA, Capó-Bauçà S, Carmo-Silva E et al (2017) Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front in Plant Sci 8:490. https://doi.org/10.3389/fpls.2017.00490

    Article  Google Scholar 

  • Pirasteh-Anosheh H, Saed-Moucheshi A, Pakniyat H et al (2016) Stomatal responses to drought stress. In: Ahmad P (ed) Water stress and crop plants. Wiley, New York, pp 24–40

    Google Scholar 

  • Prasad S, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43:177–185

    Article  CAS  Google Scholar 

  • Przedpelska-Wasowicz EM, Wierzbicka M (2011) Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma 248:663–671

    Article  CAS  PubMed  Google Scholar 

  • Przymusiński R, Woźny A (1985) The reactions of lupin roots on the presence of lead in the medium. Biochem Physiol Pflanz 180:309–318

    Article  Google Scholar 

  • Rahbarian R, Khavari-Nejad R, Ganjeali A et al (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol Cracov Bot 53:47–56

    Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13:73–82

    Article  CAS  Google Scholar 

  • Rahul VD, Panda RK, Lenka D et al (2019) A study on the root characters of maize hybrid germplasm lines under moisture deficit stress. Int J Curr Microbiol App Sci 8:2836–2845

    Article  CAS  Google Scholar 

  • Rauf M, Munir M, ul Hassan M et al (2007) Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Afri J Biotechnol 6:971–975

    Google Scholar 

  • Ray DK, West PC, Clark M et al (2019) Climate change has likely already affected global food production. Plos One 14. https://doi.org/10.1371/journal.pone.0217148

  • Razzaghi F, Ahmadi SH, Adolf VI et al (2011) Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360

    Article  Google Scholar 

  • Rivelli AR, James RA, Munns R et al (2002) Effect of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Funct Plant Biol 29:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Rr H, van Huystee R (2011) Chilling-induced chlorosis in maize (Zea mays). Can J Bot 63:711–715

    Google Scholar 

  • Sagardoy R, Vázquez S, Florez-Sarasa I et al (2010) Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytol 187:145–158

    Article  CAS  PubMed  Google Scholar 

  • Sahin U, Ekinci M, Ors S et al (2018) Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci Hortic 240:196–204

    Article  CAS  Google Scholar 

  • Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technol 13:468–474

    CAS  Google Scholar 

  • Sánchez-Blanco MJ, Rodríguez P, Olmos E et al (2004) Differences in the effects of simulated sea aerosol on water relations, salt content, and leaf ultrastructure of rock-rose plants. J Environ Qual 33:1369–1375

    Article  PubMed  Google Scholar 

  • Savitch LV, Ivanov AG, Gudynaite-Savitch L et al (2011) Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Plant Cell Physiol 52:1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plant 101:477–482

    Article  CAS  Google Scholar 

  • Schellekens P, Sourrouille D (2020, May 5) The unreal Dichotomy in COVID-19 mortality between high-income and developing countries. Retrieved from: https://www.brookings.edu/

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Selden PA, Edwards D (1989) Colonisation of the land. In: Keith A, Briggs DEG (eds) Evolution and the fossil record. Smithsonian Institution Press, Washington, pp 122–152

    Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4:272–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sfaxi-Bousbih A, Chaoui A, El Ferjani E (2010) Cadmium impairs mineral and carbohydrate mobilization during the germination of bean seeds. Ecotoxicol Environ Saf 73:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Paulsen G (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    Article  CAS  Google Scholar 

  • Shah ZH, Rehman HM, Akhtar T et al (2017) Redox and ionic homeostasis regulations against oxidative, salinity and drought stress in wheat (a systems biology approach). Front Genet 8:141. https://doi.org/10.3389/fgene.2017.00141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Tang M, Chen H et al (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shivanna K (1985) The role of the pistil in screening compatible pollen. Theor Appl Genet 70:684–686

    Article  PubMed  Google Scholar 

  • Siddique M, Hamid A, Islam M (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sinica 41

    Google Scholar 

  • Singh M, Kumar J, Singh S et al (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Bio/Technol 14:407–426

    Article  CAS  Google Scholar 

  • Singh S, Prasad S, Yadav V et al (2018) Effect of drought stress on yield and yield components of rice (Oryza sativa L.) genotypes. Int J Curr Microbiol Appl Sci 7:2752–2759

    Google Scholar 

  • Smiri M, Chaoui A, Rouhier N et al (2011) Cadmium affects the glutathione/glutaredoxin system in germinating pea seeds. Biol Trace Elem Res 142:93–105

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan A, Saxena N, Johansen C (1999) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crops Res 60:209–222

    Article  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Dai Z, Li S et al (2015) A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biol 15:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subramanian K, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Tack J, Barkley A, Nalley LL (2015) Effect of warming temperatures on US wheat yields. Proc Natl Acad Sci 112:6931–6936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talebi R, Ensafi M, Baghebani N et al (2013) Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environ Exp Biol 11:9–15

    Google Scholar 

  • Tezara W, Mitchell V, Driscoll S et al (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53:1781–1791

    Article  CAS  PubMed  Google Scholar 

  • Thakur P, Kumar S, Malik JA et al (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thakur P, Nayyar H (2013) Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 29–69

    Chapter  Google Scholar 

  • van Buer J, Prescher A, Baier M (2019) Cold-priming of chloroplast ROS signalling is developmentally regulated and is locally controlled at the thylakoid membrane. Sci Rep 9:3022. https://doi.org/10.1038/s41598-019-39838-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velikova V, Tsonev T, Barta C et al (2009) BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environ Pollut 157:2629–2637

    Article  CAS  PubMed  Google Scholar 

  • Vibha (2016) Macrophomina phaseolina: The most destructive soybean fungal pathogen of global concern. In: Kumar P, Gupta VK, Tiwari AK, Kamle M (eds) Current trends in plant disease diagnostics and management practices. Springer, Cham, pp 193–205

    Google Scholar 

  • Wahid A, Close T (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wang WB, Kim YH, Lee HS et al (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wani S, Kumar V, Shriram V et al (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Waqas MA, Kaya C, Riaz A et al (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336. https://doi.org/10.3389/fpls.2019.01336

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardlaw I, Wrigley C (1994) Heat tolerance in temperate cereals: an overview. Funct Plant Biol 21:695–703

    Article  Google Scholar 

  • Welfare K, Yeo AR, Flowers TJ (2002) Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environ Pollut 120:397–403

    Article  CAS  PubMed  Google Scholar 

  • White PJ, George TS, Dupuy LX et al (2013) Root traits for infertile soils. Front Plant Sci 4:193. https://doi.org/10.3389/fpls.2013.00193

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, Pongrac P (2017) 12 heavy-metal Toxicity in Plants. In: Shabala S (ed) Plant stress Physiology, 2nd edn. pp 301–328

    Google Scholar 

  • Wijewardana C, Reddy KR, Krutz LJ et al (2019) Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PloS one 14. https://doi.org/10.1371/journal.pone.0214977

  • Wood AJ (2005) Eco-physiological adaptations to limited water environments. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Wiley, New York, pp 1–10

    Google Scholar 

  • Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Biswas D, Li WD et al (2007) Photosynthesis and yield responses of ozone-polluted winter wheat to drought. Photosynthetica 45:582–588

    Article  CAS  Google Scholar 

  • Yan L, Shah T, Cheng Y et al (2019) Physiological and molecular responses to cold stress in rapeseed (Brassica napus L.). J Integ Agric 18:2742–2752

    Article  Google Scholar 

  • Yang A, Akhtar S, Amjad M et al (2016) Growth and physiological responses of quinoa to drought and temperature stress. J Agron Crop Sci 202:445–453

    Article  CAS  Google Scholar 

  • Yu G, Ma, J, Jiang P, Li J et al (2019) The mechanism of plant resistance to heavy metal. In: IOP conference series: earth and environmental science international conference on the improvement of environmental quality (ICIEQ), Bogor, Indonesia 2019 August, vol. 310. IOP Publishing, p 052004

    Google Scholar 

  • Zahedi M, Sharma R, Jenner CF (2003) Effects of high temperature on grain growth and on the metabolites and enzymes in the starch-synthesis pathway in the grains of two wheat cultivars differing in their responses to temperature. Funct Plant Biol 30:291–300

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Feng P, Yang W et al (2018) Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. J Forest Res 29:1049–1059

    Article  CAS  Google Scholar 

  • Zhang QY, Wang LY, Kong FY et al (2012) Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol Plant 146:363–373

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Liu B, Piao S et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114:9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Ma B, Ren C (2007) Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci 47:123–131

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameel M. Al-Khayri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mafakheri, M., Kordrostami, M., Al-Khayri, J.M. (2021). Abiotic Stress in Plants: Socio-Economic Consequences and Crops Responses. In: Al-Khayri, J.M., Ansari, M.I., Singh, A.K. (eds) Nanobiotechnology . Springer, Cham. https://doi.org/10.1007/978-3-030-73606-4_1

Download citation

Publish with us

Policies and ethics