Skip to main content

Facing the Cold Stress by Plants in the Changing Environment: Sensing, Signaling, and Defending Mechanisms

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress

Abstract

Low temperature stress is a strong determinant in governing the potential productivity of the plants. The plants of tropical and subtropical conditions are particularly more sensitive to cold stress while those growing in the temperate regions relatively experience less damage. Even the short and intermittent spells of low temperature stress can substantially restrict the growth and yield of the plants; the extent of response depends upon the growth stage. The reproductive stage experiences greater damage due to inhibitions exerted on development and function of gametes leading to fertility failures. Hence, it becomes vital to understand the mechanisms related to cold stress sensing and its transduction causing expression of defense-related genes. The cold tolerant and cold-sensitive plant species appear to differ in their response and very little is known about their molecular differences. The sensing of low temperature occurs in the membranes by histidine kinases, as revealed in some lower organisms and the equivalent mechanisms are being probed in the plants. The membranes have a vital role in thermal sensing leading to the activation of mechano-sensitive Ca2+-influx channels. The elevated calcium level in the cytosol is sensed by some kinases like CDPK and MAPK, which transduce the signals to switch on the transcriptional cascades. The well-studied pathway in response to cold stress involves the interactive functioning of ICE-CBF-COR genes. The defense mechanism includes activation in synthesis of some cryo-protectants such as sugars, proline, glycine betaine, trehalose, and polyamines. Their role in defending the plants against cold stress is beginning to be revealed. Antioxidants like ascorbic acid and glutathione (non-enzymatic) and superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase (enzymatic) are evoked to counter the cold-induced oxidative damage. Current studies reveal variations in the expression of defense mechanisms in tolerant and sensitive species, which have provided some target genes for engineering into cold-sensitive species. The review will discuss the status of effects of cold stress on plant metabolism, perception and transduction of cold stress, genes expressed, defense mechanisms, and target genes for genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Article  PubMed  CAS  Google Scholar 

  • Ahmad I, Larher F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol 82:671–678

    Article  CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A et al (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397:247–259

    Article  PubMed  CAS  Google Scholar 

  • Allagulova CHR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Mosc) 68:945–951

    Article  CAS  Google Scholar 

  • Aronova EE, Shevyakova NI, Stetsenko LA, Kuznetsov VV (2005) Cadaverine-induced induction of superoxide dismutase gene expression in Mesembryanthemum crystallinum L. Dokl Biol Sci 403:257–259

    Article  PubMed  CAS  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    Article  PubMed  CAS  Google Scholar 

  • Baena-Gonzalez E (2010) Energy signaling in the regulation of gene expression during stress. Mol Plant 3:300–313

    Article  PubMed  CAS  Google Scholar 

  • Bagnall D, Wolfe JOE, King RW (1983) Chill-induced wilting and hydraulic recovery in mung bean plants. Plant Cell Environ 6:457–464

    Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008a) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G et al (2008b) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Jones RL (2006a) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Reinohl V, Jones RL (2006b) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW et al (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Björn Lárus O, Veena S, Franz O, Dhindsa RS. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J, <START>September 2000, vol. 23, no. 6, p. 785-794.

    Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–246

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) Aba-induced No generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Camp WV, Willekens H, Bowler C, Montagu MV, Inze D et al (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Nat Biotechnol 12:165–168

    Article  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M et al (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    Article  PubMed  CAS  Google Scholar 

  • Cavusoglu K, Kilic S, Kabar K (2008) Effects of some plant growth regulators on leaf anatomy of radish seedlings grown under saline conditions. J Appl Biol Sci 2:47–50

    Google Scholar 

  • Chen N, Xu Y, Wang X, Du C, Du J et al (2011) OSRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant Cell Environ 34:52–64

    Article  PubMed  CAS  Google Scholar 

  • Cheng S-H, Willmann MR, Chen H-C, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X et al (2003) Ice1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) Abfs, a family of Aba-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Cleland RE, Virk SS, Taylor D, Bjiirkman T (1990) Calcium, cell walls and growth. In: Leonard RT, Hepler PK (eds) Calcium in plant growth and development. American Society of Plant Physiologists, Rockville, MD, pp 9–16

    Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the Cbf cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248

    Article  PubMed  CAS  Google Scholar 

  • Cordoba F, Gonzalez-Reyes JA (1994) Ascorbate and plant cell growth. J Bioenerg Biomembr 26:399–405

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quiros M, Leon AM et al (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM et al (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM et al (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    Article  PubMed  CAS  Google Scholar 

  • Cossins AR, Christiansen J, Prosser CL (1978) Adaptation of biological membranes to temperature. The lack of homeoviscous adaptation in the sarcoplasmic reticulum. Biochim Biophys Acta 511:442–452

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C et al (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y et al (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T et al (2007) Overexpression of an R1R2R3 Myb gene, OSMYB3R–2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D et al (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ et al (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Neill SJ (2003) Oxidative stress signalling. In: Hirt H, Shinozaki K (eds) Topics in current genetics. Springer, London, pp 121–150

    Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT et al (2004) Aba, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J et al (2003a) Expression of a stress-induced hemoglobin affects No levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003b) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91 Spec No:173–178

    Article  PubMed  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84:335–344

    Article  PubMed  CAS  Google Scholar 

  • Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Ehlert B, Hincha DK (2008) Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves. Plant Methods 4:12

    Article  PubMed  CAS  Google Scholar 

  • Evans DP, Corbin JR, Tomasovic SP (1991) Effects of calcium buffering on the synthesis of the 26-kDa heat-shock protein family. Radiat Res 127:261–268

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Aziz T, Hussain M, Rehman H, Jabran K et al (2008) Glycinebetaine improves chilling tolerance in hybrid maize. J Agron Crop Sci 194:152–160

    Article  CAS  Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee D, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516

    Article  Google Scholar 

  • Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the Cbf cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defences. Cold Spring Harbor Laboratory Press, New York, pp 587–622

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS et al (2009) A cotton (Gossypium hirsutum) Dre-binding transcription factor gene, GHDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2007) Abscisic acid (Aba) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide 17:143–151

    Article  PubMed  CAS  Google Scholar 

  • Ge L-F, Chao D-Y, Shi M, Zhu M-Z, Gao J-P et al (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OSTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators Cbf1, Cbf2, and Cbf3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  PubMed  CAS  Google Scholar 

  • Grabski S, Arnoys E, Busch B, Schindler M (1998) Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol 116:279–290

    Article  CAS  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW et al (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138:330–340

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Guillas I, Zachowski A, Baudouin E (2011) A matter of fat: interaction between nitric oxide and sphingolipid signaling in plant cold response. Plant Signal Behav 6:140–142

    Article  PubMed  CAS  Google Scholar 

  • Gundersen GG, Cook TA (1999) Microtubules and signal transduction. Curr Opin Cell Biol 11:81–94

    Article  PubMed  CAS  Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073

    PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, Van Dongen JT (2011a) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Hincha DK, Mur LA (2011b) No way to treat a cold. New Phytol 189:360–363

    Article  PubMed  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF et al (2002) Transcription factor Cbf4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Ogawa H, Haga T, Murofushi H (1998) Gtp-binding-protein-coupled receptor kinase 2 (Grk2) binds and phosphorylates tubulin. Eur J Biochem 255:363–368

    Article  PubMed  CAS  Google Scholar 

  • Hai-NA Z, Jun-Tao G, Wen-Jing L, Cun-Dong L, Kai X (2009) Improvement of low-temperature stress tolerant capacities in transgenic tobacco plants from overexpression of wheat TASOD1.1. and TASOD1.2 genes. Sci Agric Sin 42:10–16

    Google Scholar 

  • Hamilton EW III, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex Ii is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) Cdpks—a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Maeda T (2006) Activation of the Hog pathway upon cold stress in Saccharomyces cerevisiae. J Biochem 139:797–803

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Alia L, Mustardy P, Deshnium MI et al (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW et al (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Popova AV, Cacela C (2006) Effects of sugars on the stability and structure of lipid membranes during drying (Chapter 6). In: Liu AL (ed) Advances in planar lipid bilayers and liposomes. Academic, New York, pp 189–217

    Google Scholar 

  • Hoffmann-Sommergruber K (2000) Plant allergens and pathogenesis-related proteins. What do they have in common? Int Arch Allergy Immunol 122:155–166

    Article  PubMed  CAS  Google Scholar 

  • Houot V, Etienne P, Petitot AS, Barbier S, Blein JP et al (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner. J Exp Bot 52:1721–1730

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY et al (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Li J, Ke Q, Leonard SS, Jiang BH et al (2002) Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res 62:5689–5697

    PubMed  CAS  Google Scholar 

  • Hung KT, Hsu YT, Kao CH (2006) Hydrogen peroxide is involved in methyl jasmonate-induced senescence of rice leaves. Physiol Plant 127:293–303

    Article  CAS  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  PubMed  CAS  Google Scholar 

  • Ilker R, Breidenbach RW, Lyons JM (1979) Sequence of ultra-structural changes in tomato cotyledons during short periods of chilling. In: Lyons JM, Graham D, Raison JK (eds) Low temperature stress in crop plants. Academic, New York, pp 97–114

    Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M et al (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4:1873–1882

    Article  PubMed  CAS  Google Scholar 

  • Inzé D, Montagu MV (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis Cbf1 overexpression induces Cor genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Janben M, Hunte C, Schulz M, Schnabl H (1996) Tissue specification and intracellular distribution of actin isoforms Vicia faba L. Protoplasma 191:158–163

    Article  CAS  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI et al (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GI (1998) Signal transduction networks and the integration of responses of environmental stimuli. In: Callow JA (ed) Advances in botanical research. Academic, New York, pp 53–73

    Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Joshi HC (1998) Microtubule dynamics in living cells. Curr Opin Cell Biol 10:35–44

    Article  PubMed  CAS  Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16

    Article  CAS  Google Scholar 

  • Kandror O, Deleon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99:9727–9732

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Wingsle G, Karpinska B, Hallgren JE (1993) Molecular responses to photooxidative stress in Pinus sylvestris (L.) (II. differential expression of CuZn-superoxide dismutases and glutathione reductase. Plant Physiol 103:1385–1391

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis Dreb1a gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008) Cold stress injury during the pod-filling phase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464

    Google Scholar 

  • Kaur G, Kumar S, Thakur P, Malik JA, Bhandhari K et al (2011) Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage. Sci Hortic 128:174–181

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Mcavoy R, Peters J, Wu H, Li Y (2006) Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta 223:1090–1100

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI et al (2001) A novel cold-inducible zinc finger protein from soybean, Scof-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259

    Article  PubMed  CAS  Google Scholar 

  • Kim TE, Kim SK, Han TJ, Lee JS, Chang SC (2002) Aba and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant 115:370–376

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    PubMed  CAS  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces Cbf gene transcription and subsequent induction of cold-regulated genes via the Crt promoter element. Plant Physiol 135:1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S et al (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of Adp-glucose pyrophosphorylase. Proc Natl Acad Sci U S A 102:11118–11123

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova T, Parvanova D, Atanassov A, Djilianoiv D (2002) Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci 163:157–164

    Article  CAS  Google Scholar 

  • Kopyra ME, Gwó D (2004) The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol Planta 26:459–473

    Article  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday AS (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem Ii in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331

    Article  PubMed  CAS  Google Scholar 

  • Kornyeyev D, Logan BA, Allen RD, Holaday AS (2003a) Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci 165:1033–1041

    Article  CAS  Google Scholar 

  • Kornyeyev D, Holaday S, Logan B (2003b) Predicting the extent of photosystem Ii photoinactivation using chlorophyll a fluorescence parameters measured during illumination. Plant Cell Physiol 44:1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X et al (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci U S A 96:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Malik J, Thakur P, Kaistha S, Sharma K et al (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol Plant 33:779–787

    Article  CAS  Google Scholar 

  • Kuznetsov V, Radyukina N, Shevyakova N (2006) Polyamines and stress: biological role, metabolism, and regulation. Russian J Plant Physiol 53:583–604

    Article  CAS  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB et al (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A et al (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  PubMed  CAS  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Lee H, Xiong L, Zhu JK (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14:1235–1251

    Article  PubMed  CAS  Google Scholar 

  • Libourel IG, Bethke PC, De Michele R, Jones RL (2006) Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta 223:813–820

    Article  PubMed  CAS  Google Scholar 

  • Lichtscheidl IK, Url WG (1990) Organization and dynamics of cortical endoplasmic reticulum in inner epidermal cells of onion bulb scales. Protoplasma 157:203–215

    Article  Google Scholar 

  • Ligterink W, Hirt H (2001) Mitogen-activated protein (Map) kinase pathways in plants: versatile signaling tools. Int Rev Cytol 201:209–275

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Moriguchi T (2007) Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Rep 26:125–131

    Article  PubMed  CAS  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM, Yu X (2003) Differential expression of multiple Pr10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiol Plant 119:544–553

    Article  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of Mek1 Mapkk, Ntf6 Mapk, Wrky/Myb transcription factors, Coi1 and Ctr1 in N-mediated resistance to tobacco mosaic virus. Plant J 38:800–809

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Matas MA, Nunez P, Soto A, Allona I, Casado R et al (2004) Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiol 134:1708–1717

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Feil R, Hendriks JH, Gibon Y, Morcuende R et al (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of Adpglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y et al (2009) Enhanced tolerance to chilling stress in OSMYB3R–2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    Article  PubMed  CAS  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J et al (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314:315–321

    Article  PubMed  CAS  Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

    Article  PubMed  CAS  Google Scholar 

  • Marc J (1997) Microtubule-organizing centres in plants. Trends Plant Sci 2:223–230

    Article  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M et al (2004) Identification of cold-inducible downstream genes of the Arabidopsis Dreb1a/Cbf3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Chua NH (2000) Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes. Plant Cell 12:465–477

    PubMed  CAS  Google Scholar 

  • Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116:317–327

    Article  CAS  Google Scholar 

  • Mazars C, Thion L, Thuleau P, Graziana A, Knight MR et al (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413–420

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, An YQ, Huang S, McKinney EC, Meagher RB (1996) The arabidopsis Act7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    Article  PubMed  CAS  Google Scholar 

  • Mcinnis SM, Emery DC, Porter R, Desikan R, Hancock JT et al (2006a) The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (Ssp) from Senecio squalidus (Asteraceae). J Exp Bot 57:1835–1846

    Article  PubMed  CAS  Google Scholar 

  • Mcinnis SM, Desikan R, Hancock JT, Hiscock SJ (2006b) Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? New Phytol 172:221–228

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Murnaghan J, Jones KS, Bowley SR (2000) Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122:1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Melillo MT, Leonetti P, Bongiovanni M, Castagnone-Sereno P, Bleve-Zacheo T (2006) Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato–root-knot nematode interactions. New Phytol 170:501–512

    Article  PubMed  CAS  Google Scholar 

  • Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543

    Article  PubMed  CAS  Google Scholar 

  • Mishina TE, Lamb C, Zeier J (2007) Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30:39–52

    Article  PubMed  CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7:321–331

    PubMed  CAS  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium). Plant Physiol 102:1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Monroy AF, Sangwan V, Dhindsa RS (1998) Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J 13:653–660

    Article  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H et al (2003) Role of the Arabidopsis glucose sensor Hxk1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M, Kosik KS (1996) The pool of map kinase associated with microtubules is small but constitutively active. Mol Biol Cell 7:893–905

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Creissen GP (1997) Glutathione reductase: regulation and role in oxidative stress. In: Scandalios J (ed) Oxidative stress and the molecular biology of antioxidant defenses (Monograph 34). Cold Spring Harbor Laboratory Press, New York, pp 667–714

    Google Scholar 

  • Murata N (1989) Low-temperature effects on cyanobacterial membranes. J Bioenerg Biomembr 21:61–75

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Nayyar H (2003a) Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ Exp Bot 50:253–264

    Article  CAS  Google Scholar 

  • Nayyar H (2003b) Calcium as environmental sensor in plants. Curr Sci 84:893–902

    CAS  Google Scholar 

  • Nayyar H, Chander S (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J Agron Crop Sci 190:355–365

    Article  CAS  Google Scholar 

  • Nayyar H, Walia DP (2003) Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biologia Planta 46:275–279

    Article  CAS  Google Scholar 

  • Nayyar H, Chander K, Kumar S, Bains T (2005a) Glycine betaine mitigates cold stress damage in Chickpea. Agron Sustain Dev 25:381–388

    Article  CAS  Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005b) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53:39–47

    Article  CAS  Google Scholar 

  • Nayyar H, Bains TS, Kumar S (2005c) Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Env Exp Bot 54:275–285

    Article  CAS  Google Scholar 

  • Nayyar H, Bains TS, Kumar S, Kaur G (2005d) Chilling effects during seed filling on accumulation of seed reserves and yield of chickpea. J Sci Food Agric 85:1925–1930

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur G, Kumar S, Upadhyaya HD (2007) Low temperature effects during seed filling on chickpea genotypes (Cicer arietinum L.): probing mechanisms affecting seed reserves and yield. J Agron Crop Sci 193:336–344

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock J, Harrison J et al (2008a) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J et al (2008b) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009) Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem 47:116–122

    Article  PubMed  CAS  Google Scholar 

  • Nickel R, Schutte M, Hecker D, Scherer GFE (1991) The phospholipid platelet-activating factor stimulates proton extrusion in cultured soybean cells and protein phosphorylation and Atpase activity in plasma membranes. J Plant Physiol 139:205–211

    Article  CAS  Google Scholar 

  • O’kane D, Gill V, Boyd P, Burdon R (1996) Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377

    Article  PubMed  Google Scholar 

  • Ohnishi S, Miyoshi T, Shirai S (2010) Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environ Exp Bot 69:56–62

    Article  Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC et al (2002) A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem 269:3193–3204

    Article  PubMed  CAS  Google Scholar 

  • Pastore A, Martin SR, Politou A, Kondapalli KC, Stemmler T et al (2007) Unbiased cold denaturation: low- and high-temperature unfolding of yeast frataxin under physiological conditions. J Am Chem Soc 129:5374–5375

    Article  PubMed  CAS  Google Scholar 

  • Patterson BD, Murata T, Graham D (1976) Electrolyte leakage induced by chilling in Passiflora species tolerant to different climates. Aust J Plant Physiol 3:435–442

    Article  Google Scholar 

  • Paul MJ (2008) Trehalose 6-phosphate: a signal of sucrose status. Biochem J 412:e1–e2

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  PubMed  CAS  Google Scholar 

  • Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J Exp Bot 52:2345–2354

    Article  PubMed  CAS  Google Scholar 

  • Pehowich DJ, Macdonald PM, Mcelhaney RN, Cossins AR, Wang LC (1988) Calorimetric and spectroscopic studies of lipid thermotropic phase behavior in liver inner mitochondrial membranes from a mammalian hibernator. Biochemistry 27:4632–4638

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS et al (1998) The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J Biol Chem 273:12316–12324

    Article  PubMed  CAS  Google Scholar 

  • Pokorna J, Schwarzerova K, Zelenkova S, Petrasek J, Janotova I et al (2004) Sites of actin filament initiation and reorganization in cold-treated tobacco cells. Plant Cell Environ 27:641–653

    Article  CAS  Google Scholar 

  • Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858

    Article  PubMed  CAS  Google Scholar 

  • Pramanik MH, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026

    Article  CAS  Google Scholar 

  • Qiao W, Fan L-M (2008) Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    Article  PubMed  CAS  Google Scholar 

  • Ramon M, Rolland F (2007) Plant development: introducing trehalose metabolism. Trends Plant Sci 12:185–188

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC et al (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94:3454–3458

    Article  PubMed  CAS  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L, Hausman JF (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol (Stuttg) 6:81–90

    Article  CAS  Google Scholar 

  • Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH (1995) Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci U S A 92:8881–8885

    Article  PubMed  CAS  Google Scholar 

  • Reszka AA, Bulinski JC, Krebs EG, Fischer EH (1997) Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol Biol Cell 8:1219–1232

    PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulphonium compounds in higher plants. Ann Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Ann Rev Plant Physiol Plant Mol Biol 43:375–414

    Article  CAS  Google Scholar 

  • Rolland F, Baena-Gonzales E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Ruelland E, Cantrel C, Gawer M, Kader JC, Zachowski A (2002) Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Ruiz JM, Sanchez E, Garcia PC, Lopez-Lefebre LR, Rivero RM et al (2002) Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry 59:473–478

    Article  PubMed  CAS  Google Scholar 

  • Rymen B, Fiorani F, Kartal F, Vandepoele K, Inze D et al (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Sabehat A, Lurie S, Weiss D (1998) Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries. Plant Physiol 117:651–658

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Wigge PA (2005) Ambient temperature perception in plants. Curr Opin Plant Biol 8:483–486

    Article  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Wasim B, Singh N (2011) Engineering Cold Stress Tolerance in Crop Plants. Current Genomics 12:30–43

    Article  PubMed  CAS  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12

    Article  PubMed  CAS  Google Scholar 

  • Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HH, Walter U (1994) NO at work. Cell 78:919–925

    Article  PubMed  CAS  Google Scholar 

  • Schwender J, Ohlrogge J, Shachar-Hill Y (2004) Understanding flux in plant metabolic networks. Curr Opin Plant Biol 7:309–317

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Satou M, Sakurai T, Akiyama K, Iida K et al (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J Exp Bot 55:213–223

    Article  PubMed  CAS  Google Scholar 

  • Shevyakova N, Shorina M, Rakitin V, Kuznetsov V (2006) Stress-dependent accumulation of spermidine and spermine in the halophyte Mesembryanthemum crystallinum under salinity conditions. Russian J Plant Physiol 53:739–745

    Article  CAS  Google Scholar 

  • Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K, Kinoshita T, Nishimura M (1992) Involvement of calmodulin and calmodulin-dependent myosin light chain kinase in blue light-dependent H  +  pumping by guard cell protoplasts from Vicia faba L. Plant Physiol 99:1416–1421

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation–a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71:522–525

    Article  PubMed  CAS  Google Scholar 

  • Singer S, Nicholson G (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  • Sowinski P, Rudzinska-Langwald A, Adamczyk J, Kubica I, Fronk J (2005) Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. J Plant Physiol 162:67–80

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    Article  PubMed  CAS  Google Scholar 

  • Su G-X, Zhang W-H, Liu Y-L (2006) Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J Integr Plant Biol 48:426–432

    Article  CAS  Google Scholar 

  • Su C-F, Wang Y-C, Hsieh T-H, Lu C-A, Tseng T-H et al (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153:145–158

    Article  PubMed  CAS  Google Scholar 

  • Sugiura R, Toda T, Dhut S, Shuntoh H, Kuno T (1999) The MAPK kinase Pek1 acts as a phosphorylation-dependent molecular switch. Nature 399:479–483

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113:525–540

    Article  PubMed  CAS  Google Scholar 

  • Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29:917–926

    Article  PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Suzuki I, Los DA, Murata N (2000a) Perception and transduction of low-temperature signals to induce desaturation of fatty acids. Biochem Soc Trans 28:628–630

    Article  PubMed  CAS  Google Scholar 

  • Suzuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000b) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  PubMed  CAS  Google Scholar 

  • Swamy PM, Smith BN (1999) Role of abscisic acid in plant stress tolerance. Curr Sci 76:1220–1227

    CAS  Google Scholar 

  • Tan Z, Boss WF (1992) Association of phosphatidylinositol kinase, phosphatidylinositol monophosphate kinase, and diacylglycerol kinase with the cytoskeleton and F-Actin fractions of carrot (Daucus carota L.) cells grown in suspension culture: response to cell wall-degrading enzymes. Plant Physiol 100:2116–2120

    Article  PubMed  CAS  Google Scholar 

  • Tayal D, Srivastava PS, Bansal KC (2005) Transgenic crops for abiotic stress tolerance. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Springer, Netherlands, pp 346–365

    Chapter  Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Ultrasonic spectroscopy and differential scanning calorimetry of liposomal-encapsulated nisin. J Agric Food Chem 53:8722–8728

    Article  PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137:791–793

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M et al (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 393:13–18

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z et al (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20(4):857–866

    Article  PubMed  CAS  Google Scholar 

  • Tilly BC, Edixhoven MJ, Tertoolen LG, Morii N, Saitoh Y et al (1996) Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol Biol Cell 7:1419–1427

    PubMed  CAS  Google Scholar 

  • Tokishita S, Mizuno T (1994) Transmembrane signal transduction by the Escherichia coli osmotic sensor, EnvZ: intermolecular complementation of transmembrane signalling. Mol Microbiol 13:435–444

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ, Malhó R (1998) Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol 1:428–433

    Article  PubMed  CAS  Google Scholar 

  • Tsvetkova NM, Horvath I, Torok Z, Wolkers WF, Balogi Z et al (2002) Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci U S A 99:13504–13509

    Article  PubMed  CAS  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    PubMed  CAS  Google Scholar 

  • Van Breusegem F, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Vaughn KC, Harper JD (1998) Microtubule-organizing centers and nucleating sites in land plants. Int Rev Cytol 181:75–149

    Article  PubMed  CAS  Google Scholar 

  • Vaultier MN, Cantrel C, Vergnolle C, Justin AM, Demandre C et al (2006) Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells. FEBS Lett 580:4218–4223

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Torok Z, Balogh G, Glatz A, Piotto S et al (2007) Membrane-regulated stress response: a theoretical and practical approach. Adv Exp Med Biol 594:114–131

    Article  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluska F (1999) Actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47:135–154

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Gombos Z, Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200–203

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX et al (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet 107:1402–1409

    Article  PubMed  CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Courtois C, Besson A, Gravot A, Buchwalter A et al (2006) NO-based signaling in plants. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology. Springer, Berlin, pp 35–51

    Google Scholar 

  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ 19:138–146

    Article  CAS  Google Scholar 

  • Williamson RE (1991) Orientation of cortical microtubules in interphase plant cells. Int Rev Cytol 129:135–208

    Article  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu X-M et al (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Wisniewski M, Bassett C, Arora R (2004) Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of ‘Loring’ peach (Prunus persica). Tree Physiol 24:339–345

    Article  PubMed  CAS  Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    PubMed  CAS  Google Scholar 

  • Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xiong L, Ishitani M (2006) Stress signal transduction: components, pathways, and network integration. In: Rai AK, Takabe T (eds) Abiotic stress tolerance in plants. Springer, Dordrecht

    Google Scholar 

  • Xiong L, Ishitani M, Zhu JK (1999) Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol 119:205–212

    Article  PubMed  CAS  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

  • Yemets AI, Krasylenko YA, Lytvyn DI, Sheremet YA, Blume YB (2011) Nitric oxide signalling via cytoskeleton in plants. Plant Sci 181(5):545–554

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Kanno A, Kameya T (1996) Cool temperature-induced chlorosis in rice plants. II. Effects of cool temperature on the expression of plastid-encoded genes during shoot growth in darkness). Plant Physiol 112:585–590

    PubMed  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G et al (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

  • Zemojtel T, Frohlich A, Palmieri MC, Kolanczyk M, Mikula I et al (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525; author reply 526–528

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Miao YC, An GY, Zhou Y, Shangguan ZP et al (2001) K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells. Cell Res 11:195–202

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Liu F, Xu W, Di C, Zhou S et al (2009a) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J 7:550–561

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009b) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Shan J, Krishnamoorthi R, Wang X (2002) Activation of plant phospholipase Dβ by phosphatidylinositol 4,5-bisphosphate: characterization of binding site and mode of action. Biochemistry 41:4546–4553

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Bao ZQ, Dixon JE (1995) Components of a new human protein kinase signal transduction pathway. J Biol Chem 270:12665–12669

    PubMed  CAS  Google Scholar 

  • Zhu J, Shi H, Lee BH, Damsz B, Cheng S et al (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A 101:9873–9878

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thakur, P., Nayyar, H. (2013). Facing the Cold Stress by Plants in the Changing Environment: Sensing, Signaling, and Defending Mechanisms. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_2

Download citation

Publish with us

Policies and ethics