Skip to main content

Plant Responses Under Abiotic Stress and Mitigation Options Towards Agricultural Sustainability

  • Chapter
  • First Online:
Plant Stress: Challenges and Management in the New Decade

Abstract

Plants are continually exposed to various environmental extremities during their growing period. As such, plants have to constantly struggle with different abiotic and biotic factors. Biotic factors can be controlled to a certain extent through the application of pesticides or by adopting various crop protection techniques. But the adverse impacts of abiotic stress elements such as drought, high temperature, salinity, heavy rainfall, snowfall, UV radiations, hazardous chemicals, air pollutants, etc., are very difficult to manage. Plants usually adopt various mechanisms involving alteration in anatomical, physiological, biochemical functions, or regulation of different stress-responsive genes, signaling pathways, etc. Abiotic stresses cause modifications in plant metabolism that leads to enhanced production of different secondary metabolites like polyamines, phenol, proline, etc., which, in turn, act directly or indirectly to build up abiotic stress tolerance by activating different stress response systems. Starch, the major reserve material of plants plays a key role in stress mitigation. Plants remobilize their reserve starch during stress conditions to provide energy. This chapter aims to discuss briefly how plants perceive different kinds of stresses, transduce early signals within their system, elicit different types of responses, or how these stress responses are determined genetically. Attempts have also been made to illustrate what options would be helpful to attain agricultural sustainability through the mitigation of stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABF:

Abscisic acid-Responsive Transcription Factors

AHL:

N-acyl homoserine lactone

AMF:

Arbuscular mycorrhizal fungi

AP2:

Apetala 2

APX:

Ascorbate peroxidase

AsA:

Acetylsalicylic acid

ATP:

Adenosine triphosphate

BAP1:

BRCA1-Associated Protein 1

BR:

Brassinosteroid

bZIP:

Basic Leucine Zipper

CAM:

Crassulacean acid metabolism

CAT:

Catalase

CEF:

Cyclic electron flow

CFC:

Chlorofluorocarbon

CK:

Cytokinin;

CRISPR:

Clustered Regularly Interspaced Short Palindromic Repeats

CRISPR-Cas9:

CRISPR associated protein 9

CRY1:

Cryptochrome Circadian Regulator 1

DAO:

Diamine oxidase

DHAR:

Dehydroascorbate reductase

EIN3/4:

Ethylene Insensitive ¾

ELIP1/2:

Early Light-induced Protein ½

ERF:

Ethylene Responsive Factor

ET:

Ethylene

ETR1/2:

Ethylene Response ½

Fv/Fm:

Chlorophyll fluorescence parameter

GA:

Gibberellic acid

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

GS:

Genome Selection

GSH:

Glutathione

GST:

Glutathione s-transferase

H2O2:

Hydrogen peroxide

HSP:

Heat shock protein

HY5:

Elongated Hypocotyl 5

IAA:

Indole acetic acid

JA:

Jasmonic acid

KNO3:

Potassium nitrate

MAS:

Marker Assisted Selection

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

miRNA:

Micro RNA

NaCl:

Sodium chloride

NaOCl:

Sodium hypochlorite

NADP:

Nicotinamide adenine dinucleotide phosphate

NADPH–NPQ:

Non-photochemical quenching

NOX:

NADPH-dependent-oxidases

PAO:

Polyamine oxidase

PAP1/2:

Anthocyanin Pigment ½

PCD:

Programmed cell death

PGPF:

Plant Growth-Promoting Fungi

PGPR:

Plant growth-promoting rhizobacteria

PIP:

Plant incorporated protectants

POD:

Peroxidase

PP2C:

Protein Phosphatase 2C

PPFD:

Photosynthetic photon flux density

PPO:

Polyphenol oxidase

PS-I:

Photosystem I

PS-II:

Photosystem II

PYR:

Pyrabactin Resistance Protein

PYL:

PYR1 like Protein

QS:

Quorum sensing

QTL:

Quantitative Trait Locus

RBOH:

Rubidium hydroxide

RCAR:

Regulatory Components of ABA Receptor

RNS:

Reactive nitrogen species

ROL:

Radial oxygen loss

ROS:

Reactive oxygen species

RuBPC:

Ribulose bisphosphate carboxylase

RuBisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SA:

Salicylic acid

SL:

Strigolacton

SNF1:

Sucrose Non-Fermenting 1

SnRK2:

SNF1-related Protein Kinase 2

SOD:

Superoxide dismutase

UV:

Ultraviolet

VAZ:

Violaxanthin antheraxanthin zeaxanthin cycle

WUE:

Water use efficiency

ZAT12:

Zinc Finger Protein

References

  • Abbaszadeh-Dahaji P, Omidvari M, Ghorbanpour M (2016) Increasing phytoremediation efficiency of heavy metal-contaminated soil using PGPR for sustainable agriculture. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture, 1st edn. Springer, Singapore, pp 187–204. https://doi.org/10.1007/978-981-10-2854-0_9

  • Abdelaziz ME, Kim D, Ali S et al (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115

    Article  CAS  PubMed  Google Scholar 

  • Abuelsoud W, Cortleven A, Schmülling T (2020) Photoperiod stress alters the cellular redox status and is associated with an increased peroxidase and decreased catalase activity. BioRxiv. https://doi.org/10.1101/2020.03.05.978270

  • Ahluwalia O, Singh PC, Bhatia R (2021) A review on drought stress in plants: implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain 5. https://doi.org/10.1016/j.resenv.2021.100032

  • Ahmed IM, Nadira UA, Bibi N et al (2015) Tolerance to combined stress of drought and salinity in barley. In: Mahalingam R (eds) Combined stresses in plants, 1st edn. Springer, Cham, pp 93–121. https://doi.org/10.1007/978-3-319-07899-1

  • Al Hassan M (2018) Comparative analyses of plant responses to drought and salt stress in related taxa: a useful approach to study stress tolerance mechanisms. Doctoral Dissertation, Universitat Politècnica de València

    Google Scholar 

  • Ali S, Xie L (2020) Plant growth promoting and stress mitigating abilities of soil born microorganisms. Recent Pat Food Nutr Agric 11(2):96–104

    Article  PubMed  Google Scholar 

  • Amador ML, Sancho S, Bielsa B et al (2012) Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiol Plant 144(4):357–368

    Article  CAS  PubMed  Google Scholar 

  • Ameh T, Sayes CM (2019) The potential exposure and hazards of copper nanoparticles: a review. Environ Toxicol Pharmacol 71:103220

    Google Scholar 

  • Amiri R, Nikbakht A, Rahimmalek M et al (2017) Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. J Plant Growth Regul 36(2):502–515

    Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity F. J Integr Plant Biol 53(6):412–428

    Article  CAS  PubMed  Google Scholar 

  • Ángel Martín-Rodríguez J, Ariani A, Leija A et al (2021) Phaseolus vulgaris MIR1511 genotypic variations differentially regulate plant tolerance to aluminum toxicity. Plant J 105(6):1521–1533

    Article  PubMed  Google Scholar 

  • Anwar A, Kim JK (2020) Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. Int J Mol Sci 21(8):2695

    Article  CAS  PubMed Central  Google Scholar 

  • Arbona V, Hossain Z, López-Climent MF et al (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132(4):452–466

    Article  CAS  PubMed  Google Scholar 

  • Arif N, Sharma NC, Yadav V et al (2019) Understanding heavy metal stress in a rice crop: toxicity, tolerance mechanisms, and amelioration strategies. J Plant Biol 62(4):239–253

    Article  CAS  Google Scholar 

  • Arif Y, Singh P, Siddiqui H et al (2020) Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem 156:64–77

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA (2012) Waterlogging stress in plants: a review. Afr J Agric Res 7(13):1976–1981

    Google Scholar 

  • Atayee AR, Noori MS (2020) Alleviation of cold stress in vegetable crops. J Sci Agric 4:38–44

    Google Scholar 

  • Ayi Q, Zeng B, Liu J et al (2016) Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants. Ann Bot 118(4):675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayub MA, Ahmad HR, Ali M et al (2020) Salinity and its tolerance strategies in plants. In: Tripathi DK (eds) Plant life under changing environment: responses and management. Elsevier, pp 47–76. https://doi.org/10.1016/C2018-1-02300-8

  • Balal RM, Shahid MA, Javaid MM et al (2016) The role of selenium in amelioration of heat-induced oxidative damage in cucumber under high temperature stress. Acta Physiol Plant 38(6):1–14

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 807560. https://doi.org/10.1155/2015/807560

  • Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79(1):1–17

    Article  CAS  Google Scholar 

  • Basu S, Rabara R (2017) Abscisic acid-An enigma in the abiotic stress tolerance of crop plants. Plant Gene 11:90–98

    Article  CAS  Google Scholar 

  • Basu S, Ramegowda V, Kumar A et al (2016) Plant adaptation to drought stress. https://doi.org/10.12688%2Ff1000research.7678.1

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bellezza I, Peirce MJ, Minelli A (2014) Cyclic dipeptides: from bugs to brain. Trend Mol Med 20(10):551–558

    Article  CAS  Google Scholar 

  • Bera K, Dutta P, Sadhukhan S (2021) Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Rep 15:1–21. https://doi.org/10.1007/s00299-021-02798-y

    Article  CAS  Google Scholar 

  • Berthelot C, Blaudez D, Leyval C (2017) Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils. Int J Phytoremediation 19(12):1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK et al (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13(1):1–10

    Article  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Brelsford CC, Morales LO, Nezval J et al (2019) Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana? Physiol Plant 165(3):537–554

    Article  CAS  PubMed  Google Scholar 

  • Bui EN (2017) Causes of soil salinization, sodification, and alkalinization. Oxford Res Encyclop Environ Sci. https://doi.org/10.1093/acrefore/9780199389414.013.264

    Article  Google Scholar 

  • Çakır Ö, Arıkan B, Karpuz B et al (2021) Expression analysis of miRNAs and their targets related to salt stress in Solanum lycopersicum H-2274. Biotechnol Biotechnol Equip 35(1):283–290

    Article  Google Scholar 

  • Carillo P, Raimondi G, Kyriacou MC et al (2019) Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce tolerance to salt stress. Sci Hortic 249:22–30

    Article  CAS  Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    Article  CAS  PubMed  Google Scholar 

  • Černý M, Novák J, Habánová H et al (1864) (2016) Role of the proteome in phytohormonal signaling. Biochim Biophys Acta Proteins Proteom 8:1003–1015

    Google Scholar 

  • Chaffai R, Koyama H (2011) Heavy metal tolerance in Arabidopsis thaliana. Adv Bot Res 60:1–49

    Article  CAS  Google Scholar 

  • Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6(1):43–52

    Article  Google Scholar 

  • Chang KN, Zhong S, Weirauch MT et al (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2. https://doi.org/10.7554/eLife.00675

  • Chaudhry S, Sidhu GPS (2021) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 5:1–31

    Google Scholar 

  • Chiappero J, del Rosario Cappellari L et al (2019) Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crops Prod 139:111553

    Google Scholar 

  • Choppala G, Saifullah Bolan N, Bibi S et al (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391

    Article  CAS  Google Scholar 

  • Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol 56(3):401–413

    Article  CAS  PubMed  Google Scholar 

  • Chun HC, Sanghun L, Choi YD et al (2021) Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. J Integrat Agric 20(10):2639–2651

    Article  Google Scholar 

  • Cohen I, Zandalinas SI, Huck C et al (2021) Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plant 171(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Consentino L, Lambert S, Martino C et al (2015) Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol 206(4):1450–1462

    Article  CAS  PubMed  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J et al (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40–52

    Article  CAS  PubMed  Google Scholar 

  • Das R, Mondal SK (2021) Plant miRNAs: biogenesis and its functional validation to combat drought stress with special focus on maize. Plant Gene 27. https://doi.org/10.1016/j.plgene.2021.100294

  • Das R, Tzudir L (2021) Climate Change and Crop Stresses. Biot Res Today 3(5):351–353

    Google Scholar 

  • Dastogeer KM, Li H, Sivasithamparam K et al (2017) A simple and rapid in vitro test for large-scale screening of fungal endophytes from drought-adapted Australian wild plants for conferring water deprivation tolerance and growth promotion in Nicotiana benthamiana seedlings. Arch Microb 199(10):1357–1370

    Article  CAS  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trend Plant Sci 21(8):677–685

    Article  Google Scholar 

  • Demidchik V (2018) ROS-activated ion channels in plants: biophysical characteristics, physiological functions and molecular nature. Int J Mol Sci 19(4):1263

    Article  PubMed Central  Google Scholar 

  • Demirkol G (2021) miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). Turkish J Bot 45(2):111–123

    Google Scholar 

  • Ding L, Cao J, Duan Y et al (2016) Retracted: Proteomic and physiological responses of Arabidopsis thaliana exposed to salinity stress and N-acyl-homoserine lactone. Physiol Plant 158(4):414–434

    Article  CAS  PubMed  Google Scholar 

  • Ding N, Wang A, Zhang X et al (2017) Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses. BMC Plant Biol 17(1):1–15

    Article  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222(4):1690–1704

    Article  PubMed  Google Scholar 

  • Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K et al (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan J, Zhang M, Zhang H et al (2012) OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci 196:143–151

    Article  CAS  PubMed  Google Scholar 

  • Dutta P, Chakraborti S, Chaudhuri KM et al (2020) Physiological responses and resilience of plants to climate change. In: Rakshit A (ed) New frontiers in stress management for durable agriculture. Springer, Singapore, pp 3–20

    Chapter  Google Scholar 

  • Ejiri M, Shiono K (2019) Prevention of radial oxygen loss is associated with exodermal suberin along adventitious roots of annual wild species of Echinochloa. Front Plant Sci 10:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhindi K, Sharaf El Din A, Abdel-Salam E et al (2016) Amelioration of salinity stress in different basil (Ocimum basilicum L.) varieties by vesicular-arbuscular mycorrhizal fungi. Acta Agric Scand B Soil Plant Sci 66(7):583–592

    Google Scholar 

  • Espinoza-Lewis RA, Wang DZ (2012) MicroRNAs in heart development. Curr Top Dev Biol 100:279–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Eysholdt-Derzsó E, Sauter M (2019) Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol 21:103–108

    Article  PubMed  Google Scholar 

  • Fábián A, Sáfrán E, Szabó-Eitel G, Barnabás B, Jäger K (2019) Stigma functionality and fertility are reduced by heat and drought co-stress in wheat. Front Plant Sci 10:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Fageria N, Filho MB, Moreira A et al (2009) Foliar fertilization of crop plants. J Plant Nutr 32(6):1044–1064

    Article  CAS  Google Scholar 

  • FAOSTAT (2017) http://www.fao.org/faostat/en/#data. Accessed 2 August 2017

  • Fathi A, Tari DB (2016) Effect of drought stress and its mechanism in plants. Int J Life Sci 10(1):1–6

    Article  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN et al (2010) Radically rethinking agriculture for the 21st century. Sci 327(5967):833–834

    Article  CAS  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radical Bio Med 51(2):257–281

    Article  CAS  Google Scholar 

  • Fu J, Wan L, Song L et al (2021) Identification of MicroRNAs in Taxillus chinensis (DC.) Danser seeds under cold stress. BioMed Res Int 2021:5585884. https://doi.org/10.1155/2021/5585884

  • Fu ZQ, Yan S, Saleh A et al (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Barrera-Figueroa BE, Juntawong P et al (2019) Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front Plant Sci 10:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallego SM, Benavides MP (2019) Cadmium-induced oxidative and nitrosative stress in plants. In: Hasanuzzaman M, Vara Prasad MN, Fujita M (eds) Cadmium toxicity and tolerance in plants: from physiology to remediation. Elsevier, pp 233–274. https://doi.org/10.1016/C2017-0-02050-5

  • Gamalero E, Glick BR (2012) Ethylene and Abiotic Stress Tolerance in Plants. In: Ahmad P, Prasad M (eds) Environmental Adaptations and stress tolerance of plants in the era of climate change, 1st edn. Springer, New York, pp 395–412

    Chapter  Google Scholar 

  • Gao S, Yang L, Zeng HQ et al (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 6(1):1–14

    Google Scholar 

  • Garcia N, da-Silva CJ, Cocco KLT et al (2020) Waterlogging tolerance of five soybean genotypes through different physiological and biochemical mechanisms. Environ Exp Bot 172:103975

    Google Scholar 

  • Garcia-Sanchez F (2020) Insights into the physiological and biochemical impacts of salt stress on plant growth and development agron 10(7):938

    Google Scholar 

  • Gautam A, Pandey P, Pandey AK (2020) Proteomics in relation to abiotic stress tolerance in plants. In: Tripathi DK (eds) Plant life under changing environment. Elsevier, pp 513–541. https://doi.org/10.1016/C2018-1-02300-8

  • Ghorbanzadeh P, Aliniaeifard S, Esmaeili M et al (2020) Dependency of growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity. J Plant Growth Regul 40:2191–2207

    Article  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N et al (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171(3):1606–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogoi A, Tripathi B (2019) 42% India’s land area under drought, worsening farm distress in election year. https://www.indiaspend.com/42-indias-land-area-under-drought-worsening-farm-distress-in-election-year/

  • Gokul A, Roode E, Klein A et al (2016) Exogenous 3, 3′-diindolylmethane increases Brassica napus L. seedling shoot growth through modulation of superoxide and hydrogen peroxide content. J Plant Physiol 196:93–98

    Article  PubMed  Google Scholar 

  • Gomathi R, Rao PG, Chandran K et al (2015) Adaptive responses of sugarcane to waterlogging stress: an overview. Sugar Tech 17(4):325–338

    Article  CAS  Google Scholar 

  • Govindasamy V, George P, Raina SK et al (2018) Plant-associated microbial interactions in the soil environment: role of endophytes in imparting abiotic stress tolerance to crops. In: Bal S, Mukherjee J, Choudhury B et al (eds) Advances in crop environment interaction, 1st edn. Springer, Singapore, pp 245–284. https://doi.org/10.1007/978-981-13-1861-0_10

  • Guan Q, Tan B, Kelley TM et al (2020) Physiological changes in Mesembryanthemum crystallinum during the C3 to CAM transition induced by salt stress. Front Plant Sci 11:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Haak DC, Fukao T, Grene R et al (2017) Multilevel regulation of abiotic stress responses in plants. Front Plant Sci 8:1564

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn A, Harter K (2009) Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol 149(3):1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanin M, Ebel C, Ngom M et al (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Harsh A, Sharma Y, Joshi U et al (2016) Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann Agric Sci 61(1):57–64

    Article  Google Scholar 

  • Hasanuzzaman M, Naha K, Alam M et al (2014) Potential use of halophytes to remediate saline soils. BioMed Res Int 2014. https://doi.org/10.1155/2014/589341

  • Hasanuzzaman M, Nahar K, Alam M et al (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI et al (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plant 23(2):249–268

    Article  CAS  Google Scholar 

  • Hassan MU, Chattha MU, Khan I et al (2021) Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosyst 155(2):211–234

    Article  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Yang Z, Li M et al (2017) Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environ Sci Pollut Res 24(22):18494–18504

    Article  CAS  Google Scholar 

  • Hectors K, Van Oevelen S, Geuns J et al (2014) Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana. Physiol Plant 152(2):219–230

    Article  CAS  PubMed  Google Scholar 

  • Himani G (2014) An analysis of agriculture sector in Indian economy. IOSR J Humanit Soc Sci (IOSR-JHSS) 19(1):47–54

    Google Scholar 

  • Hniličková H, Hnilička F, Martinkova J et al (2017) Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environ 63(8):362–367

    Article  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT et al (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012. https://doi.org/10.1155/2012/872875

  • Hsu FC, Chou MY, Chou SJ et al (2013) Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. Plant Cell 25(7):2699–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Jiang C, Zhang H (2020) Identification of cold stress responsive microRNAs in cold tolerant and susceptible Hemerocallis fulva by high throughput sequencing. https://doi.org/10.21203/rs.3.rs-41470/v1

  • Huang J, Zhao X, Chory J (2019) The Arabidopsis transcriptome responds specifically and dynamically to high light stress. Cell Rep 29(12):4186–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Men S, Hussain S et al (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9(1):1–12

    Article  Google Scholar 

  • Ijaz B, Sudiro C, Jabir R et al (2019) Adaptive behaviour of roots under salt stress correlates with morpho-physiological changes and salinity tolerance in rice. Int J Agric Biol 21(3):667–674

    CAS  Google Scholar 

  • Ilík P, Špundová M, Šicner M et al (2018) Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. New Phytol 218(3):1278–1287

    Article  PubMed  Google Scholar 

  • Iqbal N, Nazir N, Nauman M et al (2020) agronomic crop responses and tolerance to metals/metalloids toxicity. In: Hasanuzzaman M (ed) Agronomic crops, vol 3. Springer, Singapore, pp 191–208

    Chapter  Google Scholar 

  • Jacquart A, Brayner R, Chahine JMEH et al (2017) ’Cd2+ and Pb2+ complexation by glutathione and the phytochelatins. Chem Biol Interact 267:2–10

    Article  CAS  PubMed  Google Scholar 

  • Jaime-Pérez N, Kaftan D, Bína D et al (1860) (2019) Mechanisms of sublethal copper toxicity damage to the photosynthetic apparatus of Rhodospirillum rubrum. Biochim Biophys Acta Bioenerg 8:640–650

    Google Scholar 

  • Jalmi SK, Sinha AK (2015) ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front Plant Sci 6:769

    Article  PubMed  PubMed Central  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochem 117:76–89

    Article  CAS  Google Scholar 

  • Jiang C, Belfield EJ, Mithani A et al (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 31(22):4359–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdan NF, Martino C, El-Esawi M et al (2015) Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role. Plant Signal Behav 10(8): e1042647

    Google Scholar 

  • Kaur G, Vikal Y, Kaur L et al (2021) Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Sci 304:110823

    Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J et al (2016) Ethylene and metal stress: small molecule, big impact. Front Plant Sci 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Keyster M, Niekerk LA, Basson G et al (2020) Decoding heavy metal stress signalling in plants: towards improved food security and safety. Plant 9(12):1781

    Article  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS et al (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan N, Bano A (2016) Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytorem 18(12):1258–1269

    Article  CAS  Google Scholar 

  • Khan N, Bano A, Babar MA (2019) The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Arch Microb 201(6):769–785

    Article  CAS  Google Scholar 

  • Kimura S, Waszczak C, Hunter K et al (2017) Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling. Plant Cell 29(4):638–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Prášil I et al (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteom 74(8):1301–1322

    Article  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change, 1st edn. Springer, New York, pp 1–28

    Google Scholar 

  • Kozai T (2016) Why LED lighting for urban agriculture? In: Kozai T, Fujiwara K, Runkle E (eds) LED lighting for urban agriculture, 1st edn. Springer, Singapore, pp 3–18. https://doi.org/10.1007/978-981-10-1848-0_1

  • Kraj W, Pietrzykowski M, Warczyk A (2021) The antioxidant defense system and bioremediation. In: Hasanuzzaman M, Prasad NV (eds) Handbook of bioremediation. Elsevier, pp 205–220. https://doi.org/10.1016/B978-0-12-819382-2.00012-0

  • Kulasek M, Bernacki MJ, Ciszak K et al (2016) Contribution of PsbS function and stomatal conductance to foliar temperature in higher plants. Plant Cell Physiol 57(7):1495–1509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Patel JS, Meena VS et al (2019) Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal Agric Biotechnol 20:101271

    Google Scholar 

  • Kumar A, Sandhu N, Dixit S et al (2018) Marker-assisted selection strategy to pyramid two or more QTLs for quantitative trait-grain yield under drought. Rice 11(1):1–16

    Article  Google Scholar 

  • Kumar P, Sharma PK (2020) Soil salinity and food Security in India. Front Sustain Food Syst 4:174

    Article  Google Scholar 

  • Kumar V, Singh G, Chauhan RS et al (2020) Role of plant growth–promoting rhizobacteria in mitigation of heavy metals toxicity to Oryza sativa L. In: Shah MP, Rodriguez-Couto S, Sevinç Şengör S (eds) Emerging technologies in environmental bioremediation. Elsevier, pp 373–390. https://doi.org/10.1016/C2019-0-00488-8

  • Lee G, Duncan RR, Carrow RN (2004) Salinity tolerance of seashore paspalum ecotypes: shoot growth responses and criteria. HortScience 39(5):1138–1142

    Article  Google Scholar 

  • Lee SC, Mustroph A, Sasidharan R et al (2011) Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol 190(2):457–471

    Article  CAS  PubMed  Google Scholar 

  • Leuendorf JE, Frank M, Schmülling T (2020) Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Li B, Gao K, Ren H et al (2018) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60(9):757–779

    Article  PubMed  Google Scholar 

  • Li C, Liu D, Lin Z et al (2019) Histone acetylation modification affects cell wall degradation and aerenchyma formation in wheat seminal roots under waterlogging. Plant Growth Regul 87(1):149–163

    Article  Google Scholar 

  • Li S, Cheng Z, Peng M (2020) Genome-wide identification of miRNAs targets involved in cold response in cassava. Plant Omic 13(1):57–64

    Article  CAS  Google Scholar 

  • Li Y, Li H, Li Y et al (2017) Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J 5(3):231–239

    Article  Google Scholar 

  • Lillo F, Ginocchio R, Ulriksen C et al (2019) Evaluation of connected clonal growth of Solidago chilensis as an avoidance mechanism in copper-polluted soils. Chemosphere 230:303–307

    Article  CAS  PubMed  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A et al (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27(4):463–477

    Article  Google Scholar 

  • Liu Q, Hu H, Zhu L et al (2015) Involvement of miR528 in the regulation of arsenite tolerance in rice (Oryza sativa L.). J Agric Food Chem 63(40):8849–8861

    Google Scholar 

  • Liu S, Yang R (2020) Regulations of reactive oxygen species in plants abiotic stress: An integrated overview. In: Tripathi DK (eds) Plant life under changing environment: responses and management. Elsevier, pp 323–353. https://doi.org/10.1016/C2018-1-02300-8

  • Liu Y, He C (2017) A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 11:192–204

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Bai X, Sun X et al (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. J Exp Bot 64(8):2155–2169

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang H, Sun L et al (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63(1):305–317

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Hoecker U (2015) COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav 10(1):e970440

    Google Scholar 

  • Marothia D, Kaur N, Pati PK (2020) Abiotic Stress Responses in Plants: Current Knowledge and Future Prospects. In: Fahad S (eds) Abiotic stress in plants. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.93824

  • Masouleh SSS, Sassine YN (2020) Molecular and biochemical responses of horticultural plants and crops to heat stress. Ornam Hortic 26:148–158

    Article  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF et al (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10(2):182–198

    Article  CAS  PubMed  Google Scholar 

  • Miao C, Liu F, Zhao Q et al (2012) A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal. Biochem Biophys Res Commun 427(2):293–298

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ, Zhang YM, Subramanian C et al (2010a) Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nat Struct Mol Biol 17(8):971–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S et al (2010b) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R et al (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2(84):ra45–ra45

    Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Müller-Xing R, Xing Q, Goodrich J (2014) Footprints of the sun: memory of UV and light stress in plants. Front Plant Sci 5:474

    PubMed  PubMed Central  Google Scholar 

  • Murchie EH (2017) Safety conscious or living dangerously: what is the ‘right’ level of plant photoprotection for fitness and productivity? Plant Cell Environ 40(8):1239–1242

    Article  CAS  PubMed  Google Scholar 

  • Nasri N, Maatallah S, Kaddour R et al (2016) Effect of salinity on Arabidopsis thaliana seed germination and acid phosphatase activity. Arch Biol Sci 68(1):17–23

    Article  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10(3):e1003751

    Google Scholar 

  • Nazir F, Hussain A, Fariduddin Q (2019) Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere 230:544–558

    Article  CAS  PubMed  Google Scholar 

  • Nitschke S, Cortleven A, Iven T et al (2016) Circadian stress regimes affect the circadian clock and cause jasmonic acid-dependent cell death in cytokinin-deficient Arabidopsis plants. Plant Cell 28(7):1616–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke S, Cortleven A, Schmülling T (2017) Novel stress in plants by altering the photoperiod. Trends Plant Sci 22(11):913–916

    Article  CAS  PubMed  Google Scholar 

  • Nurdiani D, Widyajayantie D, Nugroho S (2018) OsSCE1 encoding SUMO E2-conjugating enzyme involves in drought stress response of Oryza sativa. Rice Sci 25(2):73–81

    Article  Google Scholar 

  • Ou L, Dai X, Zhang Z et al (2011) Responses of pepper to waterlogging stress. Photosynthetica 49(3):339

    Article  CAS  Google Scholar 

  • Panozzo A, Dal Cortivo C, Ferrari M et al (2019) Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen O, Sauter M, Colmer TD et al (2021) Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol 229(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Pedranzani H, Rodríguez-Rivera M, Gutiérrez M et al (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Pegler JL, Oultram JM, Grof CP et al (2021) Molecular manipulation of the miR399/PHO2 expression module alters the salt stress response of Arabidopsis thaliana. Plant 10(1):73

    Article  CAS  Google Scholar 

  • Pollastri S, Savvides A, Pesando M et al (2018) Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Plant 247(3):573–585

    Google Scholar 

  • Pou A, Medrano H, Flexas J et al (2013) A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. Plant Cell Environ 36(4):828–843

    Article  CAS  PubMed  Google Scholar 

  • Prasad P, Pisipati S, Momčilović I et al (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197(6):430–441

    Article  CAS  Google Scholar 

  • Qiu L, Xie F, Yu J et al (2012) Arabidopsis RTE1 is essential to ethylene receptor ETR1 amino-terminal signaling independent of CTR1. Plant Physiol 159(3):1263–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai KK, Pandey N, Rai SP (2020) Salicylic acid and nitric oxide signaling in plant heat stress. Physiol Plant 168(2):241–255

    CAS  PubMed  Google Scholar 

  • Raja V, Qadir SU, Alyemeni MN et al (2020) Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 10(5):1–18

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Rawat N, Singla-Pareek SL, Pareek A (2021) Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol Plant 171(4):653–676

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plant 8(2):34

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJ, Jaffré T et al (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411

    Article  PubMed  Google Scholar 

  • Repas TS, Gillis DM, Boubakir Z et al (2017) Growing plants on oily, nutrient-poor soil using a native symbiotic fungus. PloS One 12(10):e0186704

    Google Scholar 

  • Ritonga FN, Chen S (2020) Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 9(5):560

    Article  CAS  PubMed Central  Google Scholar 

  • Rodríguez ME, Doffo GN, Cerrillo T et al (2018) Acclimation of cuttings from different willow genotypes to flooding depth level. New For 49(3):415–427

    Article  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sanz-Fernández M et al (2016) ’Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol 171(3):1665–1674

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeber VM, Bajaj I, Rohde M et al (2021) Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ 44(3):645–664

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170(4):1903–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin U, Ekinci M, Ors S et al (2018) Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci Hortic 240:196–204

    Article  CAS  Google Scholar 

  • Sasidharan R, Bailey-Serres J, Ashikari M et al (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214(4):1403–1407

    Article  PubMed  Google Scholar 

  • Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16(3):282–286

    Article  PubMed  Google Scholar 

  • Schenk ST, Schikora A (2015) AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5:784

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahid M, Pourrut B, Dumat C et al (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Cont Toxicol 232:1–44

    CAS  Google Scholar 

  • Shahid MA, Sarkhosh A, Khan N et al (2020) Impact of quorum sensing molecules on plant growth and immune system. Front Microb 11:1545

    Article  Google Scholar 

  • Shan T, Fu R, Xie Y et al (2020) Regulatory mechanism of maize (Zea mays L.) miR164 in salt stress response. Russ J Genet 56(7):835–842

    Google Scholar 

  • Sharma A, Kapoor D, Wang J et al (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plant 9(1):100

    Article  CAS  Google Scholar 

  • Sharma A, Rana C, Singh S et al (2016) Soil salinity: causes, effects, and management in cucurbits. Handbook Cucurbits Growth Cult Pract Physiol 6(4):419–434

    Google Scholar 

  • Sharma N (2016) Antioxidant response to salt stress in rice cultivars. Punjab Agricultural University, Ludhiana

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

  • Sharma S, Sharma J, Soni V et al (2021) Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of crop plants. J Water Land Dev. https://doi.org/10.24425/jwld.2021.137092

  • Shen L, Wang C, Fu Y et al (2018) QTL editing confers opposing yield performance in different rice varieties. J Integr Plant Biol 60(2):89–93

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Jiang F, Wen J (2019) Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). BMC Plant Biol 19(1):1–17

    Google Scholar 

  • Shikanai T (2014) Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Curr Opin Biotechnol 26:25–30

    Article  CAS  PubMed  Google Scholar 

  • Shrestha A, Elhady A, Adss S et al (2019) Genetic differences in barley govern the responsiveness to N-Acyl homoserine lactone. Phytobiom J 3(3):191–202

    Article  Google Scholar 

  • Shrestha A, Schikora A (2020) AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol 96(12):fiaa226

    Google Scholar 

  • Shriram V, Kumar V, Devarumath RM et al (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla P, Skea J, Slade R et al (2019) Technical summary. In: Shukla PR, Skea J, Slade R et al (eds) Technical summary: climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Center for International Forestry Research (CIFOR), Bogor, Indonesia, pp 37–74

    Google Scholar 

  • Singh D, Laxmi A (2015) Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci 6:895

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Yadav V, Arif N et al (2020) Heavy metal stress and plant life: uptake mechanisms, toxicity, and alleviation. In: Tripathi DK (eds) Plant life under changing environment. Elsevier, pp 271–287. https://doi.org/10.1016/C2018-1-02300-8

  • Sofy MR, Seleiman MF, Alhammad BA et al (2020) Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agron 10(5):699

    Article  CAS  Google Scholar 

  • Srivastava S, Pathak AD, Gupta PS et al (2012) Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J Environ Bio 33(3):657

    CAS  Google Scholar 

  • Suetsugu N, Higa T, Gotoh E et al (2016) Light-induced movements of chloroplasts and nuclei are regulated in both cp-actin-filament-dependent and-independent manners in Arabidopsis thaliana. PLoS One 11(6):e0157429

    Google Scholar 

  • Szaker HM, Darkó É, Medzihradszky A et al (2019) miR824/AGAMOUS-LIKE16 module integrates recurring environmental heat stress changes to fine-tune poststress development. Front Plant Sci 10:1454

    Article  PubMed  PubMed Central  Google Scholar 

  • Sze H, Chanroj S (2018) Plant endomembrane dynamics: studies of K+/H+ antiporters provide insights on the effects of pH and ion homeostasis. Plant Physiol 177(3):875–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi D, Takumi S, Hashiguchi M et al (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol 171(3):1626–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Lowder LG, Zhang T et al (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plant 3(3):1–5

    Article  Google Scholar 

  • Thakur P, Nayyar H (2013) Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress, 1st edn. Springer, New York, pp 29–69. https://doi.org/10.1007/978-1-4614-5001-6

  • Thoma F, Somborn-Schulz A, Schlehuber D et al (2020) Effects of light on secondary metabolites in selected leafy greens: a review. Front Plant Sci 11:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Tikkanen M, Aro E-M (2014) Integrative regulatory network of plant thylakoid energy transduction. Trends Plant Sci 19(1):10–17

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Singh Chauhan P et al (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Current Genom 18(6):469–482

    Article  CAS  Google Scholar 

  • Tiwari S, Patel A, Singh M et al (2020) Regulation of temperature stress in plants. In: Tripathi DK (eds) Plant life under changing environment. Elsevier, pp 25–45. https://doi.org/10.1016/B978-0-12-818204-8.00002-3

  • Torres MA, Barros MP, Campos SC et al (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Tsai KJ, Lin CY, Ting CY et al (2016) Ethylene-regulated glutamate dehydrogenase fine-tunes metabolism during anoxia-reoxygenation. Plant Physiol 172(3):1548–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyystjärvi E (2013) Photoinhibition of photosystem II. Int Rev Cell Mol Biol 300:243–303

    Article  PubMed  Google Scholar 

  • UNESCO World Water Assessment Programme (2018) The United Nations world water development report 2018: nature-based solutions. UNESCO, Paris. https://unesdoc.unesco.org/ark:/48223/pf0000261424

  • Upreti K, Sharma M (2016) Role of plant growth regulators in abiotic stress tolerance. In: Rao N, Shivashankara K, Laxman R (eds) Abiotic stress physiology of horticultural crops, 1st edn. Springer, New Delhi, pp 19–46. https://doi.org/10.1007/978-81-322-2725-0_2

  • Usman MG, Rafii MY, Ismail MR et al (2015) Expression of target gene Hsp70 and membrane stability determine heat tolerance in chili pepper. J Am Soc Hortic Sci 140(2):144–150

    Article  CAS  Google Scholar 

  • Vaahtera L, Brosché M, Wrzaczek M et al (2014) Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 21(9):1422–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim Biophys Acta Bioenerg 1817(1):209–217

    Article  CAS  Google Scholar 

  • Veliz-Vallejos DF, van Noorden GE, Yuan M et al (2014) A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5:551

    Article  PubMed  PubMed Central  Google Scholar 

  • Velmurugan A, Swarnam P, Subramani T et al (2020) Water demand and salinity. In: Farahani MHDA, Vatanpour V, Taheri A (eds) Desalination-challenges and opportunities. IntechOpen, London, UK

    Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signaling in plants. In: Sarwat M, Ahmad A, Abdin M (eds) Stress signaling in plants: genomics and proteomics perspective, vol 1. Springer, New York, pp 25–49

    Chapter  Google Scholar 

  • Visentin I, Pagliarani C, Deva E et al (2020) A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ 43(7):1613–1624

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Voesenek LA, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206(1):57–73

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Sun Y, Song N et al (2013a) Identification of UV-B-induced microRNAs in wheat. Genet Mol Res 12(4):4213–4221

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Cui X, Sun Y et al (2013b) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32(7):1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Gao T, Chen J et al (2019) The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiol Biochem 135:277–286

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Kumar V, Khare T et al (2020) miRNA applications for engineering abiotic stress tolerance in plants. Biol 75(7):1063–1081

    Google Scholar 

  • Waqas MA, Kaya C, Riaz A et al (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei L, Zhang M, Wei S et al (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut 259:113943

    Google Scholar 

  • Wojtyla Ł, Paluch-Lubawa E, Sobieszczuk-Nowicka E et al (2020) Drought stress memory and subsequent drought stress tolerance in plants. In: Hossain MA (eds) Priming-mediated stress and cross-stress tolerance in crop plants. Elsevier, pp 115–131. https://doi.org/10.1016/B978-0-12-817892-8.00007-6

  • Wu L, Huo W, Yao D et al (2019) Effects of solid matrix priming (SMP) and salt stress on broccoli and cauliflower seed germination and early seedling growth. Sci Hortic 255:161–168

    Article  Google Scholar 

  • Xiong H, Li J, Liu P et al (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PloS One 9(3):e92913

    Google Scholar 

  • Yadav S, Modi P, Dave A et al (2020) Effect of abiotic stress on crops. In: Hasanuzzaman M (eds) Sustainable crop production. IntechOpen, London, UK

    Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. a review. Agron Sustain Dev 30(3):515–527

    Article  CAS  Google Scholar 

  • Yamamoto Y (2016) Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci 7:1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan A, Wang Y, Tan SN et al (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Tang J, Yu Z et al (2019) Light stress responses and prospects for engineering light stress tolerance in crop plants. J Plant Growth Regul 38(4):1489–1506

    Article  CAS  Google Scholar 

  • Yang X, Lu M, Wang Y et al (2021) Response mechanism of plants to drought stress. Hortic 7(3):50

    Article  Google Scholar 

  • Yang X, Xu H, Shao L et al (2018) Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environ Exp Bot 150:161–171

    Article  CAS  Google Scholar 

  • Yeung E, van Veen H, Vashisht D et al (2018) A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. PNAS 115(26):6085–6094

    Article  Google Scholar 

  • Yimer D, Abena T (2019) Components, mechanisms of action, success under greenhouse and field condition, market availability, formulation and inoculants development on biofertilizer. Biomed J Sci and Tech Res 12:9366–9371

    Google Scholar 

  • Yin X, Liang X, Zhang R et al (2015) Impact of phenanthrene exposure on activities of nitrate reductase, phosphoenolpyruvate carboxylase, vacuolar H+-pyrophosphatase and plasma membrane H+-ATPase in roots of soybean, wheat and carrot. Environ Exp Bot 113:59–66

    Article  CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D et al (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Zargar SM, Nagar P, Deshmukh R et al (2017) Aquaporins as potential drought tolerance inducing proteins: towards instigating stress tolerance. J Proteom 169:233–238

    Article  CAS  Google Scholar 

  • Zavafer A, Cheah MH, Hillier W et al (2015) Photodamage to the oxygen evolving complex of photosystem II by visible light. Sci Rep 5(1):1–8

    Article  Google Scholar 

  • Zeppel MJ, Harrison SP, Adams HD et al (2015) Drought and resprouting plants. New Phytol 206(2):583–589

    Article  PubMed  Google Scholar 

  • Zhang D, Liu X, Ma J et al (2019) Genotypic differences and glutathione metabolism response in wheat exposed to copper. Environ Exp Bot 157:250–259

    Article  CAS  Google Scholar 

  • Zhang J, Hamza A, Xie Z et al (2021) Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. Environ Pollut 290. https://doi.org/10.1016/j.envpol.2021.117987

  • Zhang J, Yu J, Wen CK (2014) An alternate route of ethylene receptor signaling. Front Plant Sci 5:648

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ding H, Jiang H et al (2020) Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis. Chemosphere 242:125168

    Google Scholar 

  • Zhang L, Li Z, Quan R et al (2011) An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. Plant Physiol 157(2):854–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Dai W (2019) Plant response to salinity stress. In: Dai W (ed) Stress physiology of woody plants, 1st edn. CRC Press, Boca Raton, pp 155–173. https://doi.org/10.1201/9780429190476

  • Zhang Q, Gong M, Yuan J et al (2017) Dark septate endophyte improves drought tolerance in Sorghum. Int J Agric Biol 19(1):53–60

    Article  CAS  Google Scholar 

  • Zhang S, Gao MR, Fu HY et al (2018) Electric field induced permanent superconductivity in layered metal nitride chlorides hfncl and zrncl. Chin Phys Lett 35(9):097401

    Google Scholar 

  • Zhao C, Zhang H, Song C et al (2020) Mechanisms of plant responses and adaptation to soil salinity. Innovation 1(1):100017

    Google Scholar 

  • Zhao Q, Li M, Jia Z et al (2016) AtMYB44 positively regulates the enhanced elongation of primary roots induced by N-3-oxo-hexanoyl-homoserine lactone in Arabidopsis thaliana. Mol Plant-Microb Interact 29(10):774–785

    Article  CAS  Google Scholar 

  • Zhao Y, Xie J, Wang S et al (2021) Synonymous mutation of miR396a target sites in Growth Regulating Factor 15 (GRF15) enhances photosynthetic efficiency and heat tolerance in poplar. J Exp Bot 72(12):4502–4519

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Ying Q, Fang C et al (2021) Alternative oxidase pathway is likely involved in waterlogging tolerance of watermelon. Sci Hortic 278:109831

    Google Scholar 

  • Zhou H, Guo S, An Y et al (2016) Exogenous spermidine delays chlorophyll metabolism in cucumber leaves (Cucumis sativus L.) under high temperature stress. Acta Physiol Plant 38(9):1–12

    Google Scholar 

  • Zhou LL, Gao KY, Cheng LS et al (2021) Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death. Protoplasma 258:891–904

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z (2020) The role of miRNAs in regulating the expression of flavonol pathway genes and its possible impact on the crosstalk between UV-B and flg22 signal cascades in Arabidopsis thaliana. https://nbn-resolving.org/urn:nbn:de:gbv:8-mods-2020-00085-3

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Shabala L, Cuin TA et al (2016) Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J Exp Bot 67(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, An F, Feng Y et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. PNAS 108(30):12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zia R, Nawaz MS, Siddique MJ et al (2020) Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 242. https://doi.org/10.1016/j.micres.2020.126626

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, K., Dutta, P., Sadhukhan, S. (2022). Plant Responses Under Abiotic Stress and Mitigation Options Towards Agricultural Sustainability. In: Roy, S., Mathur, P., Chakraborty, A.P., Saha, S.P. (eds) Plant Stress: Challenges and Management in the New Decade. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-95365-2_1

Download citation

Publish with us

Policies and ethics