Skip to main content
Log in

Photosynthesis and yield responses of ozone-polluted winter wheat to drought

  • Original Papers
  • Published:
Photosynthetica

Abstract

Winter wheat (Triticum aestivum L. cv. Jingdong 8) was exposed to short-term high ozone treatment after anthesis and then was either well irrigated with soil water content (SWC) of 80–85 % (O3+W) or drought treated (SWC 35–40 %, O3+D). Short-term ozone exposure significantly decreased irradiance-saturated net photosynthetic rate (P N) of winter wheat. Under good SWC, P N of the O3-treated plant was similar to that of control on 2 d after O3-exposure (6 DAA), but decreased significantly after 13 DAA, indicating that O3 exposure accelerated leaf senescence. Meanwhile, green flag leaf area was reduced faster than that of control. As a result, grain yield of O3+W was significantly decreased. P N of O3+D was further notably decreased and green flag leaf area was reduced more than that in O3+W. Consequently, substantial yield loss of O3+D was observed compared to that of O3+W. Although P N was significantly positively correlated with stomatal conductance, it also had notable positive correlation with the maximum photochemical efficiency in the dark adapted leaves (Fv/Fm), electron transport rate (ETR), photochemical quenching (qP), as well as content of chlorophyll, suggesting that the depression of P N was mainly caused by non-stomatal limitation. Hence optimal soil water condition should be considered in order to reduce the yield loss caused by O3 pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

DAA:

days after anthesis

E:

transpiration rate

ETR:

electron transport rate

Fv/Fm :

photochemical capacity of photosystem 2 in the dark adapted state

g s :

stomatal conductance

HI:

harvest index

P N :

net photosynthetic rate per unit leaf area at saturation irradiance

PAR:

photosynthetically active radiation

PS2:

photosystem 2

qP :

photochemical quenching

SWC:

soil water content

References

  • Amundson, R.G., Kohut, R.J., Schoettle, A.W., Raba, R.M., Reich, P.B.: Correlative reductions in whole-plant photosynthesis and yield of winter wheat caused by ozone.-Phytopathology 77: 75–79, 1987.

    CAS  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1–5, 1949.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, J.D., Velissariou, D., Davison, A.W., Holevas, C.D.: Comparative ozone sensitivity of old and modern Greek cultivars of spring wheat.-New Phytol. 116: 707–714, 1990.

    Article  CAS  Google Scholar 

  • Caemmerer, S. von, Farquhar, G.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.-Planta 153: 376–387, 1981.

    Article  Google Scholar 

  • Calatayud, A., Pomares, F., Barreno, E.: Interactions between nitrogen fertilization and ozone in watermelon cultivar Reina de Corazones in open-top chambers. Effects on chlorophyll a fluorescence, lipid peroxidation, and yield.-Photosynthetica 44: 93–101, 2006.

    Article  CAS  Google Scholar 

  • Calatayud, A., Ramirez, J.W., Iglesias, D.J., Barreno, E.: Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves.-Physiol. Plant. 116: 308–316, 2002.

    Article  CAS  Google Scholar 

  • Cornic, G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis.-Trends Plant Sci. 5: 187–188, 2000.

    Article  Google Scholar 

  • Degl’Innocenti, E., Vacca, C., Guidi, L., Soldatini, G.F.: CO2 photoassimilation and chlorophyll fluorescence in two clover species showing different response to O3.-Plant Physiol. Biochem. 41: 485–493, 2003.

    Article  CAS  Google Scholar 

  • Farage, P.K., Long, S.P., Lechner, E.G., Baker, N.R.: The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone.-Plant Physiol. 95: 529–535, 1991.

    PubMed  CAS  Google Scholar 

  • Fiscus, E.L., Booker, F.L., Burkey, K.O.: Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning.-Plant Cell Environ. 28: 997–1011, 2005.

    Article  CAS  Google Scholar 

  • Fuhrer, J., Grandjean Grimm, A., Tschannen, W., Shariat-Madari, H.: The response of spring wheat (Triticum aestivum L.) to ozone at higher altitudes. II. Changes in yield, yield components and grain quality in response to ozone flux.-New Phytol. 121: 211–219, 1992.

    Article  CAS  Google Scholar 

  • Gelang, J., Pleijel, H., Sild, E., Danielsson, H., Younis, S., Selldén G.: Rate and duration of grain filling in relation to flag leaf senescence and grain yield in spring wheat (Triticum aestivum) exposed to different concentrations of ozone.-Physiol. Plant. 110: 366–375, 2000.

    Article  CAS  Google Scholar 

  • Grandjean, A., Fuhrer, J.: Growth and leaf senescence in spring wheat (Triticum aestivum) grown at different ozone concentrations in open-top field chambers.-Physiol. Plant. 77: 389–394, 1989.

    Article  CAS  Google Scholar 

  • Grantz, D., Farrar, J.: Acute exposure to ozone inhibits rapid carbon translocation from source leaves of Pima cotton.-J. exp. Bot. 50: 1253–1262, 1999.

    Article  CAS  Google Scholar 

  • Grimm, A.G., Fuhrer, J.: The response of spring wheat (Triticum aestivum L.) to ozone at higher elevations. III. Responses of leaf and canopy gas exchange, and chlorophyll fluorescence to ozone flux.-New Phytol. 122: 321–328, 1992.

    Article  CAS  Google Scholar 

  • Guidi, L., Nali, C., Ciompi, S., Lorenzini, G., Soldatini, G.F.: The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars.-J. exp. Bot. 48: 173–179, 1997.

    Article  CAS  Google Scholar 

  • Herbinger, K., Tausz, M., Wonisch, A., Soja, G., Sorger, A., Grill, D.: Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars.-Plant Physiol. Biochem. 40: 691–696, 2002.

    Article  CAS  Google Scholar 

  • Khan, S., Soja, G.: Yield responses of wheat to ozone exposure as modified by drought-induced differences in ozone uptake.-Water Air Soil Pollut. 147: 299–315, 2003.

    Article  CAS  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Lee, E.H., Tingey, D.T., Hogsett, W.E.: Evaluation of ozone exposure indices in exposure-response modeling.-Environ. Pollut. 53: 43–62, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Maier-Maercker, U., Koch, W.: Poor stomatal control of water balance and the abscission of green needles from a declining stand of spruce trees [Picea abies (L.) Karst.] from the northern Alps.-Trees 10: 63–73, 1995.

    Article  Google Scholar 

  • Meyer, U., Ilner, B.K., Willenbrink, J., Krause, G.H.M.: Physiological changes on agricultural crops induced by different ambient ozone exposure regimes I. Effects on photosynthesis and assimilate allocation in spring wheat.-New Phytol. 136: 645–652, 1997.

    Article  CAS  Google Scholar 

  • Meyer, U., Kollner, B., Willenbrink, J., Krause, G.H.M.: Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat.-Agr. Ecosyst. Environ. 78: 49–55, 2000.

    Article  CAS  Google Scholar 

  • Mortensen, L.M.: Effects of ozone on growth of Triticum aestivum L. at different light, air humidity and CO2 levels.-Norw. J. agr. Sci. 4: 343–348, 1990.

    Google Scholar 

  • Mulholland, B.J., Craigon, J., Black, C.R., Colls, J.J., Atherton, J., Landon, G.: Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content in spring wheat (Triticum aestivum L.).-J. exp. Bot. 48: 1853–1863, 1997.

    CAS  Google Scholar 

  • Ojanpera, K., Patsikka, E., Ylaranta, T.: Effects of low ozone exposure of spring wheat on net CO2 uptake, Rubisco, leaf senescence and grain filling.-New Phytol. 138: 451–460, 1998.

    Article  CAS  Google Scholar 

  • Ollerenshaw, J.H., Lyons, T.: Impacts of ozone on the growth and yield of field-grown winter wheat.-Environ. Pollut. 106: 67–72, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Pell, E.J., Eckardt, N., Enyedi, A.J.: Timing of ozone stress and resulting status of ribulose bisphosphate carboxylase/oxygenase and associated net photosynthesis.-New Phytol. 120: 397–405, 1992.

    Article  CAS  Google Scholar 

  • Pleijel, H., Danielsson, H., Gelang, J., Sild, E., Selldén, G.: Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.).-Agr. Ecosyst. Environ. 70: 61–68, 1998.

    Article  CAS  Google Scholar 

  • Pleijel, H., Danielsson, H., Karlsson, G.P., Gelang, J., Karlsson, P.E., Selldén, G.: An ozone flux-relationship for wheat.-Environ. Pollut. 109: 453–462, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Pleijel, H., Skärby, L., Wallin, G., Selldén, G.: Yield and grain quality of spring wheat (Triticum aestivum L., cv. Drabant) exposed to different concentrations of ozone in open-top chambers.-Environ. Pollut. 69: 151–168, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ribas, A., Penuelas, J., Elvira, S., Gimeno, B.S.: Ozone exposure induces the activation of leaf senescence-related processes and morphological and growth changes in seedlings of Mediterranean tree species.-Environ. Pollut. 134: 291–300, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview.-In: Papageorgiou, G., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279–319. Springer, Dordrecht 2004.

    Google Scholar 

  • Selldén, G., Pleijel, H.: Photochemical oxidant effects on vegetation-response in relation to plant strategy.-Water Air Soil Pollut. 85: 111–122, 1995.

    Article  Google Scholar 

  • Slaughter, L.H., Mulchi, C.L., Lee, E.H., Tuthill, K.: Chronic ozone stress effects on yield and grain quality of soft red winter wheat.-Crop Sci. 29: 1251–1255, 1989.

    Article  CAS  Google Scholar 

  • Uprety, D.C.: Carbon dioxide enrichment technology: Open Top Chambers a new tool for global climate research.-J. sci. ind. Res. 57: 266–270, 1998.

    CAS  Google Scholar 

  • van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147–150, 1990.

    Article  Google Scholar 

  • Zheng, Y., Shimizu, H., Barnes, J.D.: Limitations to CO2 assimilation in ozone-exposed leaves of Plantago major L.-New Phytol. 155: 67–78, 2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G.-M. Jiang or Y.-G. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Biswas, D.K., Li, WD. et al. Photosynthesis and yield responses of ozone-polluted winter wheat to drought. Photosynthetica 45, 582–588 (2007). https://doi.org/10.1007/s11099-007-0100-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-007-0100-7

Additional key words

Navigation