Skip to main content

Biodiversity and Ecological Perspective of Industrially Important Fungi An Introduction

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Abstract

Fungi are a valuable group of organisms and they are understudied industrially and biotechnologically. Due to their wide distribution in different ecological habitats that they inhabit, and the consequent need to compete against a diverse array of other living organisms, e.g., bacteria, fungi, and animals, fungi have developed numerous survival defense mechanisms. The unique attributes of fungi thus herald great promise for their application in biotechnology and industry. Further, fungi are also becoming a center of focus for the industrial sector as fungal enzymes are considered the main core in different industries and their requirement is at the top position and in fact their influence will be felt more in coming years and decades. Thus, keeping in view the importance of fungi especially for the industrial sector, this chapter highlights the recent progress that has been made in screening fungi for the production and commercialization of certain biologically active compounds for the industrial sector with special reference to endophytic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Azeem AM, Salem FM (2012) Biodiversity of laccase producing fungi in Egypt. Mycosphere 3(5):900–920

    Article  Google Scholar 

  • Abdel-Azeem MA, Abdel-Aziz DM, Salem FM, Abdel-Azeem AM (2015) Surveying of Egyptian endophytic fungi for production of some pharmaceutical and industrial enzymes. 1st Scientific Forum for Student Research, Faculty of Science, Suez Canal University, Ismailia, Egypt. Abstract book 24

    Google Scholar 

  • Abdel-Azeem AM, Gherbawy YA, Sabry AM (2016a) Enzyme profiles and genotyping of Chaetomium globosum isolates from various substrates. Plant Biosyst 150(3):420–428

    Article  Google Scholar 

  • Abdel-Azeem AM, Zaki SM, Khalil WF, Makhlouf NA, Farghaly LM (2016b) Anti-rheumatoid activity of secondary metabolites produced by endophytic Chaetomium globosum. Front Microbiol 7(1477):1–11

    Google Scholar 

  • Abdel-Azeem AM, Omran MA, Mohamed RA (2018) Evaluation of the curative probability of bioactive metabolites from endophytic fungi isolated from some medicinal plants against paracetamol-induced liver injury in mice. LAP LAMBERT Academic Publishing. isbn:978-613-9-89820-6

    Google Scholar 

  • Abdel-Azeem AM, Abdel-Azeem MA, Khalil WF (2019) Endophytic fungi as a new source of antirheumatoid metabolites. In: Watson RR, Preedy VR (eds) Bioactive food as dietary interventions for arthritis and related inflammatory diseases. Elsevier, Amsterdam, pp 355–384. https://doi.org/10.1016/B978-0-12-813820-5.00021-0

    Chapter  Google Scholar 

  • Abd-ElGawad AM, Rashad YM, Abdel-Azeem AM, Al-Barati SA, Assaeed AM, Mowafy AM (2020) Calligonum polygonoides L. shrubs provide species-specific facilitation for the understory plants in coastal ecosystem. Biology 9(8):232. https://doi.org/10.3390/biology9080232

    Article  CAS  PubMed Central  Google Scholar 

  • Abo Nahas HH (2019) Endophytic fungi: a gold mine of antioxidants. Microb Biosyst 4(1):58–79

    Article  Google Scholar 

  • Alberto RN, Costa AT, Polonio JC, Santos MS, Rhoden SA, Azevedo JL, Pamphile JA (2016) Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species. Genet Mol Res. https://doi.org/10.4238/gmr15049016

  • Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem 33:21–28

    Article  CAS  Google Scholar 

  • Almeida MN, Guimaraes VM, Bischoff KM, Falkoski DL, Pereira OL, Goncalves DSPO et al (2011) Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165:594–610

    Article  PubMed  CAS  Google Scholar 

  • Alves Macedo G, Soberón Lozano MM, Pastore GM (2003) Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. Electron J Biotechnol 6:3–4

    Article  Google Scholar 

  • Amrita R, Nancy K, Namrata P, Sourav B, Arijit D, Subbaramiah SR (2012) Enhancement of protease production by Pseudomonas aeruginosa isolated from dairy effluent sludge and determination of its fibrinolytic potential. Asian Pac J Trop Biomed 2(3):S1845–S1851

    Article  Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    Article  CAS  Google Scholar 

  • Attia EA, Singh BP, Dashora K, Abdel-Azeem AM (2020) A potential antimicrobial, extracellular enzymes, and antioxidants resource: endophytic fungi associated with medicinal plants. Int J Biosci 17(1):119–132

    CAS  Google Scholar 

  • Balbool BA, Abdel-Azeem A (2020) Diversity of the culturable endophytic fungi producing L-asparaginase in arid Sinai, Egypt. Italian J Mycol 49:8–24

    Google Scholar 

  • Benhassine S, Kacem CN, Destain J (2016) Production of laccase without inducer by Chaetomium species isolated from Chettaba forest situated in the east of Algeria. Afr J Biotechnol 15(7):207–213. https://doi.org/10.5897/AJB2015.15001

    Article  Google Scholar 

  • Benjamin S, Pandey A (1998) Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 14:1069–1087

    Article  CAS  PubMed  Google Scholar 

  • Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM et al (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Bhagobaty RK, Joshi SR (2012) Enzymatic activity of fungi endophytic on five medicinal plant species of the pristine sacred forests of Meghalaya, India. Biotechnol Bioprocess Eng 17:33–40

    Article  CAS  Google Scholar 

  • Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR et al (2009) Extracellular Hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503

    Article  CAS  PubMed  Google Scholar 

  • Borges W, Borges K, Bonato P, Said S, Pupo M (2009) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163

    Article  CAS  Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocelluloses breakdown and biopulping. Curr Opin Biotechnol 10:252–258

    Article  CAS  PubMed  Google Scholar 

  • Brenna O, Bianchi E (1994) Immobilized laccase for phenolic removal in must and wine. Biotechnol Lett 16:35–40

    Article  CAS  Google Scholar 

  • Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76(1):43–50

    Article  PubMed  Google Scholar 

  • Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkalophilic Bacillus sp. isolate ANT-6. Process Biochem 38:1397–1403

    Article  CAS  Google Scholar 

  • Burton S (2003) Laccases and phenol oxidases in organic synthesis. Curr Org Chem 7:1317–1331

    Article  CAS  Google Scholar 

  • Cantarelli C, Brenna O, Giovanelli G, Rossi M (1989) Beverage stabilization through enzymatic removal of phenolics. Food Biotechnol 3:203–214

    Article  CAS  Google Scholar 

  • Carlsen M, Nielsen J (2001) Influence of carbon source on alpha amylase production in Aspergillus oryzae. Appl Microbiol Biotechnol 57:346–349

    Article  CAS  PubMed  Google Scholar 

  • Ceci L, Lozano JE (1998) Determination of enzymatic activities of commercial pectinases for the clarification of apple juice. Food Chem 61:237–241

    Article  CAS  Google Scholar 

  • Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197:869–881

    Article  CAS  PubMed  Google Scholar 

  • Chahal DS, Hawksworth DL (1976) Chaetomium cellulolyticum, a new thermotolerant and cellulolytic Chaetomium. I. Isolation, description and growth rate. Mycologia 68(3):600–610. https://doi.org/10.1103/PhysRevB.46.4681

    Article  Google Scholar 

  • Chao YP, Xie FH, Yang J et al (2007) Screening for a new Streptomyces strain capable of efficient keratin degradation. J Environ Sci 19:1125–1128

    Article  CAS  Google Scholar 

  • Chen HY, Xue DS, Feng XY, Yao SJ (2011) Screening and production of ligninolytic enzyme by a marine derived fungal Pestalotiopsis sp. J63. Appl Biochem Biotechnol 165:1754–1769

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang HW, Li L, Dai CC (2013) The potential application of the endophyte Phomopsis liquidambari to the ecological remediation of long term cropping soil. Appl Soil Ecol 67:20–26

    Article  Google Scholar 

  • Chen C, Chen J, Geng Z, Wang M, Liu N, Li D (2018) Regioselectivity of oxidation by a polysaccharide monooxygenase from Chaetomium thermophilum. Biotechnol Biofuels 11(1):1–16. https://doi.org/10.1186/s13068-018-1156-2

  • Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, Conejo-Barboza G, Chaverri P, Chavarría M (2018) Two new cellulolytic fungal species isolated from a 19th-century art collection. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-24934-7

    Article  CAS  Google Scholar 

  • Costa-Silva TA, Souza CRF, Oliveira WP, Said S (2014a) Characterization and spray drying of lipase produced by the endophytic fungus Cercospora kikuchii. Braz J Chem Eng 31:849–858

    Article  Google Scholar 

  • Costa-Silva TA, Souza CRF, Oliveira WP, Said S (2014b) Characterization and spray drying of lipase produced by the endophytic fungus Cercospora kikuchii. Braz J Chem Eng 31:849–858

    Article  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) Beta-1, 4-d-xylan degrading enzyme systems: biochemistry molecular biology and applications. Biotechnol Appl Biochem 17(3):259–289

    CAS  PubMed  Google Scholar 

  • Dai J, Krohn K, Floerke U et al (2006) Metabolites from the endophytic fungus, Nodulisporium sp. from Juniperus cedre. Eur J Org Chem 15:3506–3498

    Google Scholar 

  • Darwish AMG, Abdel-Azeem AM (2020) Chaetomium enzymes and their applications. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 241–249

    Chapter  Google Scholar 

  • Darwish AMG, Abdelmotilib NM, Abdel-Azeem AM, Abo Nahas HH, Mohesien MT (2020) Applications of Chaetomium functional metabolites with special reference to antioxidants. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, fungal biology. Springer Nature, Switzerland AG, pp 227–240

    Chapter  Google Scholar 

  • Demain AL, Adrio JL (2008) Contributions of microorganisms to industrial biology. Mol Biotechnol 38:41–55

    Article  CAS  PubMed  Google Scholar 

  • Devi NN, Prabakaran JJ, Wahab F (2012) Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac J Trop Biomed 2(3):S1280–S1284

    Article  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Diaz MJC, Rodriguez JA, Roussos S, Cordova J, Abousalham A, Carriere F et al (2006) Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid-state fermentation than liquid fermentation procedures. Enzym Microb Technol 39:1042–1050

    Article  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Cataly Env 28:83–99

    Article  CAS  Google Scholar 

  • El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB (2002) Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156:103–112

    Article  Google Scholar 

  • El-Bondkly AMA (2012) Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl Biochem Biotechnol 167:2160–2173

    Article  CAS  PubMed  Google Scholar 

  • El-Gendy MM (2010) Keratinase production by endophytic Penicillium spp. Morsy 1 under solid state fermentation using rice straw. Appl Bioche Biotechnol 162:780–794

    Article  CAS  Google Scholar 

  • El-Zayat SA (2008) Preliminary studies on laccase production by Chaetomium globosum an endophytic fungus in Glinus lotoides. Am Eurasian J Agric Environ Sci 3:86–90

    Google Scholar 

  • Eriksen J, Goksoyr J (1977) Cellulases from Chaetomium thermophile var. dissitum. Eur J Biochem 77:445–450

    Article  CAS  PubMed  Google Scholar 

  • Gan ZW, Yang JK, Tao N, Yu ZF, Zhang KQ (2007) Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 45:422–430

    CAS  PubMed  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases a useful group of oxidoreductive enzymes. Biorem J 3(1):1–25

    Article  CAS  Google Scholar 

  • Gilbert M, Yaguchi M, Watson DC, Wong KKY, Breuil C, Saddler JN (1993) A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus. Appl Microbiol Biotechnol 40:508–514

    Article  CAS  PubMed  Google Scholar 

  • Godfrey T, West S (1996) Textiles. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. MacMillan Press, London, UK, pp 360–371

    Google Scholar 

  • Gopinath SCB, Anbu P, Hida A (2005) Extracellular enzymatic activity profiles in fungi isolated from oil rich environments. Mycoscience 46:119–126

    Article  CAS  Google Scholar 

  • Grünig CR, Duò A, Sieber TN, Holdenrieder O (2008) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii sl- Acephala applanata species complex. Mycologia 100:47–67

    Article  PubMed  Google Scholar 

  • Hamed SR, Abo Elsoud MM, Mahmoud MG, Asker MMS (2016) Isolation, screening and statistical optimizing of L-methioninase production by Chaetomium globosum. Afr J Microbiol Res 10(36):1513–1523. https://doi.org/10.5897/AJMR2016.8132

    Article  CAS  Google Scholar 

  • Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif 67(2):61–69

    Article  CAS  PubMed  Google Scholar 

  • Hendriksen HV, Pedersen S, Bisgard-Frantzen H (1999) A process for textile warp sizing using enzymatically modified starches. Patent Application WO 99:35325

    Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

    Chapter  Google Scholar 

  • Hmidet N, El-Hadj Ali N, Haddar A et al (2009) Alkaline proteases and thermostable amylase co-produced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J 47:71–79

    Article  CAS  Google Scholar 

  • Howard RL, Abotsi E, Rensberg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619

    Article  CAS  Google Scholar 

  • Hu Y, Hao X, Chen L, Akhberdi O, Yu X, Liu Y, Zhu X (2018) Gα-cAMP/PKA pathway regulates pigmentation, chaetoglobosin a biosynthesis and sexual development in Chaetomium globosum. PLoS One 13(4):1–18. https://doi.org/10.1371/journal.pone.0195553

    Article  CAS  Google Scholar 

  • Hyde KD, Xu J, Rapior S et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136. https://doi.org/10.1007/s13225-019-00430-9

    Article  Google Scholar 

  • Illmer PA, Barbato A, Schinner F (1995) Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. Soil Biol Biochem 27:260–270

    Article  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Aggarwal V, Sharma A, Pundir RK (2012) Isolation, production and partial purification of protease from an endophytic Acremonium sp. J Agric Technol 8:1979–1989

    CAS  Google Scholar 

  • Jalgaonwala RE, Mahajan RT (2011) Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. J Agric Technol 7:1733–1741

    Google Scholar 

  • Jaouadi B, Ellouz-Chaabouni S, Rhimi M et al (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90:1291–1305

    Article  CAS  PubMed  Google Scholar 

  • Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusiccoccum sp. (BCC4124) in Pichia pastoris. Protein Expr Purif 58:148–153

    Article  CAS  PubMed  Google Scholar 

  • Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77:215–227

    Article  CAS  PubMed  Google Scholar 

  • Kaur T, Devi R, Kour D, Yadav N, Prasad S, Singh A et al (2020) Advances in microbial bioresources for sustainable biofuels production: current research and future challenges. In: Yadav AN, Rastegari AA, Yadav N, Gaur R (eds) Biofuels production – sustainability and advances in microbial bioresources. Springer International Publishing, Cham, pp 371–387. https://doi.org/10.1007/978-3-030-53933-7_17

    Chapter  Google Scholar 

  • Kellner H, Luis P, Schlitt B, Buscot F (2009) Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil. Soil Biol Biochem 41:1380–1389

    Article  CAS  Google Scholar 

  • Khajeh K, Shokri MM, Asghan SM, Moradian F, Ghasemi A (2006) Acidic proteolytic digestion of α-amylase from Bacillus licheniformis and Bacillus amyloliquefaciens: stability and flexibility analysis. Enzyme Microbial Technol 38:422–428

    Article  CAS  Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M et al (2016) Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khlifia R, Belbahria L, Woodwarda S, Ellouza M, Dhouiba A, Sayadia S et al (2010) Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J Hazard Mater 175:802–880

    Article  CAS  Google Scholar 

  • Klemsdal SS, Clarke JL, Hoell IA, Eijsink VG, Brurberg MB (2006) Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol Lett 256(2):282–289

    Article  CAS  PubMed  Google Scholar 

  • Kottwitz B, Upadek H, Carrer G (1994) Application and benefits of enzymes in detergents. Chim Oggi 12:21–24

    CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019b) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting Rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–279. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

    Chapter  Google Scholar 

  • Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V et al (2020b) Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 157–176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020c) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolor L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020d) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kumar CG, Takegi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17:561–594

    Article  CAS  PubMed  Google Scholar 

  • Maarel V, Vanderveen MJEC, Uietdehaag JCM, Leemhuis JCM, Dijkuhizen L (2002) Properties and applications of starch converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  • Maat J, Roza M, Verbakel J, Stam H, DaSilra MJS, Egmond MR, Hagemans MLD, VanGarcom RFM, Hessing JGM, VanDerhondel CAMJJ, van Rotterdam C (1992) Xylanases and their application in bakery. In: Visser J, Beldman G, VanSomeren MAK, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp 349–360

    Google Scholar 

  • Maccheroni JRW, Azevedo JL (1998) Synthesis and secretion of phosphatases by endophytic isolates of Colletotrichum musae grown under conditions of nutritional starvation. J Gen Appl Microbiol 44:381–387

    Article  CAS  PubMed  Google Scholar 

  • Maria GL, Sridhar KR, Raviraja NS (2005a) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80

    Google Scholar 

  • Maria GL, Sridhar KR, Raviraja NS (2005b) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80

    Google Scholar 

  • Mhatre A, Narwankar R, Rawat A, Tembadmani K, Mishra S (2017) Characterization of endophytic fungi from medicinal plants for application in therapeutic enzyme extraction. In: Mishra S, Srinivas C, Singh S, Savant D (eds) Current perspectives in sustainable environment management. SIES Indian Institute of Environment Management, Nerul, pp 230–223

    Google Scholar 

  • Minussi RC, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends in Food Scien Technol 13:205–216

    Article  CAS  Google Scholar 

  • Mishra VK, Passari AK, Singh BP (2016) In vitro Antimycotic and biosynthetic potential of fungal endophytes associated with Schima wallichii. In: Kumar P, Gupta VK, Tiwari AK, Kamle M (eds) Current trends in plant disease diagnostics and management practices. Springer International Publishing, Cham, pp 367–381. https://doi.org/10.1007/978-3-319-27312-9_16

    Chapter  Google Scholar 

  • Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK (2017) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24

    Article  CAS  Google Scholar 

  • Moilanen U, Osma JF, Winquist E, Leisola M, Couto SR (2010) Decolorization of simulated textile dye baths by crude laccases from Trametes hirsute and Cerrena unicolor. Eng Life Sci 10(3):1–6

    Article  CAS  Google Scholar 

  • Mondal S, Halder SK, Yadav AN, Mondal KC (2020) Microbial consortium with multifunctional plant growth promoting attributes: future perspective in agriculture. In: Yadav AN, Rastegari AA, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture, Functional annotation and future challenges, vol 2. Springer, Singapore, pp 219–254. https://doi.org/10.1007/978-981-15-3204-7_10

    Chapter  Google Scholar 

  • Moore D, Robson G, Trinci T (2011) 21st century guidebook to fungi. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511977022

    Book  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43(5):523–535

    Article  CAS  Google Scholar 

  • Mouchacca J (1995) Thermophilic fungi in desert soils: a neglected extreme environment. CAB INTERNATIONAL, Wallingford, pp 265–288

    Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogam Mycol 18:19–69

    Google Scholar 

  • Murthy PS, Naidu MM (2011) Improvement of robusta coffee fermentation with microbial enzymes. Eur J Appl Sci 3(4):130–139

    Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganism isolated from soil. World J Microb Biot 12:18–23

    Article  Google Scholar 

  • Nielsel RI, Oxenboll K (1998) Enzymes from fungi: their technology and uses. Mycologist 12:69–71

    Article  Google Scholar 

  • Nigam P, Singh D (1995) Enzymes and microbial enzymes involved in starch processing enzymes. Microbial Technol 17:770–778

    Article  CAS  Google Scholar 

  • Oliveira ACD, Fernades ML, Mariano AB (2014) Production and characterization of an extracellular lipase from Candida guilliermondii. Braz J Microbiol 45(4):1503–1511

    Article  CAS  PubMed  Google Scholar 

  • Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegradation 57:129–135

    Article  CAS  Google Scholar 

  • Paice MG, Gurnagul N, Page DH, Jurasek L (1992) Mechanism of hemicellulose-directed prebleaching of Kraft pulps. Enzym Microb Technol 14:272–276

    Article  CAS  Google Scholar 

  • Parvez S, Kang M, Chung H, Cho C, Hong M, Shin M et al (2006) Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20:921–934

    Article  CAS  PubMed  Google Scholar 

  • Peng XW, Chen HZ (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239

    Article  CAS  Google Scholar 

  • Pilz R, Hammer E, Schauer F, Krag U (2003) Laccase catalyzed synthesis of coupling products of phenolic substrates in different reactors. Appl Microbiol Biotechnol 60:708–712

    Article  CAS  PubMed  Google Scholar 

  • Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–132

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al (2021) Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

    Chapter  Google Scholar 

  • Pritchard PE (1992) Studies on the bread-improving mechanism of fungal alpha-amylase. J Biol Educ 26:12–18

    Article  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Randelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750

    Article  CAS  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019a) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019b) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

    Chapter  Google Scholar 

  • Robl D, Delabona PS, Santos Costa P, de Silva LJ, Rabelo C, Pinmentel IC (2013) Xylanase production by endophytic Aspergillus niger using pentose rich hydrothermal liquor from sugarcane bagasse. Biocatal Biotransformation 33(3):1–13

    Google Scholar 

  • Rosana C, Minussi Y, Pastore GM, Durany N (2002) Potential applications of laccase in the food industry. Trends in Food Sci Technol 13:205–216

    Article  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3. Biotech 7:1–11

    Google Scholar 

  • Satyanarayana T, Rao JLUM, Ezhilvannan M (2005) α-Amylases. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Asia Tech Publishers, New Delhi, India, pp 189–220

    Google Scholar 

  • Savitha S, Sadhasivam S, Swaminathan K et al (2011) Fungal protease: production, purification and compatibility with laundry detergents and their wash performance. J Taiwan Inst Chem Eng 42:298–304

    Article  CAS  Google Scholar 

  • Saxena AK, Padaria JC, Gurjar GT, Yadav AN, Lone SA, Tripathi M et al. (2020) Insecticidal formulation of novel strain of Bacillus thuringiensis AK 47. Indian Patent 340541.

    Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

    Chapter  Google Scholar 

  • Shubha J, Srinivas C (2017) Diversity and extracellular enzymes of endophytic fungi associated with Cymbidium aloifolium L. Afr J Biotechnol 16:2248–2258

    Google Scholar 

  • Sim YC, Lee SG, Lee DC et al (2000) Stabilization of papain and lysozyme for application to cosmetic products. Biotechnol Lett 22:137–140

    Article  CAS  Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R et al (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorgatto M, Guimarães NCA, Zanoelo FF, Marques MR, Peixoto-Nogueira SC, Giannesi GG (2012) Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 11:8076–8084

    Article  CAS  Google Scholar 

  • Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–5

    Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95. https://doi.org/10.1007/s13225-010-0086-5

    Article  Google Scholar 

  • Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30

    Article  Google Scholar 

  • Thom C, Humfeld H, Holman HP (1934) Laboratory tests for mildew resistance of outdoor cotton fabrics. Amer Dyestuff Rptr Illus 23(581):586

    Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tiwari K (2015) The future products: endophytic fungal metabolites. J Biodivers Biopros Dev 2:214–2376

    Google Scholar 

  • Torres M, Dolcet MM, Sala N, Canela R (2003) Endophytic fungi associated with Mediterranean plants as a source of mycelium bound lipases. J Agric Food Chem 51(11):3328–3333

    Article  CAS  PubMed  Google Scholar 

  • Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37

    Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  • Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2012) Diversity of plant oil seed associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250

    CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Vignardet C, Guillaume YC, Michel L, Friedrich J, Millet J (2001) Comparison of two hard keratinous substrates submitted to the action of a keratinase using an experimental design. Int J Pharm 224:115–122

    Article  CAS  PubMed  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97(5):786–789

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Jiang J, Hu S, Ma H, Zhu H, Tong Q, Zhang Y (2017) Secondary metabolites from endophytic fungus Chaetomium sp. induce colon cancer cell apoptotic death. Fitoterapia 121(2016):86–93. https://doi.org/10.1016/j.fitote.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  • Wanmolee W, Sornlake W, Rattanaphan N, Suwannarangsee S, Laosiripojana N, Champreda V (2016) Biochemical characterization and synergism of cellulolytic enzyme system from Chaetomium globosum on rice straw saccharification. BMC Biotechnol 16(1):1–12

    Article  CAS  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, volume 1: agricultural and medical perspective. Springer, Switzerland

    Google Scholar 

  • Yadav LS, Bagool RG (2015) Original research article isolation and screening of cellulolytic Chaetomium sp. from deteriorated paper samples. Int J Curr Microbiol Appl Sci 4(8):629–635

    CAS  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik RK, Saxena AK (2015) Psychrotrophic microbes: diversity analysis and bioprospecting for industry and agriculture. In: 85th annual session of NASI & the symposium on “marine and fresh water ecosystems for National Development”, pp 1–2

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016b) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N et al (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019a) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS et al (2019b) Psychrotrophic microbes: biodiversity, mechanisms of adaptation, and biotechnological implications in alleviation of cold stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting Rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer Singapore, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, volume 2: functional annotation for crop protection. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Gaur R (2020c) Biofuels production – sustainability and advances in microbial bioresources. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yaropolov AI, Skorobogatko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase: properties, catalytic mechanism and applicability. Appl Biochem Biotechnol 49:257–280

    Article  CAS  Google Scholar 

  • Zaferanloo B, Bhattacharjee S, Ghorbani MM, Mahon n PJ, Palombo EA (2014) Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiol 14:5.

    Google Scholar 

  • Zaidi KU, Ali AS, Ali SA, Naaz I (2014) Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014

    Google Scholar 

  • Zambare V, Nilegaonkar S, Kanekar P (2011) A novel extracellular protease from Pseudomonas aeruginosa MCM B-327: enzyme production and its partial characterization. New Biotechnol 28:173–181

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. Magda M. Hagras, Vice President for Graduate Studies and Research, Suez Canal University, Ismailia 41522, Egypt, for her support and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Abdel-Azeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Azeem, A.M., Abo Nahas, H.H., Abdel-Azeem, M.A., Tariq, F.J., Yadav, A.N. (2021). Biodiversity and Ecological Perspective of Industrially Important Fungi An Introduction. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-67561-5_1

Download citation

Publish with us

Policies and ethics