Skip to main content
Log in

Biochemical features of microbial keratinases and their production and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Keratinases are exciting proteolytic enzymes that display the capability to degrade the insoluble protein keratin. These enzymes are produced by diverse microorganisms belonging to the Eucarya, Bacteria, and Archea domains. Keratinases display a great diversity in their biochemical and biophysical properties. Most keratinases are optimally active at neutral to alkaline pH and 40–60°C, but examples of microbial keratinolysis at alkalophilic and thermophilic conditions have been well documented. Several keratinases have been associated to the subtilisin family of serine-type proteases by analysis of their protein sequences. Studies with specific substrates and inhibitors indicated that keratinases are often serine or metalloproteases with preference for hydrophobic and aromatic residues at the P1 position. Keratinolytic enzymes have several current and potential applications in agroindustrial, pharmaceutical, and biomedical fields. Their use in biomass conversion into biofuels may address the increasing concern on energy conservation and recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adıgüzel AC, Bitlisli BO, Yaşa I, Eriksen NT (2009) Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J Appl Microbiol 107:226–234

    Google Scholar 

  • Allpress JD, Mountain G, Gowland PC (2002) Production, purification, and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Lett Appl Microbiol 34:337–342

    CAS  Google Scholar 

  • Anbu P, Gopinath SCB, Hilda A, Lakshmipriya T, Annadurai G (2005) Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enzyme Microb Technol 36:639–647

    CAS  Google Scholar 

  • Anbu P, Hilda A, Sur HW, Hur BK, Jayanthi S (2008) Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Int Biodeterior Biodegrad 62:287–292

    CAS  Google Scholar 

  • Arai KM, Takahashi R, Yokote Y, Akahane K (1983) Amino-acid sequence of feather keratin from fowl. Eur J Biochem 132:501–507

    CAS  Google Scholar 

  • Asahi M, Lindquist R, Fukuyama K, Apodaca G, Epstein WL, McKerrow JH (1985) Purification and charaterization of major extracellular proteinases from Trichophyton rubrum. Biochem J 232:139–144

    CAS  Google Scholar 

  • Auld DS (1995) Removal and replacement of metal ions in metallopeptidases. Methods Enzymol 248:228–242

    CAS  Google Scholar 

  • Bakhtiar S, Estiveira RJ, Hatti-Kaul R (2005) Substrate specificity of alkaline protease from alkaliphilic feather-degrading Nesterenkonia sp. AL20. Enzyme Microb Technol 37:534–540

    CAS  Google Scholar 

  • Balaji S, Kumar MS, Karthikeyan R, Kumar R, Kirubanandan S, Sridhar R, Sehgal PK (2008) Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102). World J Microbiol Biotechnol 24:2741–2745

    CAS  Google Scholar 

  • Bálint B, Bagi Z, Tóth A, Rákhely G, Perei K, Kovács KL (2005) Utilization of keratin-containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410

    Google Scholar 

  • Barone JR, Schmidt WF (2006) Effect of formic acid exposure on keratin fiber derived from poultry feather biomass. Bioresour Technol 97:233–242

    CAS  Google Scholar 

  • Barone JR, Schmidt WF, Liebner CFE (2005) Thermally processed keratin films. J Appl Polym Sci 97:1644–1651

    CAS  Google Scholar 

  • Bernal C, Cairó J, Coello N (2006a) Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme Microb Technol 38:49–54

    CAS  Google Scholar 

  • Bernal C, Diaz I, Coello N (2006b) Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea. Can J Microbiol 52:445–450

    CAS  Google Scholar 

  • Bertsch A, Coello N (2005) A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour Technol 96:1703–1708

    CAS  Google Scholar 

  • Blyskal B (2009) Fungi utilizing keratinous substrates. Int Biodeterior Biodegrad 63:631–653

    CAS  Google Scholar 

  • Böckle B, Müller R (1997) Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl Environ Microbiol 63:790–792

    Google Scholar 

  • Böckle B, Galunski B, Müller R (1995) Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol 61:3705–3710

    Google Scholar 

  • Bradbury JH (1973) The structure and chemistry of keratin fibers. Adv Protein Chem 27:111–211

    CAS  Google Scholar 

  • Brandelli A (2005) Hydrolysis of native proteins by a keratinolytic strain of Chryseobacterium sp. Ann Microbiol 55:47–50

    CAS  Google Scholar 

  • Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116

    Google Scholar 

  • Brandelli A, Riffel A (2005) Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electron J Biotechnol 8:35–42

    Article  CAS  Google Scholar 

  • Bressollier P, Letourneau F, Urdaci M, Verneuil B (1999) Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Appl Environ Microbiol 65:2570–2576

    CAS  Google Scholar 

  • Cai CG, Zheng XD (2009) Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J Ind Microbiol Biotech 36:875–883

    CAS  Google Scholar 

  • Cai CG, Lou BG, Zheng XD (2008a) Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B 9:60–67

    CAS  Google Scholar 

  • Cai CG, Chen JS, Qi JJ, Yin Y, Zheng XD (2008b) Purification and characterization of keratinase from a new Bacillus subtilis strain. J Zhejiang Univ Sci B 9:713–720

    CAS  Google Scholar 

  • Cao L, Tan H, Liu Y, Xue X, Zhou S (2008) Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394

    CAS  Google Scholar 

  • Cao ZJ, Zhang Q, Wei DK, Chen L, Wang J, Zhang XQ, Zhou MH (2009) Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J Ind Microbiol Biotech 36:181–188

    CAS  Google Scholar 

  • Casarin F, Cladera-Olivera F, Brandelli A (2008) Use of poultry byproduct for production of keratinolytic enzymes. Food Bioprocess Technol 1:301–305

    Google Scholar 

  • Chao YP, Xie FH, Yang J, Lu JH, Qian SJ (2007) Screening for a new Streptomyces strain capable of efficient keratin degradation. J Environ Sci 19:1125–1128

    CAS  Google Scholar 

  • Chen CY, Rojanatavorn K, Clark AC, Shih JCH (2005) Characterization and enzymatic degradation of Sup35NM, a yeast prion-like protein. Protein Sci 14:2228–2235

    CAS  Google Scholar 

  • Cheng SW, Hu HM, Shen SW, Takagi H, Asano M, Tsai YC (1995) Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Biosci Biotechnol Biochem 59:2239–2243

    CAS  Google Scholar 

  • Chitte RR, Nalawade VK, Dey S (1999) Keratinolytic activity from the broth of a feather-degrading thermophilic Streptomyces thermoviolaceus strain SD8. Lett Appl Microbiol 28:131–136

    CAS  Google Scholar 

  • Corrêa APF, Daroit DJ, Brandelli A (2009) Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. Int Biodeterior Biodegrad. doi:10.1016/j.ibiod.2009.06.015

    Google Scholar 

  • Cortezi M, Cilli EM, Contiero J (2008) Bacillus amyloliquefaciens: a new keratinolytic feather-degrading bacteria. Curr Trends Biotechnol Pharm 2:170–177

    CAS  Google Scholar 

  • Coward-Kelly G, Agbogbo FK, Holtzapple MT (2006) Lime treatment of keratinous materials for the generation of highly digestible animal feed: 2. animal hair. Bioresour Technol 97:1344–1352

    CAS  Google Scholar 

  • Daroit DJ, Corrêa APF, Brandelli A (2009) Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int Biodeterior Biodegrad 63:358–363

    CAS  Google Scholar 

  • De Toni CH, Richter MF, Chagas JR, Henriques JAP, Termignoni C (2002) Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain. Can J Microbiol 48:342–348

    Google Scholar 

  • Evans KL, Crowder J, Miller ES (2000) Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers. Can J Microbiol 46:1004–1011

    CAS  Google Scholar 

  • Fakhfakh N, Kanoun S, Manni L, Nasri M (2009) Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk. Can J Microbiol 55:427–436

    CAS  Google Scholar 

  • Farag AM, Hassan MA (2004) Purification, characterization and immobilization of a keratinase from Aspergillus orizae. Enzyme Microb Technol 34:85–93

    CAS  Google Scholar 

  • Filipello Marchisio V (2000) Keratinophilic fungi: their role in nature and degradation of keratinic substrates. In: Kushwaha RKS, Guarro J (eds) Biology of dermatophytes and other keratinophilic fungi. Revista Iberoamericana de Micología, Bilbao, pp 86–92

    Google Scholar 

  • Friedrich AB, Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermatogales. Appl Environ Microbiol 61:3705–3710

    Google Scholar 

  • Friedrich J, Kern S (2003) Hydrolysis of native proteins by keratinolytic protease of Doratomyces microsporus. J Mol Catal B Enzym 21:35–37

    CAS  Google Scholar 

  • Friedrich J, Gradisar H, Vrecl M, Pogacnik A (2005) In vitro degradation of porcine skin epidermis by a fungal keratinase of Doratomyces microsporus. Enzyme Microb Technol 36:455–460

    CAS  Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe BA, Mattiasson B (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microb Technol 32:519–524

    CAS  Google Scholar 

  • Ghosh A, Chakrabarti K, Chattopadhyay D (2008) Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW. J Ind Microbiol Biotech 35:825–834

    CAS  Google Scholar 

  • Ghosh A, Chakrabarti K, Chattopadhyay D (2009) Cloning of feather-degrading minor extracellular protease from Bacillus cereus DCUW: dissection of the structural domains. Microbiology 155:2049–2057

    CAS  Google Scholar 

  • Giongo JL, Lucas FS, Casarin F, Heeb P, Brandelli A (2007) Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J Microbiol Biotechnol 23:375–382

    CAS  Google Scholar 

  • Gioppo NMR, Moreira-Gasparin FG, Costa AM, Alexandrino AM, Souza CGM, Peralta RM (2009) Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J Ind Microbiol Biotech 36:705–711

    CAS  Google Scholar 

  • Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva-Tonkova E, Haertlé T, Nedkov P (2005) Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40:335–340

    CAS  Google Scholar 

  • Gradisar H, Kern S, Friedrich J (2000) Keratinase of Doratomyces microsporus. Appl Microbiol Biotechnol 53:196–200

    CAS  Google Scholar 

  • Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426

    CAS  Google Scholar 

  • Grazziotin A, Pimentel FA, de Jong EV, Brandelli A (2006) Nutritional improvement of feather protein by treatment with microbial keratinase. Anim Feed Sci Technol 126:135–144

    CAS  Google Scholar 

  • Grazziotin A, Pimentel FA, Sangali S, de Jong EV, Brandelli A (2007) Production of feather protein hydrolysate by keratinolytic bacterium Vibrio sp. kr2. Bioresour Technol 98:3172–3175

    CAS  Google Scholar 

  • Grazziotin A, Pimentel FA, de Jong EV, Brandelli A (2008) Poultry feather hydrolysate as a protein source for growing rats. Braz J Vet Res Anim Sci 45(suppl):61–67

    Google Scholar 

  • Gregg K, Wilton SD, Parry DAD, Rogers GE (1984) A comparison of genomic coding sequences for feather and scale keratins: structural and evolutionary implications. EMBO J 3:175–178

    CAS  Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    CAS  Google Scholar 

  • Gushterova A, Vasileva-Tonkova E, Dimova E, Nedkov P, Haertlé T (2005) Keratinase production by newly isolated Antarctic actinomycete strains. World J Microbiol Biotechnol 21:831–834

    CAS  Google Scholar 

  • Haddar HO, Zaghloul TI, Saeed HM (2009) Biodegradation of native feather keratin by Bacillus subtilis recombinant strains. Biodegradation 20:687–694

    Google Scholar 

  • Huang Q, Peng Y, Li X, Wang H, Zhang Y (2003) Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol 46:169–173

    CAS  Google Scholar 

  • Ichida JM, Krizova L, LeFevre CA, Keener HM, Elwell DL, Burtt EH (2001) Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. J Microbiol Methods 47:199–208

    CAS  Google Scholar 

  • Ionata E, Canganella F, Bianconi G, Benno Y, Sakamoto M, Capasso A, Rossi M, La Cara F (2008) A novel keratinase from Clostridium sporogenes bv. pennavorans bv. nov., a thermotolerant organism isolated from solfataric muds. Microbiol Res 163:105–112

    CAS  Google Scholar 

  • Jacobs M, Eliasson M, Uhlén M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8926

    CAS  Google Scholar 

  • Karthikeyan R, Balaji S, Sehgal PK (2007) Industrial applications of keratins—a review. J Sci Ind Res 66:710–715

    CAS  Google Scholar 

  • Kaul S, Sumbali G (1997) Keratinolysis by poultry farm soil fungi. Mycopathologia 139:137–140

    CAS  Google Scholar 

  • Khardenavis AA, Kapley A, Purohit HJ (2009) Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383. Waste Manage 29:1409–1415

    CAS  Google Scholar 

  • Kim JM, Lim WJ, Suh HJ (2001) Feather-degrading Bacillus species from poultry waste. Process Biochem 37:287–291

    CAS  Google Scholar 

  • Kim JS, Kluskens LD, de Vos WM, Huber R, vand der Oost J (2004) Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. J Mol Biol 335:787–797

    CAS  Google Scholar 

  • Kim JM, Choi YM, Suh HJ (2005) Preparation of feather digests as fertilizer with Bacillus pumilis KHS-1. J Microbiol Biotechnol 15:472–476

    CAS  Google Scholar 

  • Kitadokoro K, Tsuzuki H, Nakamura E, Sato T, Teraoka H (1994) Purification, characterization, primary structure, crystallization and preliminary crystallographic study of a serine proteinase from Streptomyces fradiae ATCC 14544. Eur J Biochem 220:55–61

    CAS  Google Scholar 

  • Kluskens LD, Voorhorst WGB, Siezen RJ, Schwerdtfeger RM, Antranikian G, van der Oost J, de Vos WM (2002) Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles 6:185–194

    CAS  Google Scholar 

  • Kojima M, Kanai M, Tominaga M, Kitazume S, Inoue A, Horikoshi K (2006) Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles 10:229–235

    CAS  Google Scholar 

  • Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20:225107:10

    Google Scholar 

  • Korkmaz H, Hür H, Dinçer S (2004) Characterization of alkaline keratinase of Bacillus licheniformis strain HK-1 from poultry waste. Ann Microbiol 54:201–211

    CAS  Google Scholar 

  • Kreplak L, Doucet J, Dumas P, Briki F (2004) New aspects of the α-helix to β-sheet transition in stretched hard α -keratin fibers. Biophys J 87:640–647

    CAS  Google Scholar 

  • Kublanov IV, Tsiroulnikov KB, Kaliberda EM, Rumsh LD, Haertlé T, Bonch-Osmolovskaya EA (2009a) Keratinase of an anaerobic thermophilic bacterium Thermoanaerobacter sp. strain 1004-09 isolated from a hot spring in the Baikal rift zone. Microbiology (Russia) 78:67–75

    CAS  Google Scholar 

  • Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, Kolganova TV, Kaliberda EN, Rumsh LD, Haertlé T, Bonch-Osmolovskaya EA (2009b) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl Environ Microbiol 75:286–291

    CAS  Google Scholar 

  • Kumar AG, Swarnalatha S, Gayathri S, Nagesh N, Sekaran G (2008) Characterization of an alkaline active—thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J Appl Microbiol 104:411–419

    CAS  Google Scholar 

  • Kunert J (1989) Biochemical mechanism of keratin degradation by the Actinomycete Streptomyces fradiae and the fungus Microsporum gypseum—a comparison. J Basic Microbiol 29:597–604

    CAS  Google Scholar 

  • Langeveld JPM, Wang JJ, Van de Wiel DFM, Shih GC, Garssen GJ, Bossers A, Shih JCH (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789

    CAS  Google Scholar 

  • Lee H, Suh DB, Hwang JH, Suh HJ (2002) Characterization of a keratinolytic metalloprotease from Bacillus sp. SCB-3. Appl Biochem Biotechnol 97:123–133

    CAS  Google Scholar 

  • Li J, Shi PJ, Han XY, Meng K, Yang PL, Wang YR, Luo HY, Wu NF, Yao B, Fan YL (2007) Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. k11 in Pichia pastoris. Protein Expr Purif 54:79–86

    CAS  Google Scholar 

  • Lin X, Lee CG, Casale ES, Shih JCH (1992) Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl Environ Microbiol 58:3271–3275

    CAS  Google Scholar 

  • Lin X, Kelemen DW, Miller ES, Shih JCH (1995) Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol 61:1469–1474

    CAS  Google Scholar 

  • Lin X, Shih JCH, Swaisgood HE (1996) Hydrolysis of feather keratin by immobilized keratinase. Appl Environ Microbiol 62:4273–4275

    CAS  Google Scholar 

  • Lin X, Inglis GD, Yanke LJ, Cheng KJ (1999) Selection and characterization of feather degrading bacteria from canola meal compost. J Ind Microbiol Biotech 23:149–153

    CAS  Google Scholar 

  • Lin HH, Yin LJ, Jiang ST (2009) Cloning, expression, and purification of Pseudomonas aeruginosa keratinase in Escherichia coli AD494(DE3)pLysS expression system. J Agric Food Chem 57:3506–3511

    CAS  Google Scholar 

  • Longshaw CM, Wright JD, Farrell AM, Holland KT (2002) Kytococcus sedentarius, the organism associated with pitted keratolysis, produces two keratin-degrading enzymes. J Appl Microbiol 93:810–816

    CAS  Google Scholar 

  • Lucas FS, Broennimann O, Febbraro I, Heeb P (2003) High diversity among feather-degrading bacteria from a dry meadow soil. Microb Ecol 45:282–290

    CAS  Google Scholar 

  • Mabrouk MEM (2008) Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J Microbiol Biotechnol 24:2331–2338

    Google Scholar 

  • Macedo AJ, Silva WOB, Gava R, Driemeier D, Henriques JAP, Termignoni C (2005) Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl Environ Microbiol 71:594–596

    CAS  Google Scholar 

  • Macedo AJ, Silva WOB, Termignoni C (2008) Properties of a non collagen-degrading Bacillus subtilis keratinase. Can J Microbiol 54:180–188

    CAS  Google Scholar 

  • Manczinger L, Rozs M, Cs V, Kevei F (2003) Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol 19:35–39

    CAS  Google Scholar 

  • Marcondes NR, Taira CL, Vandresen DC, Svidzinski TIE, Kadowaki MK, Peralta RM (2008) New feather-degrading filamentous fungi. Microb Ecol 56:13–17

    Google Scholar 

  • Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, Matsui H, Watanabe K (2009) Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus ruber H328. Appl Microbiol Biotechnol 82:941–950

    CAS  Google Scholar 

  • Mitola G, Escalona F, Salas R, García E, Ledesma A (2002) Morphological characterization of in-vitro human hair keratinolysis, produced by identified wild strains of Chrysosporium species. Mycopathologia 156:163–169

    Google Scholar 

  • Mitsuiki S, Sakai M, Moriyama Y, Goto M, Furukawa K (2002) Purification and some properties of keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 66:164–167

    CAS  Google Scholar 

  • Mitsuiki S, Ichikawa M, Oka T, Sakai M, Moriyama Y, Sameshima Y, Goto M, Furukawa K (2004) Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme Microb Technol 34:482–489

    CAS  Google Scholar 

  • Mitsuiki S, Hui Z, Matsumoto D, Sakai M, Moriyama Y, Furukawa K, Kanouchi H, Oka T (2006) Degradation of PrPSc by keratinolytic protease from Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 70:1246–1248

    CAS  Google Scholar 

  • Moallaei H, Zaini F, Larcher G, Beucher B, Bouchara JP (2006) Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii. Mycopathologia 161:369–375

    CAS  Google Scholar 

  • Mohamedin AH (1999) Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as a substrate. Int Biodeterior Biodegrad 43:13–21

    CAS  Google Scholar 

  • Mohorcic M, Torkar A, Friedrich J, Kristl J, Murdan S (2007) An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm 332:196–201

    CAS  Google Scholar 

  • Moreira FG, Souza CGM, Costa MAF, Reis S, Peralta RM (2007) Degradation of keratinous materials by the plant pathogenic fungus Myrothecium verrucaria. Mycopathologia 163:153–160

    CAS  Google Scholar 

  • Moreira-Gasparin FG, Souza CGM, Costa AM, Alexandrino AM, Bracht CK, Boer CG, Peralta RM (2009) Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegradation 20:727–736

    CAS  Google Scholar 

  • Muhsin TM, Aubaid AH (2000) Partial purification and some biochemical characteristics of exocellular keratinase from Trichophyton mentagrophytes var. erinacei. Mycopathologia 150:121–125

    Google Scholar 

  • Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, Hwang JK, Suhartono MT, Pyun YR (2002) Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 178:538–547

    CAS  Google Scholar 

  • Noronha EF, Lima BD, Sá CM, Felix CR (2002) Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World J Microbiol Biotechnol 18:563–568

    CAS  Google Scholar 

  • Noval JJ, Nickerson WJ (1959) Decomposition of native keratin by Streptomyces fradiae. J Bacteriol 77:251–263

    CAS  Google Scholar 

  • Odetallah NH, Wang JJ, Garlich JD, Shih JCH (2003) Keratinase in starter diets improves growth of broiler chicks. Poult Sci 82:664–670

    CAS  Google Scholar 

  • Odetallah NH, Wang JJ, Garlich JD, Shih JCH (2005) Versazyme supplementation of broiler diets improves market growth performance. Poult Sci 84:858–864

    CAS  Google Scholar 

  • Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S (1998) Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66:1–11

    CAS  Google Scholar 

  • Parry DAD, North ACT (1998) Hard α-keratin intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. J Struct Biol 122:67–75

    CAS  Google Scholar 

  • Pillai P, Archana G (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl Microbiol Biotechnol 78:643–650

    CAS  Google Scholar 

  • Plummer TH, Tarentino AL, Hauer CR (1995) Novel, specific O-glycosylation of secreted Flavobacerium meningosepticum proteins. J Biol Chem 270:33192–33196

    Google Scholar 

  • Poole AJ, Church JS, Huson MG (2009) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8

    CAS  Google Scholar 

  • Poopathi S, Abidha S (2008) Biodegradation of poultry waste for the production of mosquitocidal toxins. Int Biodeterior Biodegrad 62:479–482

    CAS  Google Scholar 

  • Porres JM, Benito MJ, Lei XG (2002) Functional expression of keratinase (kerA) gene from Bacillus licheniformis in Pichia pastoris. Biotechnol Lett 24:631–636

    CAS  Google Scholar 

  • Prakash P, Jayalakshmi SK, Sreeramulu K (2009) Production of keratinase by free and immobilized cells of Bacillus halodurans strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. Appl Biochem Biotechnol. doi:10.1007/s12010-009-8702-0

    Google Scholar 

  • Qin LM, Dekio S, Jidoi J (1992) Some biochemical characteristics of a partially purified extracellular keratinase from Trichophyton schoenleinii. Zentralbl Bakteriol 277:236–244

    CAS  Google Scholar 

  • Radha S, Gunasekaran P (2007) Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J Appl Microbiol 103:1301–1310

    CAS  Google Scholar 

  • Radha S, Gunasekaran P (2008) Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941. Bioresour Technol 99:5528–5537

    CAS  Google Scholar 

  • Radha S, Gunasekaran P (2009) Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expr Purif 64:24–31

    CAS  Google Scholar 

  • Rai SK, Konwarh R, Mukherjee AK (2009) Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochem Eng J 45:218–225

    CAS  Google Scholar 

  • Ramnani P, Gupta R (2004) Optimization of medium composition for keratinase production by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol Appl Biochem 40:191–196

    CAS  Google Scholar 

  • Ramnani P, Gupta R (2007) Keratinases vis-à-vis conventional proteases and feather degradation. World J Microbiol Biotechnol 23:1537–1540

    CAS  Google Scholar 

  • Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51:191–196

    CAS  Google Scholar 

  • Riessen S, Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5:399–408

    CAS  Google Scholar 

  • Riffel A, Brandelli A (2002) Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J Ind Microbiol Biotech 29:255–258

    CAS  Google Scholar 

  • Riffel A, Brandelli A (2006) Keratinolytic bacteria isolated from feather waste. Braz J Microbiol 37:395–399

    CAS  Google Scholar 

  • Riffel A, Lucas F, Heeb P, Brandelli A (2003a) Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol 179:258–265

    CAS  Google Scholar 

  • Riffel A, Ortolan S, Brandelli A (2003b) De-hairing activity of extracellular proteases produced by keratinolytic bacteria. J Chem Technol Biotechnol 78:855–859

    CAS  Google Scholar 

  • Riffel A, Brandelli A, Bellato CM, Souza GHMF, Eberlin MN, Tavares FCA (2007) Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. J Biotechnol 128:693–703

    CAS  Google Scholar 

  • Rozs M, Manczinger L, Vágvölgyi C, Kevei F (2001) Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiol Lett 205:221–224

    CAS  Google Scholar 

  • Sangali S, Brandelli A (2000a) Feather keratin hydrolysis by a Vibrio sp. strain kr2. J Appl Microbiol 89:735–743

    CAS  Google Scholar 

  • Sangali S, Brandelli A (2000b) Isolation and characterization of a novel feather-degrading bacterial strain. Appl Biochem Biotechnol 87:17–24

    CAS  Google Scholar 

  • Santos RMDB, Firmino AAP, Sá CM, Felix CR (1996) Keratinolytic activity of Aspergillus fumigatus Fresenius. Curr Microbiol 33:364–370

    CAS  Google Scholar 

  • Shih JCH, Wang JJ (2006) Keratinase technology: from feather degradation and feed additive, to prion destruction. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 1:6

    Google Scholar 

  • Silveira ST, Jaeger MK, Brandelli A (2009) Kinetic data and substrate specificity of a keratinase from Chryseobacterium sp. strain kr6. J Chem Technol Biotechnol 84:361–366

    CAS  Google Scholar 

  • Son HJ, Park HC, Kim HS, Lee CY (2008) Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol Lett 30:461–465

    CAS  Google Scholar 

  • Stahl ML, Ferrari E (1984) Replacement of the Bacillus subtilis subtilisin structural gene with in-vitro derived mutant. J Bacteriol 158:411–418

    CAS  Google Scholar 

  • Suh HJ, Lee HK (2001) Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J Protein Chem 20:165–169

    CAS  Google Scholar 

  • Suntornsuk W, Tongjun J, Onnim P, Oyama H, Ratanakanokchai K, Kusamran T, Oda K (2005) Purification and characterisation of keratinase from a thermotolerant feather-degrading bacterium. World J Microbiol Biotechnol 21:1111–1117

    CAS  Google Scholar 

  • Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102:73–81

    CAS  Google Scholar 

  • Syed GD, Lee JC, Li WJ, Kim CJ, Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour Technol 100:1868–1871

    CAS  Google Scholar 

  • Szabo L, Benedek A, Szabo ML, Barabas G (2000) Feather degradation with a thermotolerant Streptomyces graminofaciens strain. World J Microbiol Biotechnol 16:252–255

    Google Scholar 

  • Takahashi K, Yamamoto H, Yokote Y, Hattori M (2004) Thermal behavior of fowl feather keratin. Biosci Biotechnol Biochem 68:1875–1881

    CAS  Google Scholar 

  • Takami H, Nakamura S, Aono R, Horikoshi K (1992a) Degradation of human hair by a thermostable alkaline proteinase from alkaliphilic Bacillus sp. no. AH-101. Biosci Biotechnol Biochem 56:1667–1669

    CAS  Google Scholar 

  • Takami H, Kobayashi T, Aono R, Horikoshi K (1992b) Molecular cloning, nucleotide sequence and expression of the structural gene for a thermostable alkaline protease from Bacillus sp. no. AH-101. Appl Microbiol Biotechnol 38:101–108

    CAS  Google Scholar 

  • Takami H, Nogi Y, Horikoshi K (1999) Reidentification of the keratinase-producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles 3:293–296

    CAS  Google Scholar 

  • Tapia DMT, Simões MLG (2008) Production and partial characterization of keratinase produced by a microorganism isolated from poultry processing plant wastewater. Afr J Biotechnol 7:296–300

    CAS  Google Scholar 

  • Tarentino AL, Quinones G, Grimwood BG, Hauer CR, Plummer TH (1995) Molecular cloning and sequence analysis of flavastacin: an O-glycosylated prokaryotic zinc metalloendopeptidase. Arch Biochem Biophys 319:281–285

    CAS  Google Scholar 

  • Tatineni R, Doddapaneni KK, Potumarthi RC, Vellanki RN, Kandathil MT, Kolli N, Mangamoori LN (2008) Purification and characterization of an alkaline keratinase from Streptomyces sp. Bioresour Technol 99:1596–1602

    CAS  Google Scholar 

  • Thys RCS, Brandelli A (2006) Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. J Appl Microbiol 101:1259–1268

    CAS  Google Scholar 

  • Thys RCS, Lucas FS, Riffel A, Heeb P, Brandelli A (2004) Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol 39:181–186

    CAS  Google Scholar 

  • Thys RCS, Guzzon SO, Cladera-Olivera F, Brandelli A (2006) Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochem 41:67–73

    CAS  Google Scholar 

  • Tsuboi R, Ko IJ, Takamori K, Ogawa H (1989) Isolation of a keratinolytic proteinase from Trichophyton mentagrophytes with enzymatic activity at acidic pH. Infect Immun 57:3479–3483

    CAS  Google Scholar 

  • Vasileva-Tonkova E, Gousterova A, Neshev G (2009) Ecologically safe method for improved feather wastes biodegradation. Int Biodeterior Biodegrad 63:1008–1012

    CAS  Google Scholar 

  • Veselá M, Friedrich J (2009) Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnol Bioprocess Eng 14:84–90

    Google Scholar 

  • Vignardet C, Guillaume YC, Michel L, Friedrich J, Millet J (2001) Comparison of two hard keratinous substrates submitted to the action of a keratinase using an experimental design. Int J Pharm 224:115–122

    CAS  Google Scholar 

  • Wang JJ, Shih JCH (1999) Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J Ind Microbiol Biotech 22:608–616

    CAS  Google Scholar 

  • Wang JJ, Swaisgood HE, Shih JCH (2003a) Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. Enzyme Microb Technol 32:812–819

    CAS  Google Scholar 

  • Wang JJ, Swaisgood HE, Shih JCH (2003b) Bioimmobilization of keratinase using Bacillus subtilis and Escherichia coli systems. Biotechnol Bioeng 81:421–429

    CAS  Google Scholar 

  • Wang JJ, Rojanatavorn K, Shih JCH (2004) Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene. Biotechnol Bioeng 87:459–464

    CAS  Google Scholar 

  • Wang JJ, Borwornpinyo R, Odetallah N, Shih JCH (2005) Enzymatic degradation of a prion-like protein, Sup35NM-His6. Enzyme Microb Technol 36:758–765

    CAS  Google Scholar 

  • Wang JJ, Garlich JD, Shih JCH (2006) Beneficial effects of Versazyme, a keratinase feed additive, on body weight, feed conversion, and breast yield of broiler chickens. J Appl Poult Res 15:544–550

    CAS  Google Scholar 

  • Wang HY, Liu DM, Liu Y, Cheng CF, Ma QY, Huang Q, Zhang YZ (2007) Screening and mutagenesis of a novel Bacillus pumilus strain producing alkaline protease for dehairing. Lett Appl Microbiol 44:1–6

    CAS  Google Scholar 

  • Wang SL, Hsu WT, Liang TW, Yen YH, Wang CL (2008a) Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour Technol 99:5679–5686

    CAS  Google Scholar 

  • Wang H, Guo Y, Shih JCH (2008b) Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim Feed Sci Technol 140:376–384

    CAS  Google Scholar 

  • Werlang PO, Brandelli A (2005) Characterization of a novel feather-degrading Bacillus sp. strain. Appl Biochem Biotechnol 120:71–79

    CAS  Google Scholar 

  • Xie F, Chao Y, Yang X, Yang J, Xue Z, Luo Y, Qian S (2010) Purification and characterization of four keratinases produced by Streptomyces sp. strain 16 in native human foot skin medium. Bioresour Technol 101:344–350

    CAS  Google Scholar 

  • Yamamura S, Morita Y, Hasan Q, Rao SR, Murakami Y, Yokoyama K, Tamiya E (2002a) Characterization of a new keratin-degrading bacterium isolated from deer fur. J Biosci Bioeng 93:595–600

    CAS  Google Scholar 

  • Yamamura S, Morita Y, Hasan Q, Yokoyama K, Tamiya E (2002b) Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294:1138–1143

    CAS  Google Scholar 

  • Yoshioka M, Miwa T, Horii H, Takata M, Yokoyama T, Nishizawa K, Watanabe M, Shinagawa M, Murayama Y (2007) Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J Appl Microbiol 102:509–515

    CAS  Google Scholar 

  • Zaghloul TI (1998) Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity. Appl Biochem Biotechnol 70(72):199–205

    Google Scholar 

  • Zhang B, Jiang DD, Zhou WW, Hao HK, Niu TG (2009) Isolation and characterization of a new Bacillus sp. 50-3 with highly alkaline keratinase activity from Calotes versicolor faeces. World J Microbiol Biotechnol 25:583–590

    CAS  Google Scholar 

Download references

Acknowledgements

AB is research fellow of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandelli, A., Daroit, D.J. & Riffel, A. Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85, 1735–1750 (2010). https://doi.org/10.1007/s00253-009-2398-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2398-5

Keywords

Navigation