Skip to main content

Advertisement

Log in

Contributions of Microorganisms to Industrial Biology

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Life on earth is not possible without microorganisms. Microbes have contributed to industrial science for over 100 years. They have given us diversity in enzymatic content and metabolic pathways. The advent of recombinant DNA brought many changes to industrial microbiology. New expression systems have been developed, biosynthetic pathways have been modified by metabolic engineering to give new metabolites, and directed evolution has provided enzymes with modified selectability, improved catalytic activity and stability. More and more genomes of industrial microorganisms are being sequenced giving valuable information about the genetic and enzymatic makeup of these valuable forms of life. Major tools such as functional genomics, proteomics, and metabolomics are being exploited for the discovery of new valuable small molecules for medicine and enzymes for catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Academy of Microbiology Colloquium (2004). Microbiology in the 21st Century. Where We Are and Where We Are Going. American Academy of Microbiology. Washington, DC..

  2. Demain A. L. (2000). Microbial biotechnology. Trends Biotechnol, 18, 26–31.

    PubMed  CAS  Google Scholar 

  3. Demain, A. L. (1996). Fungal secondary metabolism: regulation and functions. In B. Sutton (Ed.), A Century of Mycology (pp. 233–254). Cambridge, MA: Cambridge University Press. .

  4. Strohl, W. R. (1997). Industrial antibiotics: today and the future. In W.R. Strohl (ed.), Biotechnology of Antibiotics, 2nd ed., (pp. 1–47). New York, NY: Marcel Dekker.

    Google Scholar 

  5. Wall, M. E., & Wani, M. C. (1995). Campothecin and taxol: Discovery to clinic. Cancer Research, 55, 753–760.

    PubMed  CAS  Google Scholar 

  6. Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214–216.

    PubMed  CAS  Google Scholar 

  7. Brown, A. G., Smale, T. C., King, T. J., Hasenkamp, R., & Thompson, R. H. (1976). Crystal and molecular structure of compactin: a new antifungal metabolite from Penicillium brevicompactum. Journal of the Chemical Society-Perkin Transactions, 1, 1165–1170.

  8. Endo, A., Kuroda, M., & Tsujita, Y. (1976). ML-236B and ML-236C, new inhibitors of cholesterolgenesis produced by Penicillium citrinin. Journal of Antibiotics, 29, 1346–1348.

    PubMed  CAS  Google Scholar 

  9. Endo, A. (1979). K Monacolin, a new hypocholesterolemic agent produced by Monascus species. Journal of Antibiotics, 32, 852–854.

    PubMed  CAS  Google Scholar 

  10. Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, H., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., & Springer, J. (1980). Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proceedings of the National Academy of Sciences of the United States of America, 77, 3957–3961.

    PubMed  CAS  Google Scholar 

  11. Torget, R., Kim, J., & Lee, Y. Y. (2000). Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial & Engineering Chemistry Research, 39, 2817–2825.

    CAS  Google Scholar 

  12. Johannes, T. W., & Zhao, H. (2006). Directed evolution of enzymes and biosynthetic pathways. Current Opinion in Microbiology, 9, 261–267.

    PubMed  CAS  Google Scholar 

  13. Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., Emalfarb, M., Baez, M., & Sinitsyn, A. P. (2007). Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering (in the press).

  14. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635.

    PubMed  CAS  Google Scholar 

  15. Tzanov, T., Calafell, M., Guebitz, G. M., & Cavaco-Paulo, A. (2001). Bio-preparation of cotton fabrics. Enzyme Microbial Technology, 29, 357–362.

    CAS  Google Scholar 

  16. Farrell, R. L., Hata, K., & Wall, M. B. (1997). Solving pitch problems in pulp and paper processes by the use of enzymes or fungi. Advances in biochemical engineering/biotechnology, 57, 197–212.

    CAS  Google Scholar 

  17. Koeller, K. M., & Wong, C. H. (2001). Enzymes for chemical synthesis. Nature, 409, 232–240.

    PubMed  CAS  Google Scholar 

  18. Kirchner, G., Scollar, M. P., & Klibanov, A. (1995). Resolution of racemic mixtures via lipase catalysis in organic solvents. Journal of the American Chemical Society, 107, 7072–7076.

    Google Scholar 

  19. Klibanov, A. (2001). Improving enzymes by using them in organic solvents. Nature, 409, 241–246.

    PubMed  CAS  Google Scholar 

  20. Zaks, A., & Dodds, D. R. (1997). Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discover Today, 2, 513–531.

    CAS  Google Scholar 

  21. Carrea, G., & Riva, S. (2000). Properties and synthetic applications of enzymes in organic solvents. Angewandte Chemie, 33, 2226–2254.

    Google Scholar 

  22. Lee, M. Y., & Dordick J. S. (2002). Enzyme activation for nonaqueous media. Current Opinion in Microbiology, 13, 376–384.

    CAS  Google Scholar 

  23. Kirk, O., Borchert, T. V., & Fulgsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Microbiology, 13, 345–351.

    CAS  Google Scholar 

  24. Yamada, H., Shimizu, S., & Kobayashi, M. (2001). Hydratases involved in nitrile conversion: screening, characterization and application. Chemical Record, 1, 152–161.

    PubMed  CAS  Google Scholar 

  25. Thomas, S. M., DiCosimo, R., & Nagarajan, V. (2002). Biocatalysis: applications and potentials for the chemical industry. Trends Biotechnology, 20, 238–242.

    CAS  Google Scholar 

  26. Swartz, J. R. (1996). Escherichia coli recombinant DNA technology. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., (pp. 1693–1771). Washington DC: American Society of Microbiology Press.

  27. Romanos, M. A., Scorer, C. A., & Clare, J. J. (1992). Foreign gene expression in yeast: a review. Yeast, 8, 423–488.

    PubMed  CAS  Google Scholar 

  28. Higgins, D. R., & Cregg, J. M. (1998). Introduction to Pichia pastoris, In D. R. Higgins & J. M. Cregg (Eds.), Pichia Protocols (pp. 1–15). Totowa, NJ: Humana Press.

    Google Scholar 

  29. Bretthauer, R. K., & Castellino, F. J. (1999). Glycosylation of Pichia pastoris-derived proteins. Biotechnology and Applied Biochemistry, 30, 193–200.

    PubMed  CAS  Google Scholar 

  30. Romanos, M. A. (1995). Advances in the use of Pichia pastoris for high-level expression. Current Opinion in Microbiology, 6, 527–533.

    CAS  Google Scholar 

  31. Sohn, J. H., Kang, H. A., Rao, K. J., Kim, C. H., Choi, E. S., Chung, B. H., & Rhee, S. K. (2001). Current status of the anticoagulant hirudin: its biotechnological production and clinical practice. Applied Biochemistry and Biotechnology, 57, 606–613.

    CAS  Google Scholar 

  32. Giuseppin, M., van Eijk, H. M., & Bes, B. C. (1988). Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha. Biotechnology and Bioengineering, 32, 577–583.

    CAS  PubMed  Google Scholar 

  33. Egli, T., van Dijken, J. P., Veenhuis, M., Harder, W., & Feichter, A. (1980). Methanol metabolism in yeasts: regulation of the synthesis of catabolite enzymes. Archives of Microbiology, 124, 115–121.

    CAS  Google Scholar 

  34. Shuster, J. R., & Connelley, M. B. (1999). Promoter-tagged restriction enzyme-mediated insertion mutagenesis in Aspergillus niger. Molecular & General Genetics, 262, 27–34.

    CAS  Google Scholar 

  35. Gouka, R. J., Gerk, C., Hooykaas, P. J. J., Bundock, P., Musters, W., Verrips, C. T., & de Groot, M. J. A. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nature Biotechnology, 6, 598–601.

    Google Scholar 

  36. van der Hombergh, J. P., van de Vondervoort, P. J., van der Heijden, N. C., & Visser, J. (1997). New protease mutants in Aspergillus niger result in strongly reduced in vitro degradation of target proteins; genetical and biochemical characterization of seven complementation groups. Current Genetic, 28, 299–308.

    Google Scholar 

  37. Gouka, R. J., Punt, P. J., & van den Hondel, C. A. M. J. J. (1997). Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Applied Microbiology and Biotechnology, 47, 1–11.

    PubMed  CAS  Google Scholar 

  38. Moralejo, F. J., Cardoza, R. E., Gutierrez, S., & Martín, J. F. (1999). Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage. Applied and Environmental Microbiology, 65, 1168–1174.

    PubMed  CAS  Google Scholar 

  39. Ward P., Cunningham G. A., & Conneely O. M. (1997). Commercial production of lactoferrin, a multifunctional iron-binding glycoprotein. Biotechnology & Genetic Engineering Reviews, 14, 303–319.

    CAS  Google Scholar 

  40. Dunn-Coleman, N. S., Bloebaum, P., Berka, R., Bodie, E., Robinson, N., Armstrong, G., Ward, M., Przetak, M., Carter, G. L., LaCost, R., Wilson, L. J., Kodama, K. H., Baliu, E. F., Bower, B., Lamsa, M., & Heinsohn, H. (1991). Commercial levels of chymosin production by Aspergillus. Bio/Technology, 9, 976–981.

    PubMed  CAS  Google Scholar 

  41. Verdoes, J. C., Punt, P. J., Burlingame, R., Bartels, J., van Dijk, R., Slump, E., Meens, M., Joosten, R., & Emalfarb, M. (2007). A dedicated vector for efficient library construction and high throughput screening in the hyphal fungus Chrysosporium lucknowense. Industrial Biotechnology, 3, 48–57.

    CAS  Google Scholar 

  42. Brown, K. S. (1996). Looking back at Jenner, vaccine developers prepare for 21st century. The Scientist 10 (April 1 issue), 14–17.

  43. Gerngross, T. (2004). Advances in the production of human therapeutic proteins and filamentous fungi. Nature Biotechnology, 22, 1409–1414.

    Google Scholar 

  44. Stephanopoulos G., Aristodou A., & Nielsen J. (Eds.) (1998). Metabolic Engineering. San Diego, CA:Academic.

    Google Scholar 

  45. Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 64, 34–50.

    PubMed  CAS  Google Scholar 

  46. Rohlin, L., Oh, M. K., & Liao, J. C. (2001). Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Current Opinion in Microbiology, 4, 350–355.

    Google Scholar 

  47. Bongaerts, J., Kramer M., Muller, U., Raeven, L., & Wubbolts, M. (2001). Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metabolic Engineering, 3, 289–300.

    PubMed  CAS  Google Scholar 

  48. Mielenz, J. R. (2001). Ethanol production from biomass: Technology and commercialization status. Current Opinion in Microbiology, 4, 324–329.

    PubMed  CAS  Google Scholar 

  49. Ingram, L. O., Conway T., Clark D. P., Sewell G. W., & Preston J. F. (1987). Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology, 53, 2420–2425.

    PubMed  CAS  Google Scholar 

  50. Green, D. (2005). Spinning straw into fuel. Biocycle, 46, 61–65.

    Google Scholar 

  51. Lynd, L. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics and policy. Annual Review Of Energy And The Environment, 21, 403–465.

    Google Scholar 

  52. Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17, 320–326.

    PubMed  CAS  Google Scholar 

  53. Wendisch, V. T., Bott, M., & Eikmanns, B. J. (2006). Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Current Opinion in Microbiology, 9, 268–274.

    PubMed  CAS  Google Scholar 

  54. Wendisch, V. F. (2006). Genetic regulation of Corynebacterium glutamicum metabolism. Journal of Microbiology and Biotechnology, 16, 999–1009.

    CAS  Google Scholar 

  55. Eggeling, L., & Sahm H. (1999). Amino acid production: principles of metabolic engineering. In S. Y. Lee & E. T. Papoutsakis (eds.), Metabolic Engineering, (pp. 153–176). Marcel Dekker:New York.

    Google Scholar 

  56. Shibasaki, T., Hashimoto, S., Mori, H., & Ozaki, A. (2000). Construction of a novel hydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. Journalof Bioscience and Bioengineering, 90, 522–525.

    CAS  Google Scholar 

  57. Weikert, C., Sauer, U., & Bailey, J.E (1998). Increased phenylalanine production by growing and nongrowing Escherichia coli strain CWML2. Biotechnology Progress, 14, 420–424.

    PubMed  CAS  Google Scholar 

  58. Ikeda, M., & Katsumata, R. (1999). Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Applied and Environmental Microbiology, 65, 2497–2502.

    PubMed  CAS  Google Scholar 

  59. Levy-Schil, S., Debussche, L., Rigault, S., Soubrier, F., Bacchette, F., Lagneaux, D., Schleuniger, J., Blanche, F., Crouzet, J., & Mayaux, J.F (1993). Biotin biosynthetic pathway in a recombinant strain of Escherichia coli overexpressing bio genes: evidence for a limiting step upstream from KAPA. Applied Microbiology and Biotechnology, 38, 755–762.

    CAS  Google Scholar 

  60. Sakurai, N., Imai, Y., Masuda, M., Komatsubara, S., & Tosa, T. (1994). Improvement of a d-biotin-hyperproducing recombinant strain of Serratia marcescens. Journal of Biotechnology, 36, 63–73.

    PubMed  CAS  Google Scholar 

  61. Masuda, M., Takahashi, K., Sakurai, N., Yanagiya, K., Komatsubara, S., & Tosa T. (1995). Further improvement of D-biotin production by a recombinant strain of Serratia marcescens. Process Biochemistry, 30, 553–562.

    CAS  Google Scholar 

  62. Hong, Y.-R., Chen, Y.-L., Farh, L., Yang, W.-J., Liao, C.-H., & Shiuan, D. (2006). Recombinant Candida utilis for the production of biotin. Applied Microbiology and Biotechnology, 71, 211–221.

    PubMed  CAS  Google Scholar 

  63. Saito, Y., Ishii, Y., Hayashi, H., Imao, Y., Akashi, T., Yoshikawa, K., Noguchi, Y., Soeda, S., Yoshida, M., Niwa, M., Hosoda, J., & Shimomura K. (1997). Cloning of genes coding for l-sorbose and l-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-l-gulonate, a precursor of l-ascorbic acid, in a recombinant G. oxydans strain. Applied and Environmental Microbiology, 63, 454–460.

    Google Scholar 

  64. Shibata, T., Ichikawa, C., Matsuura, M., Takata, Y., Noguchi, Y., Saito, Y., & Yamashita, M. (2000). Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydans G624 and expression of the gene in Pseudomonas putida IFO3738. Journal of Bioscience and Bioengineering, 89, 463–468.

    PubMed  CAS  Google Scholar 

  65. Saito, Y., Hayashi, H., Yoshikawa, K., Noguchi, Y., Yoshida, S., Soeda, S., & Yoshida, M. (1998). Direct fermentation of 2-keto-l-gulonic acid in recombinant Gluconobacter oxydans. Biotechnology and Bioengineering, 58, 309–315.

    PubMed  CAS  Google Scholar 

  66. Koizumi, S., Yonetani, Y., Maruyama, A., & Teshiba, S. (2000). Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Applied Microbiology and Biotechnology,, 51, 674–679.

    Google Scholar 

  67. Perkins, J. B., Sloma, A., Hermann, T., Theriault, K., Zachgo, E., Erdenberger, T., Hannett, N., Chatterjee, N. P., Williams II V., Rufo Jr. G. A., Hatch, R., & Pero, J. (1999). Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. Journal of Industrial Microbiology &Biotechnology, 22, 8-18.

    CAS  Google Scholar 

  68. Chen, C. W., Lin, H. F., Kuo, C. L., Tsai, H. L., & Tsai, J. F. Y. (1988). Cloning and expression of a DNA sequence conferring cephamycin C production. Bio/Technology, 6, 1222–1224.

    CAS  Google Scholar 

  69. Decker, H., Summers, R. G., & Hutchinson, C. R. (1994). Overproduction of the acyl carrier protein component of a type II polyketide synthase stimulates production of tetracenomycin biosynthetic intermediates in Streptomyces glaucescens. Journal of Antibiotics, 47, 54–63.

    PubMed  CAS  Google Scholar 

  70. Malmberg, L.-H., Hu, W.-S., & Sherman, D. H. (1995). Effects of enhanced lysine ε-aminotransferase on cephamycin biosynthesis in Streptomyces clavuligerus. Applied Microbiology and Biotechnology, 44, 198–205.

    Article  PubMed  CAS  Google Scholar 

  71. Kennedy, J., & Turner, G. (1996). δ-l-α-aminoadipyl-l-cysteinyl-d-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Molecular & General Genetics, 253, 189-197.

    CAS  Google Scholar 

  72. Crawford, L., Stepan, A. M., McAda, P. C., Rambosek, J. A., Conder, M. J., Vinci, V. A., & Reeves, C. D. (1995). Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology, 13, 58–62.

    PubMed  CAS  Google Scholar 

  73. Velasco, J., Adrio, J. L., Moreno, M. A., Diez, B., Soler, G., & Barredo, J. L. (2000). Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nature Biotechnology, 18, 857–861.

    Google Scholar 

  74. Rodriguez, E., & McDaniel, R. (2001). Combinatorial biosynthesis of antimicrobials and other natural products. Current Opinion in Microbiology, 4, 526–534.

    PubMed  CAS  Google Scholar 

  75. Mendez, C., & Salas, J. A. (2001). Altering the glycosylation pattern of bioactive compounds. Trends in Biotechnology, 19, 449–456.

    PubMed  CAS  Google Scholar 

  76. Okanishi, M., Suzuki, N., & Furita, T. (1996). Variety of hybrid characters among recombinants obtained by interspecific protoplast fusion in streptomycetes. Bioscience Biotechnology and Biochemistyr, 6, 1233–1238.

    Article  Google Scholar 

  77. Van Lanen, S. G., & Shen, B. (2006). Microbial genomics for the improvement of natural product discovery. Applied and Environmental Microbiology, 9, 252–260.

    Google Scholar 

  78. Greden, B. D., & Keller, M. (2006). Capturing the uncultivated majority. Applied Microbiology and Biotechnology, 17, 236–240.

    Google Scholar 

  79. Bodie, E. A., Armstrong, G. L., & Dunn-Coleman, N. S. (1994). Strain improvement of chymosin-producing strains of Aspergillus niger var awamori using parasexual recombination. Enzyme Microbial Technology, 16, 376–382.

    CAS  Google Scholar 

  80. Pariza, M. W., & Johnson, E. A (2001). Evaluating the safety of microbial enzyme preparations used in food processing: Update for a new century. Regulatory Toxicology And Pharmacology, 33, 173–186.

    PubMed  CAS  Google Scholar 

  81. htpp://vm.cfsan.fda.gov .

  82. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications. Current Opinion in Biotechnology, 13, 345–351.

    PubMed  CAS  Google Scholar 

  83. Rondon, M. R., Goodman, R. M., & Handelsman, J. (1999). The Earth’s bounty: assessing and accessing soil microbial diversity. Trends in Biotechnology, 17, 403–409.

    PubMed  CAS  Google Scholar 

  84. htpp://www.diversa.com .

  85. htpp://www.tigr.org .

  86. htpp://www.ncbi.nlm.nih.gov .

  87. Schiraldini, C., & De Rosa, M. (2002). The production of biocatalysts and biomolecules from extremophiles. Trends in Biotechnology, 20, 515–521.

    Google Scholar 

  88. Marrs, B., Delagrave, S., & Murphy, D. (1999). Novel approaches for discovering industrial enzymes. Applied and Environmental Microbiology, 2, 241–245.

    CAS  Google Scholar 

  89. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature, 409, 258–268.

    PubMed  CAS  Google Scholar 

  90. Cedrone, F., Menez, A., & Quemeneur, E. (2000). Tailoring new enzyme functions by rational redesign. Current Opinion in Structural Biology, 10, 405–410.

    PubMed  CAS  Google Scholar 

  91. Beppu, T. (1990). Modification of milk-clotting aspartic proteinases by recombinant DNA techniques. Annals of the New York Academy of Sciences, 613, 14–25.

    PubMed  CAS  Google Scholar 

  92. Van den Burg, B., de Kreij, A., Van der Veek, P., Mansfeld, J., & Venema, G. (1998). Engineering an enzyme to resist boiling. Proceedings of the National Academy of Sciences of the United States of America, 95, 2056–2060.

    PubMed  Google Scholar 

  93. Bolon, D. N., Voigt, C. A., & Mayo, S. L. (2002). De novo design of biocatalysts. Current Opinion in Structural Biology, 6, 125–129.

    CAS  Google Scholar 

  94. Shimaoka, M., Shiftman, J. M., Jing, H., Tagaki, J., Mayo, S. L., & Springer T. A. (2000). Computational design of an integrin I domain stabilized in the open high affinity conformation. Nature Structural Biology, 7, 674–678.

    PubMed  CAS  Google Scholar 

  95. Arnold, F. H. (2001). Combinatorial and computational challenges for biocatalyst design. Nature, 409, 253–257.

    PubMed  CAS  Google Scholar 

  96. Yuan, L., Kurek, I., English, J., & Keenan, R. (2005). Laboratory-directed protein evolution. Microbiology and Molecular Biology Reviews, 69, 373–392.

    PubMed  CAS  Google Scholar 

  97. Leung, D. W., Chen, E., & Goeddel, D. V. (1989). A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique, 1, 11–15.

    Google Scholar 

  98. Reidhaar-Olson, J., Bowie, J., Breyer, R. M., Hu, J. C., Knight, K. L., Lim, W. A., Mossing, M. C., Parsell, D. A., Shoemaker, K. R., & Sauer, R. T. (1991). Random mutagenesis of protein sequences using oligonucleotide cassettes. Methods in Enzymology, 208, 564–586.

    PubMed  CAS  Google Scholar 

  99. Bornscheuer, U. T., Altenbuchner, J., & Meyer, H. H. (1998). Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epithilones. Biotechnology and Bioengineering, 58, 554–559.

    PubMed  CAS  Google Scholar 

  100. Taguchi, S., Ozaki, A., & Momose, H. (1998). Engineering of a cold-adapted protease by sequential random mutagenesis and a screening system. Applied and Environmental Microbiology, 64, 492–495.

    PubMed  CAS  Google Scholar 

  101. Ness, J. E., Del Cardayre, S. B., Minshull, J., & Stemmer, W. P. (2000). Molecular breeding: the natural approach to protein design. Advances in Protein Chemistry, 55, 261–292.

    PubMed  CAS  Google Scholar 

  102. Stemmer, W. P. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature, 370, 389–391.

    PubMed  CAS  Google Scholar 

  103. Zhao, H., & Arnold, F. H. (1997). Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Research, 25, 1307–1308.

    PubMed  CAS  Google Scholar 

  104. Crameri, A., Raillard, S. A., Bermudez, E., & Stemmer, W. P. (1998). DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature, 391, 288–291.

    PubMed  CAS  Google Scholar 

  105. Ness, J. E., Welch, M., Giver, L., Bueno, M., Cherry, J. R., Borchert, T. V., Stemmmer, W. P., & Minshull, J. (1999). DNA shuffling of subgenomic sequences of subtilisin. Nature Biotechnology, 17, 893–896.

    PubMed  CAS  Google Scholar 

  106. Jaeger, K. E., & Reetz, M. T. (2000). Directed evolution of enantioselective enzymes for organic chemistry. Current Opinion in Chemical Biology, 4, 68–73.

    PubMed  CAS  Google Scholar 

  107. Suenaga, H., Mitsokua, M., Ura, Y., Watanabe, T., & Furukawa, K. (2001). Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, & alkylbenzenes. Journal of Bacteriology 183, 5441–5444.

    PubMed  CAS  Google Scholar 

  108. Song, J. K., & Rhee, J. S. (2001). Enhancement of stability and activity of phospholipase A(1) in organic solvents by directed evolution. Biochimica et Biophysica Acta, 1547, 370–378.

    PubMed  CAS  Google Scholar 

  109. Raillard, S., Krebber, A., Chen, Y., Ness, J. E., Bermudez, E., Trinidad, R., Fullem, R., Davis, C., Welch, M., Seffernick, J., Wackett, L. P., Stemmer W. P., & Minshull, J. (2001). Novel enzyme activities and functional plasticity revealed by recombining highly homologous enzymes. Chemistry & Biology, 8, 891–898.

    CAS  Google Scholar 

  110. Kurtzman, A. L., Govindarajan, S., Vahle, K., Jones, J. T., Heinrichs, V., & Patten, P. A. (2001). Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Current Opinion in Biotechnology, 12, 361–370.

    PubMed  CAS  Google Scholar 

  111. Patten, P. A., Howard, R. J., & Stemmer W. P. (1997). Applications of DNA shuffling to pharmaceuticals and vaccines. Current Opinion in Biotechnology, 8, 724–733.

    PubMed  CAS  Google Scholar 

  112. Tobin, M. B., Gustafsson, C., & Huisman, G. W. (2000). Directed evolution: the ‘rational’ basis for ‘irrational’ design. Current Opinion in Structural Biology, 10, 421–427.

    PubMed  CAS  Google Scholar 

  113. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & del Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646.

    PubMed  CAS  Google Scholar 

  114. Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W. P., Ryan, C. M., & del Cardayre, S. B. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology, 20, 707–712.

    PubMed  CAS  Google Scholar 

  115. Picataggio, S., Rohrer, T., Deanda, K., Lanning, D., Reynolds, R., Mielenz, J., & Eirich, L. D. (1992). Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio/Technology, 10, 894–898.

    PubMed  CAS  Google Scholar 

  116. Arisawa, A., Kawamura, N., Narita, T., Kojima, I., Okamura, K., Tsunekawa, H., Yoshioka, T, Okamoto, R. (1996). Direct fermentative production of acyltylosins by genetically-engineered strains of Streptomyces fradiae. Jornal of Antibiotics, 49, 349–354.

    CAS  Google Scholar 

  117. Ferrer, M., Martinez-Abarca, F., & Golyshin, P. N. (2005). Mining genomes and ‘metagenomes’ for novel catalysts. Current Opinion in Biotechnology, 16, 588–593.

    PubMed  CAS  Google Scholar 

  118. Bigelas, R. (1989). Industrial Products of Biotechnology: Application of gene technology. In H. J. Rehm & G. Reed (eds.); G. K. Jacobson, & S. O. Jolly, (vol. Eds.) Biotechnology, vol. 7b (pp. 229–259). VCH, Weinheim.

  119. Tseng, Y. H., Ting, W. Y., Chou, H. C., Yang, B. Y., & Chun, C. C. (1992). Increase of xanthan production by cloning xps genes into wild-type Xanthomonas campestris. Letters in Applied Microbiology, 14, 43–46.

    PubMed  CAS  Google Scholar 

  120. Letisse, F., Chevallereau, P., Simon, J.-L., & Lindley, N. D. (2001). Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Applied Microbiology and Biotechnology, 55, 417–422.

    PubMed  CAS  Google Scholar 

  121. Potera, C. (1997). Genencor & DuPont create “green” polyester. Genetic Engineering News, 17(11), 17.

    Google Scholar 

  122. Tong, I.-T., Liao, J. J., & Cameron, D. C. (1991). 1,3-Propane diol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha region. Applied and Environmental Microbiology, 57, 3541–3546.

    PubMed  CAS  Google Scholar 

  123. Laffend, L. A., Nagarajan, V., & Nakamura, C. E. (1996). Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. Patent WO 96/53.796 (E. I. DuPont de Nemours and Genencor International)..

  124. Vink, E. T. H., Glassner, D. A., Kolstad, J. J., Wooley, R. J., & O’Connor, R. P.(2007). The eco-profiles for current and near-future NatureWorks polylactide (PLA) production. Industrial Biotechnology, 3, 58–81.

    CAS  Google Scholar 

  125. Akkara, J. A., Ayyagari, M. S., & Bruno, F. F. (1999). Enzymatic synthesis and modification of polymers in nonaqueous solvents. Trends in Biotechnology, 17, 67–73.

    PubMed  CAS  Google Scholar 

  126. National Academy of Sciences U.S.A. (2000). Transgenic Plants and World Agriculture. Washington, DC: National Academy Press.

  127. Fox, S. (2000). Golden Rice intended for developing world. Genetic Engineering News, 20(12), 42–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Demain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demain, A.L., Adrio, J.L. Contributions of Microorganisms to Industrial Biology. Mol Biotechnol 38, 41–55 (2008). https://doi.org/10.1007/s12033-007-0035-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0035-z

Keywords

Navigation