Skip to main content

Advertisement

Log in

Fungal endophytes: an untapped source of biocatalysts

  • Review
  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Horizontally transmitted endophytes are an ecological group of fungi that infect living plant tissues and survive in them without causing any disease symptoms. Even as facets of the endophyte-plant symbiotic relationship are being uncovered, there is an increasing appreciation of the different growth substrates exploited by endophytes and the vast repertoire of secreted enzymes of these fungi. These attributes exemplify the striking biodiversity of fungal endophytes and should motivate bioprospecting these organisms to identify novel biocatalysts that might help address challenges in medicine, food security, energy production and environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517

    Article  PubMed  CAS  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  PubMed  CAS  Google Scholar 

  • Almeida JRM, Modig T, Peterson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Mejía L, Kyllo D, Rojas E, Maynard Z, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. PNAS 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Arora DK, Bridge PD, Bhatnagar D (2004) Handbook of fungal biotechnology. CRC Press, pp 592

  • Asselin BL, Lorenson MY, Whitin JC (1993) Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol 11:1780–1786

    PubMed  CAS  Google Scholar 

  • Azevedo-Silva F, de Camargo B, Pombo-de-Oliveira MS (2010) Implications of infectious diseases and the adrenal hypothesis for the etiology of childhood acute lymphoblastic leukemia. Braz J Med Biol Res 43:226–229

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 90:11558–11562

    Article  PubMed  CAS  Google Scholar 

  • Bansal S, Srivastava A, Mukherjee G, Pandey R, Verma AK, Mishra P, Kundu B (2011) Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action. Faseb J fj.11-191254

  • Barth T, Pupo MT, Borges KB, Okano LT, Bonato PS (2010) Stereoselective determination of midodrine and desglymidodrine in culture medium: application to a biotransformation study employing endophytic fungi. Electrophoresis 31:1521–1528

    PubMed  CAS  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins. A current perspective. Biodegradation 25:343–357

    Article  Google Scholar 

  • Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Colloid Interface Sci 152:26–38

    Article  PubMed  CAS  Google Scholar 

  • Borges KB, de Souza BW, Pupo MT, Bonato PS (2007) Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Appl Microbiol Biotechnol 77:669–674

    Article  PubMed  CAS  Google Scholar 

  • Borges KB, de Souza BW, Pupo MT, Bonato PS (2008) Stereoselective analysis of thioridazine-2-sulfoxide and thioridazine-5-sulfoxide: an investigation of rac-thioridazine biotransformation by some endophytic fungi. J Pharm Biomed Anal 46:945–952

    Article  PubMed  CAS  Google Scholar 

  • Borges KB, Borges WS, Durán-Patrón R, Pupo MT, Bonato PS, Collado IG (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron-Asymmetry 20:385–397

    Article  CAS  Google Scholar 

  • Camassola M, Dillon AJP (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29:642–647

    Article  CAS  Google Scholar 

  • Chauve M, Mathias, H, Huc D, Casanave D, Monot F, Ferreira (2010) Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels http://www.biotechnologyforbiofuels.com/content/3/1/3

  • Chaverri P, Gazis RO (2011) Linking ex planta fungi with their endophytic stages: Perisporiopsis, a common leaf litter and soil fungus, is a frequent endophyte of Hevea spp. and other plants. Fungal Ecol 4:94–102

    Article  Google Scholar 

  • Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255

    Article  PubMed  CAS  Google Scholar 

  • De Fine Licht DF, Henrik H, Schiøtt M, Mueller UG, Boomsma JJ (2010) Evolutionary transitions in enzyme activity of ant fungus gardens. Evolution 64:2055–2069

    PubMed  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12

    Article  Google Scholar 

  • Dix NJ (1979) Inhibition of fungi by gallic acid in relation to growth on leaves and litter. Trans Br Mycol Soc 73:329–336

    Article  CAS  Google Scholar 

  • Duval M, Suciu S, Ferster A, Rialland X, Nelken B, Lutz P, Benoit Y, Robert A, Manel AM, Vilmer E, Otten J, Philippe N (2002) Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer-Children's Leukemia Group phase 3 trial. Blood 15:2734–2739

    Google Scholar 

  • El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB (2002) Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156:103–112

    Article  CAS  Google Scholar 

  • Fang W, Leger RJ (2010) Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154:1549–1557

    Article  PubMed  CAS  Google Scholar 

  • Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, El Gueddari NE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53

    Article  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Article  PubMed  CAS  Google Scholar 

  • Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93:533–543

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Heckmann-Pohl DM, Bastian S, Altmeier S, Antes I (2006) Improvement of the fungal enzyme pyranose 2-oxidase using protein engineering. J Biotechnol 124:26–40

    Article  PubMed  CAS  Google Scholar 

  • Heinonsalo J, Kabiersch G, Niemi M, Simpanen SA, Ilvesniemi H, Hofrichter M, Hatakka A, Steffen K (2012) Filter centrifugation as a sampling method for miniaturization of extracellular fungal enzyme activity measurements in solid media. Fungal Ecol 5:261–269

    Article  Google Scholar 

  • Hideyuki K, Kouhei K, Keiji F, Shodo H (2002) Specific expression and temperature-dependent expression of the acid protease-encoding pepA in Aspergillus oryzae in solid-state culture. J Biosci Bioeng 93:563–567

    Google Scholar 

  • Houba R, Heederik J, Doekes G, van Run PEM (1996) Exposure-sensitization relationship for α-amylase allergens in the baking industry. Am J Respir Crit Care Med 154:13–136

    Google Scholar 

  • Hu KJ, Hu JL, Ho KP, Yeung KW (2004) Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr Polym 58:45–52

    Article  CAS  Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Bot 90:137–149

    Article  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdahl B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  Google Scholar 

  • Kandile NG, Nasr AS (2009) Environment friendly modified chitosan hydrogels as a matrix for adsorption of metal ions, synthesis and characterization. Carbohydr Polym 78:753–759

    Article  CAS  Google Scholar 

  • Kaplan O, Bezouška K, Malandra A, Veselá AB, Petříčková A, Felsberg J, Rinágelová A, Křen V, Martínková L (2011) Genome mining for the discovery of new nitrilases in filamentous fungi. Biotechnol Lett 33:309–312

    Article  PubMed  CAS  Google Scholar 

  • King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:4 http://www.biotechnologyforbiofuels.com/content/4/1/4

    Google Scholar 

  • Koopman F, Wierckx N, de Winde JH, Ruijssenaara HJ (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. PNAS 107:4919–4924

    Google Scholar 

  • Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11:1441–1452

    Article  PubMed  Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2012) Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. In: Southworth D (ed) Biocomplexity of plant–fungal interactions. Wiley, pp 5–28

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Kumaresan V, Suryanarayanan TS, Johnson JA (2002) Ecology of mangrove endophytes. In: Hyde KD (ed) Fungi of marine environments, fungal diversity research series 9. Fungal Diversity, Hong Kong, pp 145–166

    Google Scholar 

  • Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Factories 7:32. doi:10.1186/1475-2859-7-32

    Article  Google Scholar 

  • Lee SK, Hwang J-Y, Choi SH, Kim SM (2010) Purification and characterization of Aspergillus oryzae LK-101 salt-tolerant acid protease isolated from soybean paste. Food Sci Biotechnol 19:327–334

    Article  CAS  Google Scholar 

  • Li HY, Shen M, Zhou ZP, Li T, Wei Y-I, Lin L-B (2012) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Divers 53:1–8

    Article  Google Scholar 

  • Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Bao X (2009) Overexpression of the chitosanase gene in Fusarium solani via Agrobacterium tumefaciens-mediated transformation. Curr Microbiol 58:279–282

    Article  PubMed  CAS  Google Scholar 

  • López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131

    Article  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Markku S, MikkoArvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam P, Robbertse B, Salamov AA, Schmoll M, AstridTerry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  PubMed  CAS  Google Scholar 

  • Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Nagaraju D, Govinda Rajulu MB, El Gueddari NE, Suryanarayanan TS, Moerschbacher BM (2009) Identification and characterization of chitinolytic enzymes from endophytic fungi. Sugars in Norwich–Royal Soc. Chemistry, Carbohydrate Meeting, London

    Google Scholar 

  • Nettles D, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8:1009–1016

    Article  PubMed  CAS  Google Scholar 

  • Nwe N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Mater 2:374–398

    Article  CAS  Google Scholar 

  • Offman MN, Krol M, Patel N, Krishnan S, Liu J, Saha V, Bates PA (2011) Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood 117:1614–1621

    Article  PubMed  CAS  Google Scholar 

  • Østergaard LH, Olsen HS (2010) Industrial applications of fungal enzymes. In: Hofrichter XM (ed) The mycota. Springer, Berlin, pp 269–290

    Google Scholar 

  • Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 7:3171–3183

    Article  PubMed  CAS  Google Scholar 

  • Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477

    Article  PubMed  CAS  Google Scholar 

  • Pedras MSC, Minic Z (2011) Differential protein expression in response to the phytoalexin brassinin allows the identification of molecular targets in the phytopathogenic fungus Alternaria brassicicola. Mol Plant Pathol. doi:10.1111/j.1364-3703.2011.00765.x

  • Pedras MSC, Jha M, Okeola G (2005) Camalexin induces detoxification of the phytoalexin brassinin in the plant pathogen Leptosphaeria maculans. Phytochem 66:2609–2616

    Article  CAS  Google Scholar 

  • Peterson R, Grinyer J, Nevalainen H (2011) Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest. Mycol Progr 10:207–218

    Article  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140

    Google Scholar 

  • Piscitelli A, Del Vecchio C, Faraco V, Giardina P, Macellaro G, Miele A, Pezzella C, Sannia G (2011) Fungal laccases: versatile tools for lignocellulose transformation. C R Biologies 334:789–794

    Article  PubMed  CAS  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathology 49:291–315

    Article  CAS  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Ramírez-Coronel MA, Viniegra-González G, Darvil A, Augur C (2003) A novel tannase from Aspergillus niger with β-glucosidase activity. Microbiology 149:2941–2946

    Article  PubMed  Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande V (1998) Molecular and biotechnology aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    PubMed  CAS  Google Scholar 

  • Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araújo IS, Mattos CRR, Góes-Neto A (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47:75–84

    Google Scholar 

  • Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 28:63–72

    Article  PubMed  CAS  Google Scholar 

  • Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger L-A, Slack CB, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113

    Article  Google Scholar 

  • Sarquis MIM, Oliveira EMM, Santos AS, Costa GL (2004) Production of L-asparaginase by filamentous fungi. Mem Inst Oswaldo Cruz 99:489–492

    Article  PubMed  CAS  Google Scholar 

  • Schrey D, Borghorst S, Lanvers-Kaminsky C, Hempel G, Gerß J, Moricke A, Schrappe M, Boos J (2010) Therapeutic drug monitoring of asparaginase in the ALLBFM 2000 protocol between 2000 and 2007. Pediatr Blood Cancer 54, 952–958

    Google Scholar 

  • Shibuya H, Agusta A, Ohashi K, Maehara S, Simanjuntak P (2005) Biooxidation of (+)-catechin and (−)-epicatechin into 3,4-dihydroxy flavan derivatives by the endophytic fungus Diaporthe sp isolated from a tea plant. Chem Pharm Bull 53:866–867

    Article  PubMed  CAS  Google Scholar 

  • Shrestha P, Szaro TM, Bruns TD, Taylor JW (2011) Systematic search for cultivatable fungi that best deconstruct cell walls of Miscanthus and sugarcane in the field. Appl Environ Microbiol 77:5490–5504

    Article  PubMed  CAS  Google Scholar 

  • Shu YZ, Johnson BM, Yang TJ (2008) Role of biotransformation studies in minimizing metabolism-related liabilities in drug discovery. AAPS J 10:178–192

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Gupta V, Kumari P, Kumar M, Reddy CRK, Prasad K, Jha B (2011) Purification and partial characterization of an extracellular alginate lyase from Aspergillus oryzae isolated from brown seaweed. J Appl Phycol 23:755–762

    Article  CAS  Google Scholar 

  • Somerville C (2007) Biofuels. Curr Biol 17:R115–R119

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Article  Google Scholar 

  • Suryanarayanan TS (2011) Diversity of fungal endophytes in tropical trees. In: Prittilä AM, Carolin FA (eds) Endophytes of tropical trees. Forestry sciences series 80. Springer, pp 67–80

  • Suryanarayanan TS (2012) Fungal endosymbionts of seaweeds In: Raghukumar C (ed) Biology of marine fungi. Springer, pp 53–70

  • Suryanarayanan TS, Murali TS (2006) Incidence of Leptosphaerulina crassiasca in symptomless leaves of peanut in southern India. J Basic Microbiol 46:305–309

    Article  PubMed  Google Scholar 

  • Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:456–468

    Article  Google Scholar 

  • Suryanarayanan TS, Govindarajulu MB, Thirumalai E, Reddy MS, Money NP (2011) Agni’s fungi: heat-resistant spores from the Western Ghats, southern India. Fungal Biol 115:833–838

    Article  PubMed  CAS  Google Scholar 

  • Tang YJ, Zhao W, Li HM (2011) Novel tandem biotransformation process for the biosynthesis of a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin. Appl Environ Microbiol 77:3023–3034

    Article  PubMed  CAS  Google Scholar 

  • Thein-Han WW, Kitiyanant Y (2006) Chitosan scaffolds for in vitro buffalo embryonic stem-like cell culture: an approach to tissue engineering. J Biomed Mater Res 80B:92–101

    Article  Google Scholar 

  • Thirunavukkarasu N, Suryanarayanan TS, Murali TS, Ravishankar JP, Gummadi SN (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2:147–155

    Google Scholar 

  • Trudgill PW (1969) Metabolism of 2-furoic acid by pseudomonas F2. Biochem J 113:577–587

    PubMed  CAS  Google Scholar 

  • Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Diver 13:209–219

    Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invert Pathol 98:277–279

    Article  Google Scholar 

  • Verza M, Arakawa NS, Lopes NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis sp. J Braz Chem Soc 20:195–200

    Article  CAS  Google Scholar 

  • Vesterlund S-R, Helander M, Faeth S, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Diver 47:109–118

    Article  Google Scholar 

  • Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A (1965) Studies on the metabolism of gallic acid by microorganisms. Part III. On the intermediary metabolism of gallic acid by Aspergillus niger. Agric Biol Chem 29:20–26

    Article  CAS  Google Scholar 

  • Weber D (2009) Endophytic fungi, occurrence and metabolites. In: Anke T, Weber D (eds) The mycota XV physiology and genetics. Spring-Verlag, Berlin, pp 153–195

    Chapter  Google Scholar 

  • Weber RW, Stenger E, Meffert A, Hahn M (2004) Brefeldin A production by Phoma medicaginis in dead precolonized plant tissue: a strategy for habitat conquest? Mycol Res 108:662–671

    Article  PubMed  CAS  Google Scholar 

  • Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 92:1095–1105

    Article  PubMed  CAS  Google Scholar 

  • William F, Boominathan K, Vasudevan N, Gurujeyalakshmi G, Mahadevan A (1986) Microbial degradation of lignin and tannin. J Sci Ind Res 45:232–243

    CAS  Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25:170–179

    Article  CAS  Google Scholar 

  • Xiros C, Vafiadi C, Paschos T, Christakopoulos P (2010) Toxicity tolerance of Fusarium oxysporum towards inhibitory compounds formed during pretreatment of lignocellulosicmaterials. J Chem Technol Biotechnol 86:223–230

    Article  Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Diver 44:15–31

    Article  Google Scholar 

  • Zhao Y, Park RD, Muzzarelli RAA (2010) Chitin deacetylases: properties and applications. Mar Drugs 8:24–46

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366:165–172

    Article  PubMed  CAS  Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. E. J. Behrman and T. Ezeji (OSU) for comments on the manuscript, and to Andrew Wallace (OSU) for preparing Fig. 1. TSS thanks the United States-India Educational Foundation (USIEF), New Delhi and the Fulbright Scholar Program (USA) for the award of a Fulbright-Nehru Senior Researcher grant to characterize fungal endophyte enzymes in VG’s laboratory at OSU, and the Department of Biotechnology, Government of India for funding the Indo-German Research Project BT/IN/FRG/09/TSS/2007 on endophyte enzymes. VG gratefully acknowledges funding support from the Northeast Sun Grant Initiative Award 52110–9615 from US Department of Transportation (via a sub-contract from Cornell University to T. Ezeji and V. Gopalan, OSU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trichur S. Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suryanarayanan, T.S., Thirunavukkarasu, N., Govindarajulu, M.B. et al. Fungal endophytes: an untapped source of biocatalysts. Fungal Diversity 54, 19–30 (2012). https://doi.org/10.1007/s13225-012-0168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-012-0168-7

Keywords

Navigation