Skip to main content
Log in

Cellulases and Hemicellulases from Endophytic Acremonium Species and Its Application on Sugarcane Bagasse Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to have cellulase activity and hemicellulase activity screenings of endophyte Acremonium species (Acremonium zeae EA0802 and Acremonium sp. EA0810). Both fungi were cultivated in submerged culture (SC) containing l-arabinose, d-xylose, oat spelt xylan, sugarcane bagasse, or corn straw as carbon source. In solid-state fermentation, it was tested as carbon source sugarcane bagasse or corn straw. The highest FPase, endoglucanase, and xylanase activities were produced by Acremonium sp. EA0810 cultivated in SC containing sugarcane bagasse as a carbon source. The highest β-glucosidase activity was produced by Acremonium sp. EA0810 cultivated in SC using d-xylose as carbon source. A. zeae EA0802 has highest α-arabinofuranosidase and α-galactosidase activities in SC using xylan as a carbon source. FPase, endoglucanase, β-glucosidase, and xylanase from Acremonium sp. EA0810 has optimum pH and temperatures of 6.0, 55 °C; 5.0, 70 °C; 4.5, 60 °C; and 6.5, 50 °C, respectively. α-Arabinofuranosidase and α-galactosidase from A. zeae EA0802 has optimum pH and temperatures of 5.0, 60 °C and 4.5, 45 °C, respectively. It was analyzed the application of Acremonium sp. EA0810 to hydrolyze sugarcane bagasse, and it was achieved 63% of conversion into reducing sugar and 42% of conversion into glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whitaker, J. R. (1994) Marcel Dekker 2nd edition, 625.

  2. Saha, B. C. (2000). Biotechnology Advances, 18, 403–423.

    Article  CAS  Google Scholar 

  3. Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Process Biochemistry, 40, 3519–3525.

    Article  Google Scholar 

  4. Rowell, M. R., Pettersen, R., Han, J. S., Rowell, J. S., Tshabalala, M. A. (2005) CRC Press. 487.

  5. Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Enzyme and Microbial Technology, 33, 612–619.

    Article  CAS  Google Scholar 

  6. Bhat, M. K. (2000). Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  7. Csiszar, E., Urbanszki, K., & Szakacs, G. (2001). Journal of Molecular Catalysis. B, Enzymatic, 11, 1065–1072.

    Article  CAS  Google Scholar 

  8. Miettinen-Oinonen, A., Londesborough, J., Joutsjoki, V., Lantto, R., & Vehmaanpera, J. (2004). Enzyme and Microbial Technology, 34, 332–341.

    Article  CAS  Google Scholar 

  9. Savitha, S., Sadhasivam, S., & Swaminathan, K. (2009). Bioresource Technology, 100, 883–889.

    Article  CAS  Google Scholar 

  10. Chang, M. C. (2007). Current Opinion in Chemical Biology, 11, 677–684.

    Article  CAS  Google Scholar 

  11. Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  12. Camassola, M., & Dillon, A. J. P. (2007). Journal of Applied Microbiology, 103, 2196–2204.

    Article  CAS  Google Scholar 

  13. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Bioresource Technology, 99, 7623–7629.

    Article  CAS  Google Scholar 

  14. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  15. Wen, Z., Liao, W., & Chen, S. (2005). Bioresource Technology, 96, 491–499.

    Article  CAS  Google Scholar 

  16. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2008). Journal of Bioscience and Bioengineering, 106, 115–120.

    Article  CAS  Google Scholar 

  17. Jayus, McDougall, B. M., & Seviour, R. J. (2002). Enzyme and Microbial Technology, 31, 289–299.

    Article  CAS  Google Scholar 

  18. Kirk, P. M., Cannon, P. F., David, J. C., Stalpers, J. A. (2001) CABI Publishing: Wallingford. 655

  19. Domsch, K. H., Gams, W., & Anderson, T. H. (2007). European Journal of Soil Science, 59, 1007.

    Google Scholar 

  20. Araujo, M. L. G. C., Oliveira, R. P., Giordano, R. C., & Hokka, C. O. (1996). Chemical Engineering Science, 51, 2835–2840.

    Article  CAS  Google Scholar 

  21. Cabri, W. (2009). Catalysis Today, 140, 2–10.

    Article  CAS  Google Scholar 

  22. Weil, J., Miramonti, J., & Ladisch, M. R. (1995). Enzyme and Microbial Technology, 17, 88–90.

    Article  CAS  Google Scholar 

  23. Wicklow, D. T., Roth, S., Deyrup, S. T., & Gloer, J. B. (2005). Mycological Research, 109, 610–618.

    Article  CAS  Google Scholar 

  24. Sakiyama, C. C. H., Paula, E. M., Pereira, P. C., Borges, A. C., & Silva, D. O. (2001). Letters in Applied Microbiology, 33, 117–121.

    Article  CAS  Google Scholar 

  25. Torres, A. R., Araujo, W. L., Cursino, L., Hungria, M., Plotegher, F., Mostasso, F. L., et al. (2008). Journal of Microbiology, 46, 373–379.

    Article  CAS  Google Scholar 

  26. Garcia-Garrido, J. M., Tribak, M., Rejon-Palomares, A., Ocampo, J. A., & Garcia-Romera, I. (2000). Journal of Experimental Botany, 51, 1443–1448.

    Article  CAS  Google Scholar 

  27. Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Agricultural and Biological Chemistry, 51, 65–74.

    Article  CAS  Google Scholar 

  28. Ikeda, Y., Hayashi, H., Okuda, N., & Park, E. Y. (2007). Biotechnol Progr, 23, 333–338.

    Article  CAS  Google Scholar 

  29. Bischoff, K. M., Wicklow, D. T., Jordan, D. B., De Rezende, S. T., Liu, S., Hughes, S. R., et al. (2009). Current Microbiology, 58, 499–503.

    Article  CAS  Google Scholar 

  30. Dhingra, O. D., Sinclair, J. B. (1995) Basic plant pathology methods. 2nd edition, Boca Raton, CRC Press

  31. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  32. McIlvaine, T. (1921). The Journal of Biological Chemistry, 49, 183–186.

    CAS  Google Scholar 

  33. Lu, Y., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Appl Biochem Biotech—Part A Enzyme Engineering and Biotechnology., 98–100, 641–654.

    Article  Google Scholar 

  34. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  35. Feldman, K. A., Lovett, J. S., & Tsao, G. T. (1988). Enzyme and Microbial Technology, 10, 262–272.

    Article  CAS  Google Scholar 

  36. Ximenes, E. A., Felix, C. R., & Ulhoa, C. J. (1996). Current Microbiology, 32, 119–123.

    Article  CAS  Google Scholar 

  37. Choi, Y. W., Hodgkiss, I. J., & Hyde, K. D. (2005). J Agri Tech., 1, 55–66.

    Google Scholar 

  38. Hanif, A., Yasmeen, A., & Rajoka, M. I. (2004). Bioresource Technology, 94, 311–319.

    Article  CAS  Google Scholar 

  39. Sanchez, C. (2009). Biotechnology Advances, 27, 185–194.

    Article  CAS  Google Scholar 

  40. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  41. Romero, M. D., Aguado, J., González, L., & Ladero, M. (1999). Enzyme and Microbial Technology, 25, 244–250.

    Article  CAS  Google Scholar 

  42. Liming, X., & Xueliang, S. (2004). Bioresource Technology, 91, 259–262.

    Article  Google Scholar 

  43. Saha, B. C. (2004). Process Biochemistry, 39, 1871–1876.

    Article  CAS  Google Scholar 

  44. Thirumale, S., Swaroopa Rani, D., & Nand, K. (2001). Process Biochemistry, 37, 241–245.

    Article  CAS  Google Scholar 

  45. Pitson, S. M., Seviour, R. J., & McDougall, B. M. (1997). Enzyme and Microbial Technology, 21, 182–190.

    Article  CAS  Google Scholar 

  46. Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Industrial Crops and Products, 18, 37–45.

    Article  CAS  Google Scholar 

  47. Suto, M., Takebayashi, M., Saito, K., Tanaka, M., Yokota, A., & Tomita, F. (2002). Journal of Bioscience and Bioengineering, 93, 88–90.

    CAS  Google Scholar 

  48. Burke, R. M., & Cairney, J. W. G. (1997). The New Phytologist, 135, 345–352.

    Article  CAS  Google Scholar 

  49. Bakir, U., Yavascaoglu, S., Guvenc, F., & Ersayin, A. (2001). Enzyme and Microbial Technology, 29, 328–334.

    Article  CAS  Google Scholar 

  50. Szendefy, J., Szakacs, G., & Christopher, L. (2006). Enzyme and Microbial Technology, 39, 1354–1360.

    Article  CAS  Google Scholar 

  51. Jorgensen, H., & Olsson, L. (2006). Enzyme and Microbial Technology, 38, 381–390.

    Article  CAS  Google Scholar 

  52. Singh, S., Pillay, B., Dilsook, V., & Prior, B. A. (2000). Journal of Applied Microbiology, 88, 975–982.

    Article  CAS  Google Scholar 

  53. Le Clinche, F., Pinaga, F., Ramón, D., & Vallés, S. (1997). Journal of Agriculture and Food Chemistry, 45, 2379–2383.

    Article  Google Scholar 

  54. Saha, B. C., & Bothast, R. J. (1998). Applied and Environmental Microbiology, 64, 216–220.

    CAS  Google Scholar 

  55. de Rezende, S. T., Guimarães, V. M., de Rodrigues, M. C., & Felix, C. R. (2005). Brazilian Archives of Biology and Technology, 48, 195–202.

    Article  Google Scholar 

  56. Falkoski, D. L., Guimarães, V. M., Callegari, C. M., Reis, A. P., de Barros, E. G., & de Rezende, S. T. (2006). Journal of Agriculture and Food Chemistry, 54, 10184–10190.

    Article  CAS  Google Scholar 

  57. Fang, H. Y., Chang, S. M., Lan, C. H., & Fang, T. J. (2008). Process Biochemistry, 43, 49–55.

    Article  CAS  Google Scholar 

  58. Karboune, S., Geraert, P. A., & Kermasha, S. (2008). Journal of Agriculture and Food Chemistry, 56, 903–909.

    Article  CAS  Google Scholar 

  59. Karnchanatat, A., Petsom, A., Sangvanich, P., Piapukiew, J., Whalley, A. J. S., Reynolds, C. D., et al. (2008). Enzyme and Microbial Technology, 42, 404–413.

    Article  CAS  Google Scholar 

  60. Dutta, T., Sahoo, R., Sengupta, R., Ray, S. S., Bhattacharjee, A., & Ghosh, S. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 275–282.

    Article  CAS  Google Scholar 

  61. Han, Y., & Chen, H. (2008). Bioresource Technology, 99, 6081–6087.

    Article  CAS  Google Scholar 

  62. Elsas, J. D., Jansson, J. K., Trevors, J. T. (2007) Boca Raton, FL, CRC Press. 2nd edition, 649 p.

Download references

Acknowledgment

We thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for it financial support and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for providing scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião Tavares de Rezende.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Almeida, M.N., Guimarães, V.M., Bischoff, K.M. et al. Cellulases and Hemicellulases from Endophytic Acremonium Species and Its Application on Sugarcane Bagasse Hydrolysis. Appl Biochem Biotechnol 165, 594–610 (2011). https://doi.org/10.1007/s12010-011-9278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9278-z

Keywords

Navigation