Skip to main content

Plasma-Catalytic Removal of VOCs

  • Chapter
  • First Online:
Plasma Catalysis

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 106))

Abstract

Since the Kyoto protocol in 1997, there has been a growing public awareness and concern around environmental pollution. This has stimulated research groups around the world to further explore the possibilities of plasma catalysis as an eco-friendly technique for the abatement of dilute volatile organic compounds (VOCs) present in waste gas streams and indoor air. This chapter aims to review recent progress and challenges in the removal of VOCs using nonthermal plasma in combination with a catalyst. The influence of a range of critical process parameters on the performance of this hybrid process has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devins, J. C., & Burton, M. (1954). Formation of Hydrazine in electric discharge decomposition of Ammonia1, 2. Journal of the American Chemical Society, 76, 2618–2626.

    Article  Google Scholar 

  2. Gicquel, A., Cavadias, S., & Amouroux, J. (1986). Heterogeneous catalysis in low-pressure plasmas. Journal of Physics D: Applied Physics, 19, 2013–2029.

    Article  ADS  Google Scholar 

  3. Venugopalan, M., & Vepřek, S. (1983). Kinetics and catalysis in plasma chemistry. In Plasma chemistry IV (pp. 1–58). New York: Springer-Verlag.

    Google Scholar 

  4. Badyal, J. (1996). Catalysis and plasma chemistry at solid surfaces. Topics in Catalysis, 3, 255–264.

    Article  Google Scholar 

  5. Vandenbroucke, A. M., Morent, R., De Geyter, N., & Leys, C. (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30–54.

    Article  Google Scholar 

  6. Holzer, F., Roland, U., & Kopinke, F.-D. (2002). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume. Applied Catalysis B: Environmental, 38, 163–181.

    Article  Google Scholar 

  7. Kim, H. H. (2004). Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Processes and Polymers, 1, 91–110.

    Article  Google Scholar 

  8. Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43, 2216–2227.

    Article  ADS  Google Scholar 

  9. Yu, S. J., & Chang, M. B. (2001). Oxidative conversion of PFC via plasma processing with dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 21, 311–327.

    Article  Google Scholar 

  10. Chang, M. B., & Huang, C. P. (1999). Oxidative conversion of methane via plasma processing with dielectric barrier discharges. Journal of Advanced Oxidation Technologies, 4, 333–338.

    Google Scholar 

  11. Chang, M. B., & Lee, H. M. (2004). Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment. Catalysis Today, 89, 109–115.

    Article  Google Scholar 

  12. Chen, X., Rozak, J., Lin, J.-C., Suib, S. L., Hayashi, Y., & Matsumoto, H. (2001). Oxidative decomposition of chlorinated hydrocarbons by glow discharge in PACT (plasma and catalyst integrated technologies) reactors. Applied Catalysis A: General, 219, 25–31.

    Article  Google Scholar 

  13. Kim, H.-H., Ogata, A., & Futamura, S. (2008). Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Applied Catalysis B: Environmental, 79, 356–367.

    Article  Google Scholar 

  14. Neyts, E., & Bogaerts, A. (2014). Understanding plasma catalysis through modelling and simulation—A review. Journal of Physics D: Applied Physics, 47, 224010.

    Article  ADS  Google Scholar 

  15. Kim, H.-H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review. Catalysis Today, 256, Part 1, 13–22.

    Article  Google Scholar 

  16. Malik, M. A., Minamitani, Y., & Schoenbach, K. H. (2005). Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE Transactions on Plasma Science, 33, 50–56.

    Article  ADS  Google Scholar 

  17. Chen, H. L., Lee, H. M., Chen, S. H., & Chang, M. B. (2008). Review of packed-bed plasma reactor for ozone generation and air pollution control. Industrial & Engineering Chemistry Research, 47, 2122–2130.

    Article  Google Scholar 

  18. Holzer, F., Kopinke, F., & Roland, U. (2005). Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chemistry and Plasma Processing, 25, 595–611.

    Article  Google Scholar 

  19. Roland, U., Holzer, F., & Kopinke, F.-D. (2005). Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of γ-Al2O3. Applied Catalysis B: Environmental, 58, 217–226.

    Article  Google Scholar 

  20. Chae, J. O., Demidiouk, V., Yeulash, M., Choi, I. C., & Jung, T. G. (2004). Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE Transactions on Plasma Science, 32, 493–497.

    Article  ADS  Google Scholar 

  21. Zhu, Y.-R., Li, Z.-H., Zhou, Y.-H., Lv, J., & Wang, H.-T. (2005). Plasma treatment of Ni and Pt catalysts for partial oxidation of methane. Reaction Kinetics and Catalysis Letters, 87, 33–41.

    Article  Google Scholar 

  22. Liu, C.-J., Zou, J., Yu, K., Cheng, D., Han, Y., Zhan, J., Ratanatawanate, C., & Jang, B. W.-L. (2006). Plasma application for more environmentally friendly catalyst preparation. Pure and Applied Chemistry, 78, 1227–1238.

    Article  Google Scholar 

  23. Li, Z.-H., Tian, S.-X., Wang, H.-T., & Tian, H.-B. (2004). Plasma treatment of Ni catalyst via a corona discharge. Journal of Molecular Catalysis A: Chemical, 211, 149–153.

    Article  Google Scholar 

  24. Ratanatawanate, C., Macias, M., & Jang, B. W.-L. (2005). Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation. Industrial & Engineering Chemistry Research, 44, 9868–9874.

    Article  Google Scholar 

  25. Zhu, X., Huo, P.-P., Zhang, Y.-P., & Liu, C.-J. (2006). Characterization of argon glow discharge plasma reduced Pt/Al2O3 catalyst. Industrial & Engineering Chemistry Research, 45, 8604–8609.

    Article  Google Scholar 

  26. Wang, J.-G., Liu, C.-J., Zhang, Y.-P., Yu, K.-L., Zhu, X.-L., & He, F. (2004). Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst. Catalysis Today, 89, 183–191.

    Article  Google Scholar 

  27. Zhang, Y.-P., Ma, P.-S., Zhu, X., Liu, C.-J., & Shen, Y. (2004). A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane. Catalysis Communications, 5, 35–39.

    Article  Google Scholar 

  28. Guo, Y.-F., Ye, D.-Q., Chen, K.-F., He, J.-C., & Chen, W.-L. (2006). Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. Journal of Molecular Catalysis A: Chemical, 245, 93–100.

    Article  Google Scholar 

  29. Guo, Y.-F., Ye, D.-Q., Chen, K.-F., & He, J.-C. (2007). Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. Catalysis Today, 126, 328–337.

    Article  Google Scholar 

  30. Pribytkov, A., Baeva, G., Telegina, N., Tarasov, A., Stakheev, A. Y., Tel’nov, A., & Golubeva, V. (2006). Effect of electron irradiation on the catalytic properties of supported Pd catalysts. Kinetics and Catalysis, 47, 765–769.

    Article  Google Scholar 

  31. Wallis, A. E., Whitehead, J. C., & Zhang, K. (2007). The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis. Applied Catalysis B: Environmental, 74, 111–116.

    Article  Google Scholar 

  32. Lu, B., Zhang, X., Yu, X., Feng, T., & Yao, S. (2006). Catalytic oxidation of benzene using DBD corona discharges. Journal of Hazardous Materials, 137, 633–637.

    Article  Google Scholar 

  33. Kim, H.-H., Ogata, A., & Futamura, S. (2006). Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis. IEEE Transactions on Plasma Science, 34, 984–995.

    Article  ADS  Google Scholar 

  34. Rousseau, A., Guaitella, O., Röpcke, J., Gatilova, L., & Tolmachev, Y. (2004). Combination of a pulsed microwave plasma with a catalyst for acetylene oxidation. Applied Physics Letters, 85, 2199–2201.

    Article  ADS  Google Scholar 

  35. Guo, Y. F., Ye, D. Q., Tian, Y. F., & Chen, K. F. (2006). Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 26, 237–249.

    Google Scholar 

  36. Van Durme, J., Dewulf, J., Demeestere, K., Leys, C., & Van Langenhove, H. (2009). Post-plasma catalytic technology for the removal of toluene from indoor air: Effect of humidity. Applied Catalysis B: Environmental, 87, 78–83.

    Article  Google Scholar 

  37. Ogata, A., Yamanouchi, K., Mizuno, K., Kushiyama, S., & Yamamoto, T. (1999). Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chemistry and Plasma Processing, 19, 383–394.

    Article  Google Scholar 

  38. Ogata, A., Ito, D., Mizuno, K., Kushiyama, S., & Yamamoto, T. (2001). Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE Transactions on Industry Applications, 37, 959–964.

    Article  Google Scholar 

  39. Sultana, S., Vandenbroucke, A. M., Leys, C., De Geyter, N., & Morent, R. (2015). Abatement of VOCs with alternate adsorption and plasma-assisted regeneration: A review. Catalysts, 5, 718–746.

    Article  Google Scholar 

  40. Dang, X. Q., Qin, C. H., Huang, J. Y., Teng, J. J., & Huang, X. M. (2016). Adsorbed benzene/toluene oxidation using plasma driven catalysis with gas circulation: Elimination of the byproducts. Journal of Industrial and Engineering Chemistry, 37, 366–371.

    Article  Google Scholar 

  41. Huang, J. Y., Dang, X. Q., Qin, C. H., Shu, Y., Wang, H. C., & Zhang, F. (2016). Toluene decomposition using adsorption combined with plasma-driven catalysis with gas circulation. Environmental Progress & Sustainable Energy, 35, 386–394.

    Article  Google Scholar 

  42. Qin, C. H., Dang, X. Q., Huang, J. Y., Teng, J. J., & Huang, X. M. (2016). Plasma-catalytic oxidation of adsorbed toluene on Ag-Mn/gamma-Al2O3: Comparison of gas flow-through and gas circulation treatment. Chemical Engineering Journal, 299, 85–92.

    Article  Google Scholar 

  43. Kuroki, T., Hirai, K., Kawabata, R., Okubo, M., & Yamamoto, T. (2010). Decomposition of adsorbed xylene on adsorbents using nonthermal plasma with gas circulation. IEEE Transactions on Industry Applications, 46, 672–679.

    Article  Google Scholar 

  44. Zhao, D.-Z., Li, X.-S., Shi, C., Fan, H.-Y., & Zhu, A.-M. (2011). Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process. Chemical Engineering Science, 66, 3922–3929.

    Article  Google Scholar 

  45. Sano, T., Negishi, N., Sakai, E., & Matsuzawa, S. (2006). Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. Journal of Molecular Catalysis A: Chemical, 245, 235–241.

    Article  Google Scholar 

  46. Kang, M., Ko, Y.-R., Jeon, M.-K., Lee, S.-C., Choung, S.-J., Park, J.-Y., Kim, S., & Choi, S.-H. (2005). Characterization of Bi/TiO2 nanometer sized particle synthesized by solvothermal method and CH3CHO decomposition in a plasma-photocatalytic system. Journal of Photochemistry and Photobiology A: Chemistry, 173, 128–136.

    Article  Google Scholar 

  47. Kang, M., Kim, B.-J., Cho, S. M., Chung, C.-H., Kim, B.-W., Han, G. Y., & Yoon, K. J. (2002). Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system. Journal of Molecular Catalysis A: Chemical, 180, 125–132.

    Article  Google Scholar 

  48. Lee, B.-Y., Park, S.-H., Lee, S.-C., Kang, M., & Choung, S.-J. (2004). Decomposition of benzene by using a discharge plasma–photocatalyst hybrid system. Catalysis Today, 93, 769–776.

    Article  Google Scholar 

  49. Kim, H.-H., Oh, S.-M., Ogata, A., & Futamura, S. (2005). Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 56, 213–220.

    Article  Google Scholar 

  50. Chavadej, S., Saktrakool, K., Rangsunvigit, P., Lobban, L. L., & Sreethawong, T. (2007). Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2. Chemical Engineering Journal, 132, 345–353.

    Article  Google Scholar 

  51. Subrahmanyam, C., Magureanu, M., Laub, D., Renken, A., & Kiwi-Minsker, L. (2007). Nonthermal plasma abatement of trichloroethylene enhanced by photocatalysis. The Journal of Physical Chemistry C, 111, 4315–4318.

    Google Scholar 

  52. Morent, R., Dewulf, J., Steenhaut, N., Leys, C., & Van Langenhove, H. (2006). Hybrid plasma-catalyst system for the removal of trichloroethylene in air. Journal of Advanced Oxidation Technologies, 9, 53–58.

    Article  Google Scholar 

  53. Leys, C., Neirynck, D., Morent, R., & Temmerman, E. (2006). DC-excited cold atmospheric pressure plasmas. Czechoslovak Journal of Physics, 56, B896–B902.

    Article  Google Scholar 

  54. Urashima, K., Kostov, K. G., Chang, J.-S., Okayasa, Y., Iwaizumi, T., Yoshimura, K., & Kato, T. (2001). Removal of C2F6 from a semiconductor process flue gas by a ferroelectric packed-bed barrier discharge reactor with an adsorber. IEEE Transactions on Industry Applications, 37, 1456–1463.

    Article  Google Scholar 

  55. Takaki, K., Urashima, K., & Chang, J.-S. (2004). Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type nonthermal plasma reactor. IEEE Transactions on Plasma Science, 32, 2175–2183.

    Article  ADS  Google Scholar 

  56. Huang, H., Ye, D., & Guan, X. (2008). The simultaneous catalytic removal of VOCs and O3 in a post-plasma. Catalysis Today, 139, 43–48.

    Article  Google Scholar 

  57. Huang, H., & Ye, D. (2009). Combination of photocatalysis downstream the non-thermal plasma reactor for oxidation of gas-phase toluene. Journal of Hazardous Materials, 171, 535–541.

    Article  Google Scholar 

  58. Hayashi, K., Yasui, H., Tanaka, M., Futamura, S., Kurita, S., & Aoyagi, K. (2009). Temperature dependence of toluene decomposition behavior in the discharge–catalyst hybrid reactor. IEEE Transactions on Industry Applications, 45, 1553–1558.

    Article  Google Scholar 

  59. Krawczyk, K., Ulejczyk, B., Song, H., Lamenta, A., Paluch, B., & Schmidt-Szałowski, K. (2009). Plasma-catalytic reactor for decomposition of chlorinated hydrocarbons. Plasma Chemistry and Plasma Processing, 29, 27–41.

    Article  Google Scholar 

  60. Demidiouk, V., & Chae, J. O. (2005). Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Transactions on Plasma Science, 33, 157–161.

    Article  ADS  Google Scholar 

  61. Blin-Simiand, N., Tardiveau, P., Risacher, A., Jorand, F., & Pasquiers, S. (2005). Removal of 2-Heptanone by dielectric barrier discharges–the effect of a catalyst support. Plasma Processes and Polymers, 2, 256–262.

    Article  Google Scholar 

  62. Hensel, K., Katsura, S., & Mizuno, A. (2005). DC microdischarges inside porous ceramics. IEEE Transactions on Plasma Science, 33, 574–575.

    Article  ADS  Google Scholar 

  63. Futamura, S., Einaga, H., Kabashima, H., & Hwan, L. Y. (2004). Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catalysis Today, 89, 89–95.

    Article  Google Scholar 

  64. Magureanu, M., Mandache, N., Parvulescu, V., Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 74, 270–277.

    Article  Google Scholar 

  65. Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Novel catalytic dielectric barrier discharge reactor for gas-phase abatement of isopropanol. Plasma Chemistry and Plasma Processing, 27, 13–22.

    Article  Google Scholar 

  66. Kirkpatrick, M. J., Finney, W. C., & Locke, B. R. (2004). Plasma–catalyst interactions in the treatment of volatile organic compounds and NOx with pulsed corona discharge and reticulated vitreous carbon Pt/Rh-coated electrodes. Catalysis Today, 89, 117–126.

    Article  Google Scholar 

  67. Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2010). Catalytic non-thermal plasma reactor for abatement of toluene. Chemical Engineering Journal, 160, 677–682.

    Article  Google Scholar 

  68. Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chemical Engineering Journal, 134, 78–83.

    Article  Google Scholar 

  69. Roland, U., Holzer, F., & Kopinke, F.-D. (2002). Improved oxidation of air pollutants in a non-thermal plasma. Catalysis Today, 73, 315–323.

    Article  Google Scholar 

  70. Song, Y.-H., Kim, S.-J., Choi, K.-I., & Yamamoto, T. (2002). Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. Journal of Electrostatics, 55, 189–201.

    Article  Google Scholar 

  71. Ogata, A., Yamanouchi, K., Mizuno, K., Kushiyama, S., & Yamamoto, T. (1999). Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors. IEEE Transactions on Industry Applications, 35, 1289–1295.

    Article  Google Scholar 

  72. Magureanu, M., Mandache, N. B., Eloy, P., Gaigneaux, E. M., & Parvulescu, V. I. (2005). Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental, 61, 12–20.

    Article  Google Scholar 

  73. Oda, T., & Yamaji, K. (2003). Dilute trichloroethylene decomposition in air by using non-thermal plasma-catalyst effect. Journal of Advanced Oxidation Technologies, 6, 93–99.

    Article  Google Scholar 

  74. Oh, S.-M., Kim, H.-H., Einaga, H., Ogata, A., Futamura, S., & Park, D.-W. (2006). Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films, 506, 418–422.

    Article  ADS  Google Scholar 

  75. Oh, S.-M., Kim, H.-H., Ogata, A., Einaga, H., Futamura, S., & Park, D.-W. (2005). Effect of zeolite in surface discharge plasma on the decomposition of toluene. Catalysis Letters, 99, 101–104.

    Article  Google Scholar 

  76. Oda, T., Takahashi, T., & Kohzuma, S. (1998). Decomposition of dilute trichloroethylene by using non-thermal plasma processing-frequency and catalyst effect. In Industry applications conference, 1998. Thirty-Third IAS annual meeting. The 1998 IEEE. IEEE.

    Google Scholar 

  77. Wallis, A. E., Whitehead, J. C., & Zhang, K. (2007). The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis. Applied Catalysis B: Environmental, 72, 282–288.

    Article  Google Scholar 

  78. Grossmannova, H., Neirynck, D., & Leys, C. (2006). Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. Czechoslovak Journal of Physics, 56, B1156–B1161.

    Article  Google Scholar 

  79. Da Costa, P., Marques, R., & Da Costa, S. (2008). Plasma catalytic oxidation of methane on alumina-supported noble metal catalysts. Applied Catalysis B: Environmental, 84, 214–222.

    Article  Google Scholar 

  80. Yamamoto, T., Mizuno, K., Tamori, I., Ogata, A., Nifuku, M., Michalska, M., & Prieto, G. (1996). Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE Transactions on Industry Applications, 32, 100–105.

    Article  Google Scholar 

  81. Ogata, A., Einaga, H., Kabashima, H., Futamura, S., Kushiyama, S., & Kim, H.-H. (2003). Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air. Applied Catalysis B: Environmental, 46, 87–95.

    Article  Google Scholar 

  82. Vandenbroucke, A., Morent, R., De Geyter, N., Nguyen Dinh, M., Giraudon, J., Lamonier, J., & Leys, C. (2010). Plasma-catalytic decomposition of TCE. International Journal of Plasma Environmental Science and Technology, 4, 135–138.

    Google Scholar 

  83. Blackbeard, T., Demidyuk, V., Hill, S. L., & Whitehead, J. C. (2009). The effect of temperature on the plasma-catalytic destruction of propane and propene: A comparison with thermal catalysis. Plasma Chemistry and Plasma Processing, 29, 411–419.

    Article  Google Scholar 

  84. Chang, C.-L., Bai, H., & Lu, S.-J. (2005). Destruction of styrene in an air stream by packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 25, 641–657.

    Article  Google Scholar 

  85. Demidyuk, V., & Whitehead, J. C. (2007). Influence of temperature on gas-phase toluene decomposition in plasma-catalytic system. Plasma Chemistry and Plasma Processing, 27, 85–94.

    Article  Google Scholar 

  86. Chang, C.-L., & Lin, T.-S. (2005). Elimination of carbon monoxide in the gas streams by dielectric barrier discharge systems with Mn catalyst. Plasma Chemistry and Plasma Processing, 25, 387–401.

    Article  Google Scholar 

  87. Jarrige, J., & Vervisch, P. (2009). Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst. Applied Catalysis B: Environmental, 90, 74–82.

    Article  Google Scholar 

  88. Zhu, T., Li, J., Liang, W., & Jin, Y. (2009). Synergistic effect of catalyst for oxidation removal of toluene. Journal of Hazardous Materials, 165, 1258–1260.

    Article  Google Scholar 

  89. Demidiouk, V., Moon, S.-I., Chae, J.-O., & Lee, D.-Y. (2003). Application of a plasma-catalytic system for decomposition of volatile organic compounds. Journal of the Korean Physical Society, 42, S966–S970.

    Google Scholar 

  90. Chen, H. L., Lee, H.-M., Cheng, L. C., Chang, M. B., Yu, S. J., & Li, S.-N. (2008). Influence of nonthermal plasma reactor type on and abatements. IEEE Transactions on Plasma Science, 36, 509–515.

    Article  ADS  Google Scholar 

  91. Fan, X., Zhu, T., Wang, M., & Li, X. (2009). Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere, 75, 1301–1306.

    Article  ADS  Google Scholar 

  92. Oda, T., Yamaji, K., & Takahashi, T. (2004). Decomposition of dilute trichloroethylene by nonthermal plasma processing-gas flow rate, catalyst, and ozone effect. IEEE Transactions on Industry Applications, 40, 430–436.

    Article  Google Scholar 

  93. Kim, H.-H., Kobara, H., Ogata, A., & Futamura, S. (2005). Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene. IEEE Transactions on Industry Applications, 41, 206–214.

    Article  Google Scholar 

  94. Besov, A. S., & Vorontsov, A. V. (2007). Acceleration of acetone destruction process under synergistic action of photocatalytic oxidation and barrier discharge. Plasma Chemistry and Plasma Processing, 27, 624–634.

    Article  Google Scholar 

  95. Hakoda, T., Matsumoto, K., Mizuno, A., & Hirota, K. (2009). Role of metals loaded on a TiO2 surface in the oxidation of xylene in air using an electron beam irradiation/catalytic process. Applied Catalysis A: General, 357, 244–249.

    Article  Google Scholar 

  96. Oda, T., Takahahshi, T., & Yamaji, K. (2002). Nonthermal plasma processing for dilute VOCs decomposition. IEEE Transactions on Industry Applications, 38, 873–878.

    Article  Google Scholar 

  97. Chang, C.-L., & Lin, T.-S. (2005). Decomposition of toluene and acetone in packed dielectric barrier discharge reactors. Plasma Chemistry and Plasma Processing, 25, 227–243.

    Article  Google Scholar 

  98. Sun, R.-B., Xi, Z.-G., Chao, F.-H., Zhang, W., Zhang, H.-S., & Yang, D.-F. (2007). Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor. Atmospheric Environment, 41, 6853–6859.

    Article  ADS  Google Scholar 

  99. Thevenet, F., Guaitella, O., Puzenat, E., Guillard, C., & Rousseau, A. (2008). Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene. Applied Catalysis B: Environmental, 84, 813–820.

    Article  Google Scholar 

  100. Kogoma, M., Miki, Y., Tanaka, K., & Takahashi, K. (2006). Highly efficient VOC decomposition using a complex system (OH radical, ozone-UV, and TiO2). Plasma Processes and Polymers, 3, 727–733.

    Article  Google Scholar 

  101. Guaitella, O., Thevenet, F., Puzenat, E., Guillard, C., & Rousseau, A. (2008). C2H2 oxidation by plasma/TiO2 combination: Influence of the porosity, and photocatalytic mechanisms under plasma exposure. Applied Catalysis B: Environmental, 80, 296–305.

    Article  Google Scholar 

  102. Huang, H., Ye, D., & Leung, D. Y. (2010). Removal of toluene using UV-irradiated and nonthermal plasma–driven photocatalyst system. Journal of Environmental Engineering, 136, 1231–1236.

    Article  Google Scholar 

  103. Falkenstein, Z., & Coogan, J. J. (1997). Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. Journal of Physics D: Applied Physics, 30, 817–825.

    Article  ADS  Google Scholar 

  104. Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere, 68, 1821–1829.

    Article  ADS  Google Scholar 

  105. Ge, H., Zhang, L., Yan, L., Mi, D., & Zhu, Y. (2011). Parameter optimization of excited OH radical in multi-needle to plate negative DC corona discharge. Journal of Electrostatics, 69, 529–532.

    Article  Google Scholar 

  106. Sugasawa, M., Terasawa, T., & Futamura, S. (2010). Additive effect of water on the decomposition of VOCs in nonthermal plasma. IEEE Transactions on Industry Applications, 46, 1692–1698.

    Article  Google Scholar 

  107. Ogata, A., Shintani, N., Yamanouchi, K., Mizuno, K., Kushiyama, S., & Yamamoto, T. (2000). Effect of water vapor on benzene decomposition using a nonthermal-discharge plasma reactor. Plasma Chemistry and Plasma Processing, 20, 453–467.

    Article  Google Scholar 

  108. Cal, M. P., & Schluep, M. (2001). Destruction of benzene with non-thermal plasma in dielectric barrier discharge reactors. Environmental Progress, 20, 151–156.

    Article  Google Scholar 

  109. Futamura, S., Zhang, A., Einaga, H., & Kabashima, H. (2002). Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 72, 259–265.

    Article  Google Scholar 

  110. Xu, N., Fu, W., He, C., Cao, L., Liu, X., Zhao, J., & Pan, H. (2014). Benzene removal using non-thermal plasma with CuO/AC catalyst: Reaction condition optimization and decomposition mechanism. Plasma Chemistry and Plasma Processing, 34, 1387–1402.

    Article  Google Scholar 

  111. Fan, X., Zhu, T., Wan, Y., & Yan, X. (2010). Effects of humidity on the plasma-catalytic removal of low-concentration BTX in air. Journal of Hazardous Materials, 180, 616–621.

    Article  Google Scholar 

  112. Futamura, S., Zhang, A., & Yamamoto, T. (1997). The dependence of nonthermal plasma behavior of VOCs on their chemical structures. Journal of Electrostatics, 42, 51–62.

    Article  Google Scholar 

  113. Krawczyk, K., & Ulejczyk, B. (2004). Influence of water vapor on CCl4 and CHCl3 conversion in gliding discharge. Plasma Chemistry and Plasma Processing, 24, 155–167.

    Article  Google Scholar 

  114. Futamura, S., & Sugasawa, M. (2008). Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma. IEEE Transactions on Industry Applications, 44, 40–45.

    Article  Google Scholar 

  115. Abdelaziz, A. A., Seto, T., Abdel-Salam, M., & Otani, Y. (2013). Influence of nitrogen excited species on the destruction of naphthalene in nitrogen and air using surface dielectric barrier discharge. Journal of Hazardous Materials, 246, 26–33.

    Article  Google Scholar 

  116. Zhang, X., Zhu, J., Li, X., Liu, Z., Ren, X., & Yan, K. (2011). Characteristics of styrene removal with an AC/DC streamer corona plasma system. IEEE Transactions on Plasma Science, 39, 1482–1488.

    Article  ADS  Google Scholar 

  117. Zhang, X., Feng, W., Yu, Z., Li, S., Zhu, J., & Yan, K. (2013). Comparison of styrene removal in air by positive and negative DC corona discharges. International journal of Environmental Science and Technology, 10, 1377–1382.

    Article  Google Scholar 

  118. Futamura, S., Einaga, H., & Zhang, A. (2001). Comparison of reactor performance in the nonthermal plasma chemical processing of hazardous air pollutants. IEEE Transactions on Industry Applications, 37, 978–985.

    Article  Google Scholar 

  119. Tonkyn, R., Barlow, S., & Orlando, T. (1996). Destruction of carbon tetrachloride in a dielectric barrier/packed-bed corona reactor. Journal of Applied Physics, 80, 4877–4886.

    Article  ADS  Google Scholar 

  120. Korzekwa, R., Grothaus, M., Hutcherson, R., Roush, R., & Brown, R. (1998). Destruction of hazardous air pollutants using a fast rise time pulsed corona reactor. Review of Scientific Instruments, 69, 1886–1892.

    Article  ADS  Google Scholar 

  121. Agnihotri, S., Cal, M. P., & Prien, J. (2004). Destruction of 1, 1, 1-trichloroethane using dielectric barrier discharge nonthermal plasma. Journal of Environmental Engineering, 130, 349–355.

    Article  Google Scholar 

  122. Karuppiah, J., Reddy, E. L., Reddy, P. M., Ramaraju, B., Karvembu, R., & Subrahmanyam, C. (2012). Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor. Journal of Hazardous Materials, 237–238, 283–289.

    Article  Google Scholar 

  123. Wan, Y., Fan, X., & Zhu, T. (2011). Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chemical Engineering Journal, 171, 314–319.

    Article  Google Scholar 

  124. Mfopara, A., Kirkpatrick, M. J., & Odic, E. (2009). Dilute methane treatment by atmospheric pressure dielectric barrier discharge: Effects of water vapor. Plasma Chemistry and Plasma Processing, 29, 91–102.

    Article  Google Scholar 

  125. Baylet, A., Marécot, P., Duprez, D., Jeandel, X., Lombaert, K., & Tatibouët, J. (2012). Synergetic effect of plasma/catalysis hybrid system for CH4 removal. Applied Catalysis B: Environmental, 113, 31–36.

    Article  Google Scholar 

  126. Karuppiah, J., Karvembu, R., & Subrahmanyam, C. (2012). The catalytic effect of MnOx and CoOx on the decomposition of nitrobenzene in a non-thermal plasma reactor. Chemical Engineering Journal, 180, 39–45.

    Article  Google Scholar 

  127. Dinh, M. N., Giraudon, J.-M., Lamonier, J.-F., Vandenbroucke, A., De Geyter, N., Leys, C., & Morent, R. (2014). Plasma-catalysis of low TCE concentration in air using LaMnO3+δ as catalyst. Applied Catalysis B: Environmental, 147, 904–911.

    Article  Google Scholar 

  128. Lu, S. Y., Sun, X. M., Li, X. D., Yan, J. H., & Du, C. M. (2012). Decomposition of toluene in a rotating glidarc discharge reactor. IEEE Transactions on Plasma Science, 40, 2151–2156.

    Article  ADS  Google Scholar 

  129. Trushkin, A., Grushin, M., Kochetov, I., Trushkin, N., & Akishev, Y. S. (2013). Decomposition of toluene in a steady-state atmospheric-pressure glow discharge. Plasma Physics Reports, 39, 167–182.

    Article  ADS  Google Scholar 

  130. Lee, H. M., & Chang, M. B. (2003). Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 23, 541–558.

    Article  Google Scholar 

  131. Zhu, Y.-P., Liu, Y.-L., Renb, T.-Z., & Yuan, Z.-Y. (2014). Plasma-catalytic removal of a low concentration of acetone in humid conditions. RSC Advances, 4, 37796–37805.

    Article  Google Scholar 

  132. Kuroki, T., Oishi, T., Yamamoto, T., & Okubo, M. (2013). Bromomethane decomposition using a pulsed dielectric barrier discharge. IEEE Transactions on Industry Applications, 49, 293–297.

    Article  Google Scholar 

  133. Assadi, A. A., Bouzaza, A., Vallet, C., & Wolbert, D. (2014). Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination–synergetic effect and byproducts identification. Chemical Engineering Journal, 254, 124–132.

    Article  Google Scholar 

  134. Aubry, O., & Cormier, J.-M. (2009). Improvement of the diluted propane efficiency treatment using a non-thermal plasma. Plasma Chemistry and Plasma Processing, 29, 13–25.

    Article  Google Scholar 

  135. Yamashita, R., Takahashi, T., & Oda, T. (1996). Humidify effect on non-thermal plasma processing for VOCs decomposition. In Industry applications conference, 1996. Thirty-First IAS annual meeting, IAS’96., conference record of the 1996 IEEE. IEEE.

    Google Scholar 

  136. Du, C. M., Yan, J. H., & Cheron, B. (2007). Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Science and Technology, 16, 791–797.

    Article  ADS  Google Scholar 

  137. Wang, J. T., Cao, X., Zhang, R. X., Gong, T., Hou, H. Q., Chen, S. P., & Zhang, R. N. (2016). Effect of water vapor on toluene removal in catalysis-DBD plasma reactors. Plasma Science and Technology, 18, 370–375.

    Article  ADS  Google Scholar 

  138. Nakagawa, Y., Fujisawa, H., Ono, R., & Oda, T. (2010). Dilute trichloroethylene decomposition by using high pressure non-thermal plasma: humidity effects. In Industry Applications Society Annual Meeting (IAS), 2010 IEEE. IEEE.

    Google Scholar 

  139. Zhu, T., Li, J., Jin, Y.-q., Liang, Y., & Ma, G. (2008). Decomposition of benzene by non-thermal plasma processing: Photocatalyst and ozone effect. International Journal of Environmental Science & Technology, 5, 375–384.

    Article  Google Scholar 

  140. Ogata, A., Ito, D., Mizuno, K., Kushiyama, S., Gal, A., & Yamamoto, T. (2002). Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Applied Catalysis A: General, 236, 9–15.

    Article  Google Scholar 

  141. Einaga, H., Ibusuki, T., & Futamura, S. (2001). Performance evaluation of a hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE Transactions on Industry Applications, 37, 1476–1482.

    Article  Google Scholar 

  142. Byeon, J. H., Park, J. H., Jo, Y. S., Yoon, K. Y., & Hwang, J. (2010). Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. Journal of Hazardous Materials, 175, 417–422.

    Article  Google Scholar 

  143. Delagrange, S., Pinard, L., & Tatibouet, J.-M. (2006). Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis B: Environmental, 68, 92–98.

    Article  Google Scholar 

  144. Blin-Simiand, N., Jorand, F., Magne, L., Pasquiers, S., Postel, C., & Vacher, J.-R. (2008). Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge. Plasma Chemistry and Plasma Processing, 28, 429–466.

    Article  Google Scholar 

  145. Chiper, A. S., Blin-Simiand, N., Heninger, M., Mestdagh, H., Boissel, P., Jorand, F., Lemaire, J., Leprovost, J., Pasquiers, S., & Popa, G. (2009). Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures. The Journal of Physical Chemistry A, 114, 397–407.

    Article  ADS  Google Scholar 

  146. Rosocha, L. A., & Korzekwa, R. A. (1999). Advanced oxidation and reduction processes in the gas phase using non-thermal plasmas. Journal of Advanced Oxidation Technologies, 4, 247–264.

    Google Scholar 

  147. Vertriest, R., Morent, R., Dewulf, J., Leys, C., & Van Langenhove, H. (2003). Multi-pin-to-plate atmospheric glow discharge for the removal of volatile organic compounds in waste air. Plasma Sources Science and Technology, 12, 412–416.

    Article  ADS  Google Scholar 

  148. Oh, J. H., Mok, Y. S., Lee, S. B., & Chang, M. S. (2009). Destruction of HCFC-22 and distribution of byproducts in a nonthermal plasma reactor packed with dielectric pellets. Journal of the Korean Physical Society, 54, 1539–1546.

    Article  ADS  Google Scholar 

  149. Gandhi, M. S., & Mok, Y. (2012). Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor. Journal of Environmental Sciences, 24, 1234–1239.

    Article  Google Scholar 

  150. Mok, Y., Demidyuk, V., & Whitehead, J. (2008). Decomposition of hydrofluorocarbons in a dielectric-packed plasma reactor. The Journal of Physical Chemistry A, 112, 6586–6591.

    Article  ADS  Google Scholar 

  151. Kang, H.-C. (2002). Decomposition of chlorofluorocarbon by non-thermal plasma. Journal of Industrial and Engineering Chemistry, 8, 488–492.

    Google Scholar 

  152. Futamura, S., & Yamamoto, T. (1997). Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene. IEEE Transactions on Industry Applications, 33, 447–453.

    Article  Google Scholar 

  153. Vandenbroucke, A., Aerts, R., Van Gaens, W., De Geyter, N., Leys, C., Morent, R., & Bogaerts, A. (2015). Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge. Plasma Chemistry and Plasma Processing, 35, 217–230.

    Article  Google Scholar 

  154. Hsiao, M., Merritt, B., Penetrante, B., Vogtlin, G., & Wallman, P. (1995). Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. Journal of Applied Physics, 78, 3451–3456.

    Article  ADS  Google Scholar 

  155. Blin-Simiand, N., Pasquiers, S., Jorand, F., Postel, C., & Vacher, J. R. (2009). Removal of formaldehyde in nitrogen and in dry air by a DBD: Importance of temperature and role of nitrogen metastable states. Journal of Physics D: Applied Physics, 42 122003.

    Article  ADS  Google Scholar 

  156. Storch, D. G., & Kushner, M. J. (1993). Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas. Journal of Applied Physics, 73, 51–55.

    Article  ADS  Google Scholar 

  157. Hill, S. L., Kim, H.-H., Futamura, S., & Whitehead, J. C. (2008). The destruction of atmospheric pressure propane and propene using a surface discharge plasma reactor. The Journal of Physical Chemistry A, 112, 3953–3958.

    Article  ADS  Google Scholar 

  158. Demidyuk, V., Hill, S. L., & Whitehead, J. C. (2008). Enhancement of the destruction of propane in a low-temperature plasma by the addition of unsaturated hydrocarbons: Experiment and modeling. The Journal of Physical Chemistry A, 112, 7862–7867.

    Article  ADS  Google Scholar 

  159. Li, J., Bai, S.-P., Shi, X.-C., Han, S.-L., Zhu, X.-M., Chen, W.-C., & Pu, Y.-K. (2008). Effects of temperature on benzene oxidation in dielectric barrier discharges. Plasma Chemistry and Plasma Processing, 28, 39–48.

    Article  Google Scholar 

  160. Penetrante, B., Hsiao, M., Bardsley, J., Merritt, B., Vogtlin, G., Kuthi, A., Burkhart, C., & Bayless, J. (1997). Decomposition of methylene chloride by electron beam and pulsed corona processing. Physics Letters A, 235, 76–82.

    Article  ADS  Google Scholar 

  161. Kim, D.-H., Mok, Y., & Lee, S. (2011). Effect of temperature on the decomposition of trifluoromethane in a dielectric barrier discharge reactor. Thin Solid Films, 519, 6960–6963.

    Article  ADS  Google Scholar 

  162. Harling, A. M., Kim, H.-H., Futamura, S., & Whitehead, J. C. (2007). Temperature dependence of plasma catalysis using a nonthermal, atmospheric pressure packed bed; the destruction of benzene and toluene. The Journal of Physical Chemistry C, 111, 5090–5095.

    Article  Google Scholar 

  163. Penetrante, B., Hsiao, M., Bardsley, J., Merritt, B., Vogtlin, G., Wallman, P., Kuthi, A., Bukhart, C., & Bayless, J. (1996). Electron beam and pulsed corona processing of volatile organic compounds in gas streams. Pure and Applied Chemistry, 68, 1083–1087.

    Article  Google Scholar 

  164. Huang, L., Nakajyo, K., Hari, T., Ozawa, S., & Matsuda, H. (2001). Decomposition of carbon tetrachloride by a pulsed corona reactor incorporated with in situ absorption. Industrial & Engineering Chemistry Research, 40, 5481–5486.

    Article  Google Scholar 

  165. Harling, A. M., Demidyuk, V., Fischer, S. J., & Whitehead, J. C. (2008). Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration. Applied Catalysis B: Environmental, 82, 180–189.

    Article  Google Scholar 

  166. Lee, H. M., & Chang, M. B. (2001). Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 21, 329–343.

    Article  Google Scholar 

  167. Ogata, A., Mizuno, K., Kushiyama, S., & Yamamoto, T. (1998). Methane decomposition in a barium titanate packed-bed nonthermal plasma reactor. Plasma Chemistry and Plasma Processing, 18, 363–373.

    Article  Google Scholar 

  168. Mok, Y. S., Lee, S. B., Oh, J. H., Ra, K. S., & Sung, B. H. (2008). Abatement of Trichloromethane by using nonthermal plasma reactors. Plasma Chemistry and Plasma Processing, 28, 663–676.

    Article  Google Scholar 

  169. Pringle, K. J., Whitehead, J. C., Wilman, J. J., & Wu, J. (2004). The chemistry of methane remediation by a non-thermal atmospheric pressure plasma. Plasma Chemistry and Plasma Processing, 24, 421–434.

    Article  Google Scholar 

  170. Zhang, H., Li, K., Sun, T., Jia, J., Lou, Z., & Feng, L. (2014). Removal of styrene using dielectric barrier discharge plasmas combined with sol–gel prepared TiO2 coated γ-Al2O3. Chemical Engineering Journal, 241, 92–102.

    Article  Google Scholar 

  171. Ding, H. X., Zhu, A. M., Lu, F. G., Xu, Y., Zhang, J., & Yang, X. F. (2006). Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. Journal of Physics D: Applied Physics, 39, 3603–3608.

    Article  ADS  Google Scholar 

  172. Chavadej, S., Kiatubolpaiboon, W., Rangsunvigit, P., & Sreethawong, T. (2007). A combined multistage corona discharge and catalytic system for gaseous benzene removal. Journal of Molecular Catalysis A: Chemical, 263, 128–136.

    Article  Google Scholar 

  173. Shi, Y., Wang, X., Li, W., Tan, T.-e., & Ruan, J.-j. (2006). Evaluation of multiple corona reactor modes and the application in odor removal. Plasma Chemistry and Plasma Processing, 26, 187–196.

    Article  Google Scholar 

  174. Harling, A. M., Glover, D. J., Whitehead, J. C., & Zhang, K. (2008). Industrial scale destruction of environmental pollutants using a novel plasma reactor. Industrial & Engineering Chemistry Research, 47, 5856–5860.

    Article  Google Scholar 

  175. Hubner, M., Guaitella, O., Rousseau, A., & Ropcke, J. (2013). A spectroscopic study of ethylene destruction and by-product generation using a three-stage atmospheric packed-bed plasma reactor. Journal of Applied Physics, 114, 033301.

    Article  ADS  Google Scholar 

  176. Li, D., Yakushiji, D., Kanazawa, S., Ohkubo, T., & Nomoto, Y. (2002). Decomposition of toluene by streamer corona discharge with catalyst. Journal of Electrostatics, 55, 311–319.

    Article  Google Scholar 

  177. Malik, M. A., & Xuanzhen, J. (2000). Catalyst assisted destruction of trichloro ethylene and toluene in corona discharges. Journal of Environmental Sciences, 12, 7–11.

    Google Scholar 

  178. Guo, Y., Liao, X., He, J., Ou, W., & Ye, D. (2010). Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene. Catalysis Today, 153, 176–183.

    Article  Google Scholar 

  179. Liao, X.-B., Guo, Y.-F., He, J.-H., Ou, W.-J., & Ye, D.-Q. (2010). Hydroxyl radicals formation in dielectric barrier discharge during decomposition of toluene. Plasma Chemistry and Plasma Processing, 30, 841–853.

    Article  Google Scholar 

  180. Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 74, 161–169.

    Article  Google Scholar 

  181. Huang, H. B., Ye, D. Q., & Leung, D. Y. C. (2011). Abatement of toluene in the plasma-driven catalysis: Mechanism and reaction kinetics. IEEE Transactions on Plasma Science, 39, 877–882.

    Article  ADS  Google Scholar 

  182. Huang, H., Ye, D., & Leung, D. Y. (2011). Plasma-driven catalysis process for toluene abatement: Effect of water vapor. IEEE Transactions on Plasma Science, 39, 576–580.

    Article  ADS  Google Scholar 

  183. Wu, J., Huang, Y., Xia, Q., & Li, Z. (2013). Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts. Plasma Chemistry and Plasma Processing, 33, 1073–1082.

    Article  Google Scholar 

  184. Qin, C. H., Huang, X. M., Dang, X. Q., Huang, J. Y., Teng, J. J., & Kang, Z. L. (2016). Toluene removal by sequential adsorption-plasma catalytic process: Effects of Ag and Mn impregnation sequence on Ag-Mn/gamma-Al2O3. Chemosphere, 162, 125–130.

    Article  ADS  Google Scholar 

  185. Xu, W. C., Wang, N., Chen, Y. D., Chen, J. D., Xu, X. X., Yu, L., Chen, L. M., Wu, J. L., Fu, M. L., Zhu, A. M., & Ye, D. Q. (2016). In situ FT-IR study and evaluation of toluene abatement in different plasma catalytic systems over metal oxides loaded gamma-Al2O3. Catalysis Communications, 84, 61–66.

    Article  ADS  Google Scholar 

  186. Xu, X. X., Wang, P. T., Xu, W. C., Wu, J. L., Chen, L. M., Fu, M. L., & Ye, D. Q. (2016). Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system. Chemical Engineering Journal, 283, 276–284.

    Article  Google Scholar 

  187. Huang, H., Ye, D., Leung, D. Y., Feng, F., & Guan, X. (2011). Byproducts and pathways of toluene destruction via plasma-catalysis. Journal of Molecular Catalysis A: Chemical, 336, 87–93.

    Article  Google Scholar 

  188. Ban, J.-Y., Son, Y.-H., Kang, M., & Choung, S.-J. (2006). Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma–photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS). Applied Surface Science, 253, 535–542.

    Article  ADS  Google Scholar 

  189. Kim, H. H., Ogata, A., & Futamura, S. (2005). Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. Journal of Physics D: Applied Physics, 38, 1292–1300.

    Article  ADS  Google Scholar 

  190. Liang, W.-J., Ma, L., Liu, H., & Li, J. (2013). Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst. Chemosphere, 92, 1390–1395.

    Article  ADS  Google Scholar 

  191. Zhu, T., Wan, Y., Li, H., Chen, S., & Fang, Y. (2011). VOCs decomposition via modified ferroelectric packed bed dielectric barrier discharge plasma. IEEE Transactions on Plasma Science, 39, 1695–1700.

    Article  ADS  Google Scholar 

  192. Huang, R., Lu, M. J., Wang, P. T., Chen, Y. D., Wu, J. L., Fu, M. L., Chen, L. M., & Ye, D. Q. (2015). Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal. RSC Advances, 5, 72113–72120.

    Article  Google Scholar 

  193. Lu, M. J., Huang, R., Wu, J. L., Fu, M. L., Chen, L. M., & Ye, D. Q. (2015). On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature. Catalysis Today, 242, 274–286.

    Article  Google Scholar 

  194. Teramoto, Y., Kosuge, K., Sugasawa, M., Kim, H. H., Ogata, A., & Negishi, N. (2015). Zirconium/cerium oxide solid solutions with addition of SiO2 as ozone-assisted catalysts for toluene oxidation. Catalysis Communications, 61, 112–116.

    Article  Google Scholar 

  195. Wang, W. Z., Wang, H. L., Zhu, T. L., & Fan, X. (2015). Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration. Journal of Hazardous Materials, 292, 70–78.

    Article  Google Scholar 

  196. Ye, Z. L., Han, Q. Y., Jiang, Y. F., Zhang, S. D., Shu, L., & Zhang, R. X. (2015). Synergetic effect between plasma and UV for toluene conversion in integrated combined plasma photolysis reactor with KrCl/KrBr/XeCl/Xe-2 Excilamp. Canadian Journal of Chemical Engineering, 93, 1168–1175.

    Article  Google Scholar 

  197. Zabihi, M., Khorasheh, F., & Shayegan, J. (2015). Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Advances, 5, 5107–5122.

    Article  Google Scholar 

  198. Chen, J., Xie, Z. M., Tang, J. H., Zhou, J., Lu, X. T., & Zhao, H. T. (2016). Oxidation of toluene by dielectric barrier discharge with photo-catalytic electrode. Chemical Engineering Journal, 284, 166–173.

    Article  Google Scholar 

  199. Giroir-Fendler, A., Alves-Fortunato, M., Richard, M., Wang, C., Diaz, J. A., Gil, S., Zhang, C. H., Can, F., Bion, N., & Guo, Y. L. (2016). Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Applied Catalysis B: Environmental, 180, 29–37.

    Article  Google Scholar 

  200. Rodrigues, A., Tatibouet, J. M., & Fourre, E. (2016). Operando DRIFT spectroscopy characterization of intermediate species on catalysts surface in VOC removal from air by non-thermal plasma assisted catalysis. Plasma Chemistry and Plasma Processing, 36, 901–915.

    Article  Google Scholar 

  201. Kim, H.-H., Lee, Y.-H., Ogata, A., & Futamura, S. (2003). Plasma-driven catalyst processing packed with photocatalyst for gas-phase benzene decomposition. Catalysis Communications, 4, 347–351.

    Article  Google Scholar 

  202. Kim, H., Lee, Y., Ogata, A., & Futamura, S. (2003). Decomposition of gas-phase benzene using hybrid systems of non-thermal plasma and catalysts. In Plasma science, 2003. ICOPS 2003. IEEE conference record-abstracts. The 30th international conference on. 2003. IEEE.

    Google Scholar 

  203. Kim, H.-H., Oh, S.-M., Ogata, A., & Futamura, S. (2004). Decomposition of benzene using Ag/TiO2 packed plasma-driven catalyst reactor: Influence of electrode configuration and Ag-loading amount. Catalysis Letters, 96, 189–194.

    Article  Google Scholar 

  204. Higashi, M., Uchida, S., Suzuki, N., & Fujii, K.-I. (1992). Soot elimination and NOx and SOx reduction in diesel-engine exhaust by a combination of discharge plasma and oil dynamics. IEEE Transactions on Plasma Science, 20, 1–12.

    Article  ADS  Google Scholar 

  205. Fan, H. Y., Shi, C., Li, X. S., Zhao, D. Z., Xu, Y., & Zhu, A. M. (2009). High-efficiency plasma catalytic removal of dilute benzene from air. Journal of Physics D: Applied Physics, 42, 225105.

    Article  ADS  Google Scholar 

  206. Jiang, N., Hu, J., Li, J., Shang, K. F., Lu, N., & Wu, Y. (2016). Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 184, 355–363.

    Article  Google Scholar 

  207. Park, D.-W., Yoon, S.-H., Kim, G.-J., & Sekiguchi, H. (2002). The effect of catalyst on the decomposition of dilute benzene using dielectric barrier discharge. Journal of Industrial and Engineering Chemistry, 8, 393–398.

    Google Scholar 

  208. Hu, J., Jiang, N., Li, J., Shang, K. F., Lu, N., & Wu, Y. (2016). Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2-TiO2/zeolite catalyst. Chemical Engineering Journal, 293, 216–224.

    Article  Google Scholar 

  209. Ye, Z. L., Shen, Y., Xi, R. Z., & Hou, H. Q. (2007). Destruction of benzene in an air stream by the outer combined plasma photolysis method. Journal of Physics D: Applied Physics, 41, 025201.

    Article  Google Scholar 

  210. Ge, H., Hu, D. X., Li, X. G., Tian, Y., Chen, Z. B., & Zhu, Y. M. (2015). Removal of low-concentration benzene in indoor air with plasma-MnO2 catalysis system. Journal of Electrostatics, 76, 216–221.

    Article  Google Scholar 

  211. He, C., Cao, L., Liu, X., Fu, W., & Zhao, J. (2015). Catalytic behavior and synergistic effect of nonthermal plasma and CuO/AC catalyst for benzene destruction. International journal of Environmental Science and Technology, 12, 3531–3540.

    Article  Google Scholar 

  212. Liu, Y., Li, X. S., Liu, J. L., Wu, J. L., Ye, D. Q., & Zhu, A. M. (2016). Cycled storage-discharge (CSD) plasma catalytic removal of benzene over AgMn/HZSM-5 using air as discharge gas. Catalysis Science & Technology, 6, 3788–3796.

    Article  Google Scholar 

  213. Ma, T. P., Jiang, H. D., Liu, J. Q., & Zhong, F. C. (2016). Decomposition of benzene using a pulse-modulated DBD plasma. Plasma Chemistry and Plasma Processing, 36, 1533–1543.

    Article  Google Scholar 

  214. Pangilinan, C. D. C., Kurniawan, W., Salim, C., & Hinode, H. (2016). Effect of Ag/TiO2 catalyst preparation on gas-phase benzene decomposition using non-thermal plasma driven catalysis under oxygen plasma. Reaction Kinetics, Mechanisms and Catalysis, 117, 103–118.

    Article  Google Scholar 

  215. Han, S., Oda, T., & Ono, R. (2005). Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge plasma process. IEEE Transactions on Industry Applications, 41, 1343–1349.

    Article  Google Scholar 

  216. Oda, T., Takahashi, T., & Yamaji, K. (2004). TCE decomposition by the nonthermal plasma process concerning ozone effect. IEEE Transactions on Industry Applications, 40, 1249–1256.

    Article  Google Scholar 

  217. Magureanu, M., Mandache, N. B., Hu, J., Richards, R., Florea, M., & Parvulescu, V. I. (2007). Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Applied Catalysis B: Environmental, 76, 275–281.

    Article  Google Scholar 

  218. Vandenbroucke, A. M., Dinh, M. T. N., Nuns, N., Giraudon, J. M., De Geyter, N., Leys, C., Lamonier, J. F., & Morent, R. (2016). Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 283, 668–675.

    Article  Google Scholar 

  219. Dinh, M. T. N., Giraudon, T. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2016). Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air. Journal of Hazardous Materials, 314, 88–94.

    Article  Google Scholar 

  220. Dinh, M. T. N., Giraudon, J. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2015). Post plasma-catalysis for total oxidation of trichloroethylene over Ce-Mn based oxides synthesized by a modified “redox-precipitation route”. Applied Catalysis B: Environmental, 172, 65–72.

    Article  Google Scholar 

  221. Vandenbroucke, A., Mora, M., Jiménez-Sanchidrián, C., Romero-Salguero, F., De Geyter, N., Leys, C., & Morent, R. (2014). TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst. Applied Catalysis B: Environmental, 156, 94–100.

    Article  Google Scholar 

  222. Whitehead, J. C. (2016). Plasma–catalysis: The known knowns, the known unknowns and the unknown unknowns. Journal of Physics D: Applied Physics, 49, 243001.

    Article  ADS  Google Scholar 

  223. Oda, T., Yamaji, K., & Takahashi, T. (2001). Decomposition of dilute trichloroethylene by nonthermal plasma processing-catalyst and ozone effect. In Industry applications conference, 2001. Thirty-Sixth IAS annual meeting. Conference record of the 2001 IEEE.

    Google Scholar 

  224. Vandenbroucke, A., Morent, R., De Geyter, N., & Leys, C. (2011). Decomposition of trichloroethylene with plasma-catalysis: A review. Journal of Advanced Oxidation Technologies, 14, 165–173.

    Article  Google Scholar 

  225. Lee, H., Lee, D. H., Song, Y. H., Choi, W. C., Park, Y. K., & Kim, D. H. (2015). Synergistic effect of non-thermal plasma-catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chemical Engineering Journal, 259, 761–770.

    Article  Google Scholar 

  226. Marques, R., Da Costa, S., & Da Costa, P. (2008). Plasma-assisted catalytic oxidation of methane: On the influence of plasma energy deposition and feed composition. Applied Catalysis B: Environmental, 82, 50–57.

    Article  Google Scholar 

  227. Abd Allah, Z., & Whitehead, J. C. (2015). Plasma-catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge. Catalysis Today, 256, 76–79.

    Article  Google Scholar 

  228. Huu, T. P., Gil, S., Da Costa, P., Giroir-Fendler, A., & Khacef, A. (2015). Plasma-catalytic hybrid reactor: Application to methane removal. Catalysis Today, 257, 86–92.

    Article  Google Scholar 

  229. Lee, H., Lim, T. H., & Kim, D. H. (2015). Complementary effect of plasma-catalysis hybrid system on methane complete oxidation over non-PGM catalysts. Catalysis Communications, 69, 223–227.

    Article  Google Scholar 

  230. Trinh, Q. H., Lee, S. B., & Mok, Y. S. (2015). Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite. Journal of Hazardous Materials, 285, 525–534.

    Article  Google Scholar 

  231. Trinh, Q. H., & Mok, Y. S. (2015). Effect of the adsorbent/catalyst preparation method and plasma reactor configuration on the removal of dilute ethylene from air stream. Catalysis Today, 256, 170–177.

    Article  Google Scholar 

  232. Hoard, J., Wallington, T. J., Bretz, R. L., Malkin, A., Dorai, R., & Kushner, M. J. (2003). Importance of O (3P) atoms and OH radicals in hydrocarbon oxidation during the nonthermal plasma treatment of diesel exhaust inferred using relative-rate methods. International Journal of Chemical Kinetics, 35, 231–238.

    Article  Google Scholar 

  233. Rousseau, A., Guaitella, O., Gatilova, L., Thevenet, F., Guillard, C., Ropcke, J., & Stancu, G. (2005). Photocatalyst activation in a pulsed low pressure discharge. Applied Physics Letters, 87, 221501–221900.

    Article  ADS  Google Scholar 

  234. Gatica, J. M., Garcia-Cabeza, A. L., Yeste, M. P., Marin-Barrios, R., Gonzalez-Leal, J. M., Blanco, G., Cifredo, G. A., Guerra, F. M., & Vidal, H. (2016). Carbon integral honeycomb monoliths as support of copper catalysts in the Kharasch-Sosnovsky oxidation of cyclohexene. Chemical Engineering Journal, 290, 174–184.

    Article  Google Scholar 

  235. Kim, J., Han, B., Kim, Y., Lee, J.-H., Park, C.-R., Kim, J.-C., Kim, J.-C., & Kim, K.-J. (2004). Removal of VOCs by hybrid electron beam reactor with catalyst bed. Radiation Physics and Chemistry, 71, 429–432.

    Article  ADS  Google Scholar 

  236. Kim, K.-J., Kim, J.-C., Kim, J., & Sunwoo, Y. (2005). Development of hybrid technology using E-beam and catalyst for aromatic VOCs control. Radiation Physics and Chemistry, 73, 85–90.

    Article  ADS  Google Scholar 

  237. Zhang, H. B., Li, K., Sun, T. H., Jia, J. P., Lou, Z. Y., Yao, S. A., & Wang, G. (2015). The combination effect of dielectric barrier discharge (DBD) and TiO2 catalytic process on styrene removal and the analysis of the by-products and intermediates. Research on Chemical Intermediates, 41, 175–189.

    Article  Google Scholar 

  238. Ye, Z., Wang, C., Shao, Z., Ye, Q., He, Y., & Shi, Y. (2012). A novel dielectric barrier discharge reactor with photocatalytic electrode based on sintered metal fibers for abatement of xylene. Journal of Hazardous Materials, 241, 216–223.

    Article  Google Scholar 

  239. Hakoda, T., Matsumoto, K., Shimada, A., Narita, T., Kojima, T., & Hirota, K. (2008). Application of ozone decomposition catalysts to electron-beam irradiated xylene/air mixtures for enhancing carbon dioxide production. Radiation Physics and Chemistry, 77, 585–590.

    Article  ADS  Google Scholar 

  240. Hakoda, T., Matsumoto, K., Mizuno, A., Narita, T., Kojima, T., & Hirota, K. (2008). Oxidation process of xylene in air using under electron beam irradiation. IEEE Transactions on Industry Applications, 44, 1950–1956.

    Article  Google Scholar 

  241. Hakoda, T., Matsumoto, K., Mizuno, A., & Hirota, K. (2008). Oxidation of xylene and its irradiation byproducts using an electron-beam irradiating a γ-Al2O3 bed. Journal of Physics D: Applied Physics, 41, 155202.

    Article  ADS  Google Scholar 

  242. Francke, K.-P., Miessner, H., & Rudolph, R. (2000). Cleaning of air streams from organic pollutants by plasma–catalytic oxidation. Plasma Chemistry and Plasma Processing, 20, 393–403.

    Article  Google Scholar 

  243. Wei, B. L., Chen, Y. P., Ye, M. J., Shao, Z. H., He, Y., & Shi, Y. (2015). Enhanced degradation of gaseous xylene using surface acidized TiO2 catalyst with non-thermal plasmas. Plasma Chemistry and Plasma Processing, 35, 173–186.

    Article  Google Scholar 

  244. Wang, L., Zhang, C. B., He, H., Liu, F. D., & Wang, C. X. (2016). Effect of doping metals on OMS-2/gamma-Al2O3 catalysts for plasma-catalytic removal of o-xylene. Journal of Physical Chemistry C, 120, 6136–6144.

    Article  Google Scholar 

  245. Norsic, C., Tatibouët, J.-M., Batiot-Dupeyrat, C., & Fourré, E. (2016). Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3. Chemical Engineering Journal, 304, 563–572.

    Article  Google Scholar 

  246. Zhu, X. B., Liu, S. Y., Cai, Y. X., Gao, X., Zhou, J. S., Zheng, C. H., & Tu, X. (2016). Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Applied Catalysis B: Environmental, 183, 124–132.

    Article  ADS  Google Scholar 

  247. Lyulyukin, M. N., Besov, A. S., & Vorontsov, A. V. (2016). Acetone and ethanol vapor oxidation via negative atmospheric corona discharge over titania-based catalysts. Applied Catalysis B: Environmental, 183, 18–27.

    Article  Google Scholar 

  248. Li, Y., Fan, Z., Shi, J., Liu, Z., Zhou, J., & Shangguan, W. (2014). Removal of volatile organic compounds (VOCs) at room temperature using dielectric barrier discharge and plasma-catalysis. Plasma Chemistry and Plasma Processing, 34, 801–810.

    Article  Google Scholar 

  249. Jia, Z. X., Vega-Gonzalez, A., Ben Amar, M., Hassouni, K., Tieng, S. T., Touchard, S., Kanaev, A., & Duten, X. (2013). Acetaldehyde removal using a diphasic process coupling a silver-based nano-structured catalyst and a plasma at atmospheric pressure. Catalysis Today, 208, 82–89.

    Article  Google Scholar 

  250. Ohshima, T., Kondo, T., Kitajima, N., & Sato, M. (2010). Adsorption and plasma decomposition of gaseous acetaldehyde on fibrous activated carbon. IEEE Transactions on Industry Applications, 46, 23–28.

    Article  Google Scholar 

  251. Mizuno, A., Kisanuki, Y., Noguchi, M., Katsura, S., Lee, S. H., Hong, Y. K., Shin, S. Y., & Kang, J. H. (1999). Indoor air cleaning using a pulsed discharge plasma. IEEE Transactions on Industry Applications, 35, 1284–1288.

    Article  Google Scholar 

  252. Klett, C., Duren, X., Tieng, S., Touchard, S., Jestin, P., Hassouni, K., & Vega-Gonzalez, A. (2014). Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process. Journal of Hazardous Materials, 279, 356–364.

    Article  Google Scholar 

  253. Li, Y. Z., Fan, Z. Y., Shi, J. W., Liu, Z. Y., Zhou, J. W., & Shangguan, W. F. (2015). Modified manganese oxide octahedral molecular sieves M ’-OMS-2 (M ’ = Co,Ce,Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation. Catalysis Today, 256, 178–185.

    Article  Google Scholar 

  254. Thevenet, F., Olivier, L., Batault, F., Sivachandiran, L., & Locoge, N. (2015). Acetaldehyde adsorption on TiO2: Influence of NO2 preliminary adsorption. Chemical Engineering Journal, 281, 126–133.

    Article  Google Scholar 

  255. Gharib-Abou Ghaida, S., Assadi, A. A., Costa, G., Bouzaza, A., & Wolbert, D. (2016). Association of surface dielectric barrier discharge and photocatalysis in continuous reactor at pilot scale: Butyraldehyde oxidation, by-products identification and ozone valorization. Chemical Engineering Journal, 292, 276–283.

    Article  Google Scholar 

  256. Liang, W.-J., Li, J., Li, J.-X., Zhu, T., & Jin, Y.-Q. (2010). Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 175, 1090–1095.

    Article  Google Scholar 

  257. Ding, H. X., Zhu, A. M., Yang, X. F., Li, C. H., & Xu, Y. (2005). Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas. Journal of Physics D: Applied Physics, 38, 4160–4167.

    Article  ADS  Google Scholar 

  258. Zhu, X. B., Gao, X., Qin, R., Zeng, Y. X., Qu, R. Y., Zheng, C. H., & Tu, X. (2015). Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 170, 293–300.

    Article  Google Scholar 

  259. Trinh, Q. H., & Mok, Y. S. (2015). Non-thermal plasma combined with cordierite-supported Mn and Fe based catalysts for the decomposition of Diethylether. Catalysts, 5, 800–814.

    Article  Google Scholar 

  260. Trinh, H. Q., & Mok, Y. S. (2014). Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts. Chemical Engineering Journal, 251, 199–206.

    Article  Google Scholar 

  261. Barakat, C., Gravejat, P., Guaitella, O., Thevenet, F., & Rousseau, A. (2014). Oxidation of isopropanol and acetone adsorbed on TiO2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring. Applied Catalysis B: Environmental, 147, 302–313.

    Article  Google Scholar 

  262. Trinh, Q. H., Gandhi, M. S., & Mok, Y. S. (2015). Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst. Japanese Journal of Applied Physics, 54,1S 01AG04.

    Google Scholar 

  263. Zhu, X. B., Gao, X., Yu, X. N., Zheng, C. H., & Tu, X. (2015). Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 256, 108–114.

    Article  Google Scholar 

  264. Zhu, X. B., Tu, X., Mei, D. H., Zheng, C. H., Zhou, J. S., Gao, X., Luo, Z. Y., Ni, M. J., & Cen, K. F. (2016). Investigation of hybrid plasma-catalytic removal of acetone over CuO/gamma-Al2O3 catalysts using response surface method. Chemosphere, 155, 9–17.

    Article  ADS  Google Scholar 

  265. Harling, A. M., Wallis, A. E., & Whitehead, J. C. (2007). The effect of temperature on the removal of DCM using non-thermal, atmospheric-pressure plasma-assisted catalysis. Plasma Processes and Polymers, 4, 463–470.

    Article  Google Scholar 

  266. Ogata, A., Saito, K., Kim, H.-H., Sugasawa, M., Aritani, H., & Einaga, H. (2010). Performance of an ozone decomposition catalyst in hybrid plasma reactors for volatile organic compound removal. Plasma Chemistry and Plasma Processing, 30, 33–42.

    Article  Google Scholar 

  267. Abedi, K., Ghorbani-Shahna, F., Bahrami, A., Jaleh, B., & Yarahmadi, R. (2015). Effect of TiO2-ZnO/GAC on by-product distribution of CVOCs decomposition in a NTP-assisted catalysis system. Polish Journal of Chemical Technology, 17, 32–40.

    Article  Google Scholar 

  268. Zhu, R. Y., Mao, Y. B., Jiang, L. Y., & Chen, J. M. (2015). Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts. Chemical Engineering Journal, 279, 463–471.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rino Morent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cools, P., De Geyter, N., Morent, R. (2019). Plasma-Catalytic Removal of VOCs. In: Tu, X., Whitehead, J., Nozaki, T. (eds) Plasma Catalysis. Springer Series on Atomic, Optical, and Plasma Physics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-05189-1_6

Download citation

Publish with us

Policies and ethics